mirror of
https://github.com/italicsjenga/rp-hal-boards.git
synced 2024-12-24 05:01:31 +11:00
439 lines
13 KiB
Rust
439 lines
13 KiB
Rust
//! # Pico Interpolator Example
|
||
//!
|
||
//! Example demonstrating the usage of the hardware interpolator.
|
||
//!
|
||
//! Runs several test programs, outputs the result on LEDs.
|
||
//! Green led for successful test connects to GPIO3.
|
||
//! Red led for unsuccessful test connects to GPIO4.
|
||
//! In case of failure, the system LED blinks the number of the test.
|
||
//! In case of success, the system LED stays lit.
|
||
//!
|
||
//! See the `Cargo.toml` file for Copyright and license details.
|
||
|
||
#![no_std]
|
||
#![no_main]
|
||
|
||
// The macro for our start-up function
|
||
use rp_pico::entry;
|
||
|
||
// GPIO traits
|
||
use embedded_hal::digital::v2::OutputPin;
|
||
|
||
// Ensure we halt the program on panic (if we don't mention this crate it won't
|
||
// be linked)
|
||
use panic_halt as _;
|
||
|
||
// A shorter alias for the Peripheral Access Crate, which provides low-level
|
||
// register access
|
||
use rp_pico::hal::pac;
|
||
|
||
// A shorter alias for the Hardware Abstraction Layer, which provides
|
||
// higher-level drivers.
|
||
use rp_pico::hal;
|
||
|
||
// Pull in any important traits
|
||
use rp_pico::hal::prelude::*;
|
||
|
||
use rp_pico::hal::sio::{Interp, Interp0, Interp1, Lane, LaneCtrl};
|
||
|
||
/// Entry point to our bare-metal application.
|
||
///
|
||
/// The `#[entry]` macro ensures the Cortex-M start-up code calls this function
|
||
/// as soon as all global variables are initialised.
|
||
///
|
||
/// The function configures the RP2040 peripherals, then just reads the button
|
||
/// and sets the LED appropriately.
|
||
#[entry]
|
||
fn main() -> ! {
|
||
// Grab our singleton objects
|
||
let mut pac = pac::Peripherals::take().unwrap();
|
||
let core = pac::CorePeripherals::take().unwrap();
|
||
|
||
// Set up the watchdog driver - needed by the clock setup code
|
||
let mut watchdog = hal::Watchdog::new(pac.WATCHDOG);
|
||
|
||
// Configure the clocks
|
||
//
|
||
// The default is to generate a 125 MHz system clock
|
||
let clocks = hal::clocks::init_clocks_and_plls(
|
||
rp_pico::XOSC_CRYSTAL_FREQ,
|
||
pac.XOSC,
|
||
pac.CLOCKS,
|
||
pac.PLL_SYS,
|
||
pac.PLL_USB,
|
||
&mut pac.RESETS,
|
||
&mut watchdog,
|
||
)
|
||
.ok()
|
||
.unwrap();
|
||
|
||
// The delay object lets us wait for specified amounts of time (in
|
||
// milliseconds)
|
||
let mut delay = cortex_m::delay::Delay::new(core.SYST, clocks.system_clock.freq().to_Hz());
|
||
|
||
// The single-cycle I/O block controls our GPIO pins
|
||
let mut sio = hal::Sio::new(pac.SIO);
|
||
|
||
// Set the pins up according to their function on this particular board
|
||
let pins = rp_pico::Pins::new(
|
||
pac.IO_BANK0,
|
||
pac.PADS_BANK0,
|
||
sio.gpio_bank0,
|
||
&mut pac.RESETS,
|
||
);
|
||
|
||
// Our LED outputs
|
||
let mut system_led_pin = pins.led.into_push_pull_output();
|
||
let mut green_led_pin = pins.gpio3.into_push_pull_output();
|
||
let mut red_led_pin = pins.gpio4.into_push_pull_output();
|
||
|
||
system_led_pin.set_low().unwrap();
|
||
green_led_pin.set_low().unwrap();
|
||
red_led_pin.set_low().unwrap();
|
||
|
||
let mut choose_led = |index: u32, result: bool| {
|
||
if result {
|
||
// blink the green led once to indicate success
