rp-hal-boards/rp2040-hal/examples/spi.rs
2022-04-30 12:51:45 +10:00

131 lines
3.7 KiB
Rust

//! # SPI Example
//!
//! This application demonstrates how to use the SPI Driver to talk to a remote
//! SPI device.
//!
//!
//! It may need to be adapted to your particular board layout and/or pin
//! assignment.
//!
//! See the `Cargo.toml` file for Copyright and license details.
#![no_std]
#![no_main]
// The macro for our start-up function
use cortex_m_rt::entry;
// Ensure we halt the program on panic (if we don't mention this crate it won't
// be linked)
use panic_halt as _;
// Alias for our HAL crate
use rp2040_hal as hal;
// Some traits we need
use cortex_m::prelude::*;
use embedded_time::rate::Extensions;
use rp2040_hal::clocks::Clock;
// A shorter alias for the Peripheral Access Crate, which provides low-level
// register access
use hal::pac;
/// The linker will place this boot block at the start of our program image. We
/// need this to help the ROM bootloader get our code up and running.
#[link_section = ".boot2"]
#[used]
pub static BOOT2: [u8; 256] = rp2040_boot2::BOOT_LOADER_W25Q080;
/// External high-speed crystal on the Raspberry Pi Pico board is 12 MHz. Adjust
/// if your board has a different frequency
const XTAL_FREQ_HZ: u32 = 12_000_000u32;
/// Entry point to our bare-metal application.
///
/// The `#[entry]` macro ensures the Cortex-M start-up code calls this function
/// as soon as all global variables are initialised.
///
/// The function configures the RP2040 peripherals, then performs some example
/// SPI transactions, then goes to sleep.
#[entry]
fn main() -> ! {
// Grab our singleton objects
let mut pac = pac::Peripherals::take().unwrap();
// Set up the watchdog driver - needed by the clock setup code
let mut watchdog = hal::Watchdog::new(pac.WATCHDOG);
// Configure the clocks
let clocks = hal::clocks::init_clocks_and_plls(
XTAL_FREQ_HZ,
pac.XOSC,
pac.CLOCKS,
pac.PLL_SYS,
pac.PLL_USB,
&mut pac.RESETS,
&mut watchdog,
)
.ok()
.unwrap();
// The single-cycle I/O block controls our GPIO pins
let sio = hal::Sio::new(pac.SIO);
// Set the pins to their default state
let pins = hal::gpio::Pins::new(
pac.IO_BANK0,
pac.PADS_BANK0,
sio.gpio_bank0,
&mut pac.RESETS,
);
// These are implicitly used by the spi driver if they are in the correct mode
let _spi_sclk = pins.gpio6.into_mode::<hal::gpio::FunctionSpi>();
let _spi_mosi = pins.gpio7.into_mode::<hal::gpio::FunctionSpi>();
let _spi_miso = pins.gpio4.into_mode::<hal::gpio::FunctionSpi>();
let spi = hal::Spi::<_, _, 8>::new(pac.SPI0);
// Exchange the uninitialised SPI driver for an initialised one
let mut spi = spi.init(
&mut pac.RESETS,
clocks.peripheral_clock.freq(),
16_000_000u32.Hz(),
&embedded_hal::spi::MODE_0,
);
// Write out 0, ignore return value
if spi.write(&[0]).is_ok() {
// SPI write was succesful
};
// write 50, then check the return
let send_success = spi.send(50);
match send_success {
Ok(_) => {
// We succeeded, check the read value
if let Ok(_x) = spi.read() {
// We got back `x` in exchange for the 0x50 we sent.
};
}
Err(_) => todo!(),
}
// Do a read+write at the same time. Data in `buffer` will be replaced with
// the data read from the SPI device.
let mut buffer: [u8; 4] = [1, 2, 3, 4];
let transfer_success = spi.transfer(&mut buffer);
#[allow(clippy::single_match)]
match transfer_success {
Ok(_) => {} // Handle success
Err(_) => {} // handle errors
};
#[allow(clippy::empty_loop)]
loop {
// Empty loop
}
}
// End of file