mirror of
https://github.com/italicsjenga/rp-hal-boards.git
synced 2025-01-12 21:31:31 +11:00
116 lines
3.5 KiB
Rust
116 lines
3.5 KiB
Rust
//! # Watchdog Example
|
|
//!
|
|
//! This application demonstrates how to use the RP2040 Watchdog.
|
|
//!
|
|
//! It may need to be adapted to your particular board layout and/or pin assignment.
|
|
//!
|
|
//! See the `Cargo.toml` file for Copyright and licence details.
|
|
|
|
#![no_std]
|
|
#![no_main]
|
|
|
|
// The macro for our start-up function
|
|
use cortex_m_rt::entry;
|
|
|
|
// Ensure we halt the program on panic (if we don't mention this crate it won't
|
|
// be linked)
|
|
use panic_halt as _;
|
|
|
|
// Alias for our HAL crate
|
|
use rp2040_hal as hal;
|
|
|
|
// A shorter alias for the Peripheral Access Crate, which provides low-level
|
|
// register access
|
|
use hal::pac;
|
|
|
|
// Some traits we need
|
|
use embedded_hal::digital::v2::OutputPin;
|
|
use embedded_hal::watchdog::{Watchdog, WatchdogEnable};
|
|
use embedded_time::duration::Extensions;
|
|
use embedded_time::fixed_point::FixedPoint;
|
|
use rp2040_hal::clocks::Clock;
|
|
|
|
/// The linker will place this boot block at the start of our program image. We
|
|
// need this to help the ROM bootloader get our code up and running.
|
|
#[link_section = ".boot2"]
|
|
#[used]
|
|
pub static BOOT2: [u8; 256] = rp2040_boot2::BOOT_LOADER;
|
|
|
|
/// External high-speed crystal on the Raspberry Pi Pico board is 12 MHz. Adjust
|
|
/// if your board has a different frequency
|
|
const XTAL_FREQ_HZ: u32 = 12_000_000u32;
|
|
|
|
/// Entry point to our bare-metal application.
|
|
///
|
|
/// The `#[entry]` macro ensures the Cortex-M start-up code calls this function
|
|
/// as soon as all global variables are initialised.
|
|
///
|
|
/// The function configures the RP2040 peripherals, then toggles a GPIO pin in
|
|
/// an infinite loop. After a period of time, the watchdog will kick in to reset
|
|
/// the CPU.
|
|
#[entry]
|
|
fn main() -> ! {
|
|
// Grab our singleton objects
|
|
let mut pac = pac::Peripherals::take().unwrap();
|
|
let core = pac::CorePeripherals::take().unwrap();
|
|
|
|
// Set up the watchdog driver - needed by the clock setup code
|
|
let mut watchdog = hal::watchdog::Watchdog::new(pac.WATCHDOG);
|
|
|
|
// Configure the clocks
|
|
let clocks = hal::clocks::init_clocks_and_plls(
|
|
XTAL_FREQ_HZ,
|
|
pac.XOSC,
|
|
pac.CLOCKS,
|
|
pac.PLL_SYS,
|
|
pac.PLL_USB,
|
|
&mut pac.RESETS,
|
|
&mut watchdog,
|
|
)
|
|
.ok()
|
|
.unwrap();
|
|
|
|
let mut delay = cortex_m::delay::Delay::new(core.SYST, clocks.system_clock.freq().integer());
|
|
|
|
// The single-cycle I/O block controls our GPIO pins
|
|
let sio = hal::sio::Sio::new(pac.SIO);
|
|
|
|
// Set the pins to their default state
|
|
let pins = hal::gpio::Pins::new(
|
|
pac.IO_BANK0,
|
|
pac.PADS_BANK0,
|
|
sio.gpio_bank0,
|
|
&mut pac.RESETS,
|
|
);
|
|
|
|
// Configure an LED so we can show the current state of the watchdog
|
|
let mut led_pin = pins.gpio25.into_push_pull_output();
|
|
|
|
// Set the LED high for 2 seconds so we know when we're about to start the watchdog
|
|
led_pin.set_high().unwrap();
|
|
delay.delay_ms(2000);
|
|
|
|
// Set to watchdog to reset if it's not reloaded within 1.05 seconds, and start it
|
|
watchdog.start(1_050_000u32.microseconds());
|
|
|
|
// Blink once a second for 5 seconds, refreshing the watchdog timer once a second to avoid a reset
|
|
for _ in 1..=5 {
|
|
led_pin.set_low().unwrap();
|
|
delay.delay_ms(500);
|
|
led_pin.set_high().unwrap();
|
|
delay.delay_ms(500);
|
|
watchdog.feed();
|
|
}
|
|
|
|
// Blink 10 times per second, not feeding the watchdog.
|
|
// The processor should reset in 1.05 seconds, or 5 blinks time
|
|
loop {
|
|
led_pin.set_low().unwrap();
|
|
delay.delay_ms(100);
|
|
led_pin.set_high().unwrap();
|
|
delay.delay_ms(100);
|
|
}
|
|
}
|
|
|
|
// End of file
|