|
||
green_led_pin.set_high().unwrap();
|
||
delay.delay_ms(500);
|
||
green_led_pin.set_low().unwrap();
|
||
delay.delay_ms(500);
|
||
} else {
|
||
// turn the red led on to indicate failure
|
||
// and blink the on board led to indicate which test failed, looping forever
|
||
red_led_pin.set_high().unwrap();
|
||
loop {
|
||
for _ in 0..index {
|
||
system_led_pin.set_high().unwrap();
|
||
delay.delay_ms(200);
|
||
system_led_pin.set_low().unwrap();
|
||
delay.delay_ms(200);
|
||
}
|
||
delay.delay_ms(1000);
|
||
}
|
||
}
|
||
};
|
||
|
||
// Run forever, setting the LED according to the button
|
||
|
||
choose_led(1, multiplication_table(&mut sio.interp0));
|
||
choose_led(2, moving_mask(&mut sio.interp0));
|
||
choose_led(3, cross_lanes(&mut sio.interp0));
|
||
choose_led(4, simple_blend1(&mut sio.interp0));
|
||
choose_led(5, simple_blend2(&mut sio.interp0));
|
||
choose_led(6, clamp(&mut sio.interp1));
|
||
choose_led(7, texture_mapping(&mut sio.interp0));
|
||
|
||
// turn the on board led on to indicate testing is done
|
||
system_led_pin.set_high().unwrap();
|
||
loop {
|
||
delay.delay_ms(1000);
|
||
}
|
||
}
|
||
|
||
fn multiplication_table(interp: &mut Interp0) -> bool {
|
||
//get the default configuration that just keep adding base into accum
|
||
let config = LaneCtrl::new();
|
||
|
||
//write the configuration to the hardware.
|
||
interp.get_lane0().set_ctrl(config.encode());
|
||
|
||
//set the accumulator to 0 and the base to 9
|
||
interp.get_lane0().set_accum(0);
|
||
interp.get_lane0().set_base(9);
|
||
|
||
//the expected output for comparison
|
||
let expected = [9, 18, 27, 36, 45, 54, 63, 72, 81, 90];
|
||
|
||
for i in expected {
|
||
//returns the value of accum + base and sets accum to the same value
|
||
let value = interp.get_lane0().pop();
|
||
|
||
if value != i {
|
||
return false; //inform that the interpolator did not return the expected value
|
||
}
|
||
}
|
||
true
|
||
}
|
||
|
||
fn moving_mask(interp: &mut Interp0) -> bool {
|
||
//get the default configuration that just keep adding base into accum
|
||
let mut config = LaneCtrl::new();
|
||
|
||
interp.get_lane0().set_accum(0x1234ABCD);
|
||
|
||
let expected = [
|
||
0x0000_000D,
|
||
0x0000_00C0,
|
||
0x0000_0B00,
|
||
0x0000_A000,
|
||
0x0004_0000,
|
||
0x0030_0000,
|
||
0x0200_0000,
|
||
0x1000_0000,
|
||
];
|
||
for i in 0..8 {
|
||
// LSB, then MSB. These are inclusive, so 0,31 means "the entire 32 bit register"
|
||
config.mask_lsb = i * 4;
|
||
config.mask_msb = i * 4 + 3;
|
||
interp.get_lane0().set_ctrl(config.encode());
|
||
|
||
// Reading read_raw() returns the lane data
|
||
// after shifting, masking and sign extending, without adding base
|
||
if interp.get_lane0().read_raw() != expected[i as usize] {
|
||
return false;
|
||
}
|
||
}
|
||
|
||
let signed_expected = [
|
||
0xFFFF_FFFD,
|
||
0xFFFF_FFC0,
|
||
0xFFFF_FB00,
|
||
0xFFFF_A000,
|
||
0x0004_0000,
|
||
0x0030_0000,
|
||
0x0200_0000,
|
||
0x1000_0000,
|
||
];
|
||
|
||
config.signed = true;
|
||
for i in 0..8 {
|
||
config.mask_lsb = i * 4;
|
||
config.mask_msb = i * 4 + 3;
|
||
interp.get_lane0().set_ctrl(config.encode());
|
||
|
||
if interp.get_lane0().read_raw() != signed_expected[i as usize] {
|
||
return false;
|
||
}
|
||
}
|
||
true
|
||
}
|
||
|
||
fn cross_lanes(interp: &mut Interp0) -> bool {
