rp-hal-boards/boards/rp-pico/examples/pico_usb_serial_interrupt.rs
Jonathan Pallant (Ferrous Systems) 8f0a2788eb Renamed pico to rp-pico.
2021-12-23 11:18:52 +00:00

210 lines
6.3 KiB
Rust

//! # Pico USB Serial (with Interrupts) Example
//!
//! Creates a USB Serial device on a Pico board, with the USB driver running in
//! the USB interrupt.
//!
//! This will create a USB Serial device echoing anything it receives. Incoming
//! ASCII characters are converted to upercase, so you can tell it is working
//! and not just local-echo!
//!
//! See the `Cargo.toml` file for Copyright and licence details.
#![no_std]
#![no_main]
// The macro for our start-up function
use cortex_m_rt::entry;
// The macro for marking our interrupt functions
use rp_pico::hal::pac::interrupt;
// GPIO traits
use embedded_hal::digital::v2::OutputPin;
// Time handling traits
use embedded_time::rate::*;
// Ensure we halt the program on panic (if we don't mention this crate it won't
// be linked)
use panic_halt as _;
// Pull in any important traits
use rp_pico::hal::prelude::*;
// A shorter alias for the Peripheral Access Crate, which provides low-level
// register access
use rp_pico::hal::pac;
// A shorter alias for the Hardware Abstraction Layer, which provides
// higher-level drivers.
use rp_pico::hal;
// USB Device support
use usb_device::{class_prelude::*, prelude::*};
// USB Communications Class Device support
use usbd_serial::SerialPort;
/// The USB Device Driver (shared with the interrupt).
static mut USB_DEVICE: Option<UsbDevice<hal::usb::UsbBus>> = None;
/// The USB Bus Driver (shared with the interrupt).
static mut USB_BUS: Option<UsbBusAllocator<hal::usb::UsbBus>> = None;
/// The USB Serial Device Driver (shared with the interrupt).
static mut USB_SERIAL: Option<SerialPort<hal::usb::UsbBus>> = None;
/// Entry point to our bare-metal application.
///
/// The `#[entry]` macro ensures the Cortex-M start-up code calls this function
/// as soon as all global variables are initialised.
///
/// The function configures the RP2040 peripherals, then blinks the LED in an
/// infinite loop.
#[entry]
fn main() -> ! {
// Grab our singleton objects
let mut pac = pac::Peripherals::take().unwrap();
let core = pac::CorePeripherals::take().unwrap();
// Set up the watchdog driver - needed by the clock setup code
let mut watchdog = hal::Watchdog::new(pac.WATCHDOG);
// Configure the clocks
//
// The default is to generate a 125 MHz system clock
let clocks = hal::clocks::init_clocks_and_plls(
rp_pico::XOSC_CRYSTAL_FREQ,
pac.XOSC,
pac.CLOCKS,
pac.PLL_SYS,
pac.PLL_USB,
&mut pac.RESETS,
&mut watchdog,
)
.ok()
.unwrap();
// Set up the USB driver
let usb_bus = UsbBusAllocator::new(hal::usb::UsbBus::new(
pac.USBCTRL_REGS,
pac.USBCTRL_DPRAM,
clocks.usb_clock,
true,
&mut pac.RESETS,
));
unsafe {
// Note (safety): This is safe as interrupts haven't been started yet
USB_BUS = Some(usb_bus);
}
// Grab a reference to the USB Bus allocator. We are promising to the
// compiler not to take mutable access to this global variable whilst this
// reference exists!
let bus_ref = unsafe { USB_BUS.as_ref().unwrap() };
// Set up the USB Communications Class Device driver
let serial = SerialPort::new(bus_ref);
unsafe {
USB_SERIAL = Some(serial);
}
// Create a USB device with a fake VID and PID
let usb_dev = UsbDeviceBuilder::new(bus_ref, UsbVidPid(0x16c0, 0x27dd))
.manufacturer("Fake company")
.product("Serial port")
.serial_number("TEST")
.device_class(2) // from: https://www.usb.org/defined-class-codes
.build();
unsafe {
// Note (safety): This is safe as interrupts haven't been started yet
USB_DEVICE = Some(usb_dev);
}
// Enable the USB interrupt
unsafe {
pac::NVIC::unmask(hal::pac::Interrupt::USBCTRL_IRQ);
};
// No more USB code after this point in main! We can do anything we want in
// here since USB is handled in the interrupt - let's blink an LED!
// The delay object lets us wait for specified amounts of time (in
// milliseconds)
let mut delay = cortex_m::delay::Delay::new(core.SYST, clocks.system_clock.freq().integer());
// The single-cycle I/O block controls our GPIO pins
let sio = hal::Sio::new(pac.SIO);
// Set the pins up according to their function on this particular board
let pins = rp_pico::Pins::new(
pac.IO_BANK0,
pac.PADS_BANK0,
sio.gpio_bank0,
&mut pac.RESETS,
);
// Set the LED to be an output
let mut led_pin = pins.led.into_push_pull_output();
// Blink the LED at 1 Hz
loop {
led_pin.set_high().unwrap();
delay.delay_ms(500);
led_pin.set_low().unwrap();
delay.delay_ms(500);
}
}
/// This function is called whenever the USB Hardware generates an Interrupt
/// Request.
///
/// We do all our USB work under interrupt, so the main thread can continue on
/// knowing nothing about USB.
#[allow(non_snake_case)]
#[interrupt]
unsafe fn USBCTRL_IRQ() {
use core::sync::atomic::{AtomicBool, Ordering};
/// Note whether we've already printed the "hello" message.
static SAID_HELLO: AtomicBool = AtomicBool::new(false);
// Grab the global objects. This is OK as we only access them under interrupt.
let usb_dev = USB_DEVICE.as_mut().unwrap();
let serial = USB_SERIAL.as_mut().unwrap();
// Say hello exactly once on start-up
if !SAID_HELLO.load(Ordering::Relaxed) {
SAID_HELLO.store(true, Ordering::Relaxed);
let _ = serial.write(b"Hello, World!\r\n");
}
// Poll the USB driver with all of our supported USB Classes
if usb_dev.poll(&mut [serial]) {
let mut buf = [0u8; 64];
match serial.read(&mut buf) {
Err(_e) => {
// Do nothing
}
Ok(0) => {
// Do nothing
}
Ok(count) => {
// Convert to upper case
buf.iter_mut().take(count).for_each(|b| {
b.make_ascii_uppercase();
});
// Send back to the host
let mut wr_ptr = &buf[..count];
while !wr_ptr.is_empty() {
let _ = serial.write(wr_ptr).map(|len| {
wr_ptr = &wr_ptr[len..];
});
}
}
}
}
}
// End of file