|
||
// this configuration will at the time of pop()
|
||
// when applied to lane0 : set lane0 accumulator to the result from lane1
|
||
// when applied to lane1 : set lane1 accumulator to the result from lane0
|
||
let config = LaneCtrl {
|
||
cross_result: true,
|
||
..LaneCtrl::new()
|
||
};
|
||
let encoded_config = config.encode();
|
||
|
||
// each lane is used through an accessor,
|
||
// as lanes mutate each other, they can not be borrowed at the same time
|
||
interp.get_lane0().set_ctrl(encoded_config);
|
||
interp.get_lane1().set_ctrl(encoded_config);
|
||
|
||
interp.get_lane0().set_accum(123);
|
||
interp.get_lane1().set_accum(456);
|
||
|
||
// lane0 will add 1 to its result, lane1 will add nothing
|
||
interp.get_lane0().set_base(1);
|
||
interp.get_lane1().set_base(0);
|
||
|
||
let expected = [
|
||
(124, 456),
|
||
(457, 124),
|
||
(125, 457),
|
||
(458, 125),
|
||
(126, 458),
|
||
(459, 126),
|
||
(127, 459),
|
||
(460, 127),
|
||
(128, 460),
|
||
(461, 128),
|
||
];
|
||
|
||
for i in expected {
|
||
if i != (interp.get_lane0().peek(), interp.get_lane1().pop()) {
|
||
return false;
|
||
}
|
||
}
|
||
true
|
||
}
|
||
|
||
fn simple_blend1(interp: &mut Interp0) -> bool {
|
||
let config = LaneCtrl {
|
||
blend: true,
|
||
..LaneCtrl::new()
|
||
};
|
||
|
||
//enable blend mode
|
||
interp.get_lane0().set_ctrl(config.encode());
|
||
//make sure the default configuration is in lane1 as the value may be shifted and masked.
|
||
interp.get_lane1().set_ctrl(LaneCtrl::new().encode());
|
||
|
||
//set the minimum value for interp.get_lane0().set_accum(0) 0/256
|
||
interp.get_lane0().set_base(500);
|
||
//set the maximum value which is inaccessible
|
||
// as the blend is done between 0/256 and 255/256
|
||
interp.get_lane1().set_base(1000);
|
||
|
||
let expected = [500, 582, 666, 748, 832, 914, 998];
|
||
for i in 0..=6 {
|
||
interp.get_lane1().set_accum(255 * i / 6);
|
||
if expected[i as usize] != interp.get_lane1().peek() {
|
||
return false;
|
||
}
|
||
}
|
||
true
|
||
}
|
||
|
||
fn simple_blend2(interp: &mut Interp0) -> bool {
|
||
let config = LaneCtrl {
|
||
blend: true,
|
||
..LaneCtrl::new()
|
||
};
|
||
//enable blend mode
|
||
interp.get_lane0().set_ctrl(config.encode());
|
||
|
||
interp.get_lane0().set_base((-1000i32) as u32);
|
||
interp.get_lane1().set_base(1000);
|
||
|
||
let mut config1 = LaneCtrl {
|
||
signed: true,
|
||
..LaneCtrl::new()
|
||
};
|
||
interp.get_lane1().set_ctrl(config1.encode());
|
||
let expected_signed = [-1000, -672, -336, -8, 328, 656, 992];
|
||
for i in 0..=6 {
|
||
// write a value between 0 and 256 (exclusive)
|
||
interp.get_lane1().set_accum(255 * i / 6);
|
||
// reads it as a value between -1000 and 1000 (exclusive)
|
||
if interp.get_lane1().peek() as i32 != expected_signed[i as usize] {
|
||
return false;
|
||
}
|
||
}
|
||
config1.signed = false;
|
||
interp.get_lane1().set_ctrl(config1.encode());
|
||
let expected_unsigned = [
|
||
0xfffffc18, 0xd5fffd60, 0xaafffeb0, 0x80fffff8, 0x56000148, 0x2c000290, 0x010003e0,
|
||
];
|
||
for i in 0..=6 {
|
||
interp.get_lane1().set_accum(255 * i / 6);
|
||
// reads a value between 4294966296 and 1000
|
||
if interp.get_lane1().peek() != expected_unsigned[i as usize] {
|
||
return false;
|
||
}
|
||
}
|
||
true
|
||
}
|
||
|
||
///Divides by 4 and clamp the value between 0 and 255 inclusive
|
||
fn clamp(interp: &mut Interp1) -> bool {
|
||
// Enables Clamp ONLY AVAILABLE ON Interp1
|
||
// shift two bits to the right and mask the two most significant bits
|
||
// because sign extension is made after the mask
|
||
let config = LaneCtrl {
|
||
clamp: true,
|
||
shift: 2,
|
||
mask_lsb: 0,
|
||
mask_msb: 29,
|
||
signed: true,
|
||
..LaneCtrl::new()
|
||
};
|
||
interp.get_lane0().set_ctrl(config.encode());
|
||
//set minimum value of result
|
||
interp.get_lane0().set_base(0);
|
||
//set maximum value of result
|
||
interp.get_lane1().set_base(255);
|
||
let values: [(i32, i32); 9] = [
|
||
(-1024, 0),
|
||
(-768, 0),
|
||
(-512, 0),
|
||
(-256, 0),
|
||
(0, 0),
|
||
(256, 64),
|
||
(512, 128),
|
||
(768, 192),
|
||
(1024, 255),
|
||
];
|
||
for (arg, result) in values {
|
||
interp.get_lane0().set_accum(arg as u32);
|
||
if result != interp.get_lane0().peek() as i32 {
|
||
return false;
|
||
}
|
||
}
|
||
true
|
||
}
|
||
|
||
fn texture_mapping(interp: &mut Interp0) -> bool {
|
||
#[rustfmt::skip]
|
||
let texture: [u8;16] = [
|
||
0x00, 0x01, 0x02, 0x03,
|
||
0x10, 0x11, 0x12, 0x13,
|
||
0x20, 0x21, 0x22, 0x23,
|
||
0x30, 0x31, 0x32, 0x33,
|
||
];
|
||
|
||
// the position will be given in fixed point with 16 bits
|
||
// fractional part
|
||
let uv_fractional_bits = 16;
|
||
let texture_width_bits = 2;
|
||
let texture_height_bits = 2;
|
||
|
||
// bits
|
||
// 3322222222221111 1111110000000000
|
||
// 1098765432109876 5432109876543210
|
||
// accum0 u axis coordinate xx xxxxxxxxxxxxxxxx 18 bits
|
||
// after shift and mask xx
|
||
// accum1 v axis xx xxxxxxxxxxxxxxxx 18 bits
|
||
// after shift and mask xx
|
||
|
||
// add_raw make the interpolator increment the accumulator
|
||
// with the base value without masking or shifting
|
||
let config0 = LaneCtrl {
|
||
add_raw: true,
|
||
shift: uv_fractional_bits,
|
||
mask_lsb: 0,
|
||
mask_msb: texture_width_bits - 1,
|
||
..LaneCtrl::new()
|
||
};
|
||
interp.get_lane0().set_ctrl(config0.encode());
|
||
let config1 = LaneCtrl {
|
||
add_raw: true,
|
||
shift: uv_fractional_bits - texture_width_bits,
|
||
mask_lsb: texture_width_bits,
|
||
mask_msb: texture_width_bits + texture_height_bits - 1,
|
||
..LaneCtrl::new()
|
||
};
|
||
interp.get_lane1().set_ctrl(config1.encode());
|
||
|
||
interp.set_base(0);
|
||
|
||
// set starting position to 0x0
|
||
// will move 1/2 a pixel horizontally
|
||
// and 1/3 a pixel vertically per call to pop()
|
||
interp.get_lane0().set_accum(0);
|
||
interp.get_lane0().set_base(65536 / 2);
|
||
interp.get_lane1().set_accum(0);
|
||
interp.get_lane1().set_base(65536 / 3);
|
||
|
||
let expected = [
|
||
0x00, 0x00, 0x01, 0x01, 0x12, 0x12, 0x13, 0x23, 0x20, 0x20, 0x31, 0x31,
|
||
];
|
||
|
||
for i in expected {
|
||
if i != texture[interp.pop() as usize] {
|
||
return false;
|
||
}
|
||
}
|
||
|
||
// reset the starting position
|
||
interp.get_lane0().set_accum(0);
|
||
interp.get_lane1().set_accum(0);
|
||
interp.set_base(texture.as_ptr() as u32);
|
||
|
||
for i in expected {
|
||
// This is unsafe and should be done extremely carefully
|
||
// remember to follow memory alignment,
|
||
// reading or writing an unaligned address will crash
|
||
if i != unsafe { *(interp.pop() as *const u8) } {
|
||
return false;
|
||
}
|
||
}
|
||
|
||
true
|
||
}
|
||
// End of file
|