2019-12-20 09:38:17 +11:00
#version 450
layout(push_constant) uniform Push
{
vec4 SourceSize;
vec4 OriginalSize;
vec4 OutputSize;
uint FrameCount;
2019-12-21 04:47:12 +11:00
float cam_spot, noise_intensity, cam_loc_y, cam_loc_x, cam_zoom, cam_angle_y, cam_angle_x, cam_fov;
2019-12-20 09:38:17 +11:00
} params;
2019-12-21 04:47:12 +11:00
#pragma parameter cam_spot "Cam Loc (0 = Custom, -1 = cycle)" 0.0 -1.0 9.0 1.0
#pragma parameter noise_intensity "Noise Intensity" 0.03 0.0 0.5 0.01
#pragma parameter cam_angle_y "Tilt Cam Y" 0.24 -0.5 0.5 0.01
#pragma parameter cam_angle_x "Turn Cam X" 0.0 -0.5 0.5 0.01
#pragma parameter cam_zoom "Custom Cam Zoom" -0.915 -2.0 2.0 0.05
#pragma parameter cam_loc_y "Rotate World Y Axis" 0.25 0.0001 1.0 0.01
#pragma parameter cam_loc_x "Rotate World X Axis" 0.0 -0.5 0.5 0.01
#pragma parameter cam_fov "Custom Cam FOV" 10.0 0.0 100.0 1.0
2019-12-20 09:38:17 +11:00
#define vFragCoord vTexCoord.xy * params.OutputSize.xy
#define iResolution params.OutputSize.xy
#define iTime params.FrameCount / 60.0
#define iChannel0 Source
#define iChannel1 cubeMap
#define iChannel2 table
#define iMouse vec3(0.0)
#define vFragColor FragColor
layout(std140, set = 0, binding = 0) uniform UBO
{
mat4 MVP;
} global;
#pragma stage vertex
layout(location = 0) in vec4 Position;
layout(location = 1) in vec2 TexCoord;
layout(location = 0) out vec2 vTexCoord;
void main()
{
gl_Position = global.MVP * Position * vec4(1.0,-1.0,1.0,1.0);
vTexCoord = TexCoord;
}
#pragma stage fragment
layout(location = 0) in vec2 vTexCoord;
layout(location = 0) out vec4 FragColor;
layout(set = 0, binding = 2) uniform sampler2D Source;
layout(set = 0, binding = 3) uniform sampler2D cubeMap;
layout(set = 0, binding = 4) uniform sampler2D table;
// Meta CRT - @P_Malin
// https://www.shadertoy.com/view/4dlyWX#
// In which I add and remove aliasing
// Scene Rendering
//#define ENABLE_TAA_JITTER
#define kMaxTraceDist 1000.0
#define kFarDist 1100.0
#define MAT_FG_BEGIN 10
#define PI 3.141592654
///////////////////////////
// Hash Functions
///////////////////////////
// From: Hash without Sine by Dave Hoskins
// https://www.shadertoy.com/view/4djSRW
// *** Use this for integer stepped ranges, ie Value-Noise/Perlin noise functions.
//#define HASHSCALE1 .1031
//#define HASHSCALE3 vec3(.1031, .1030, .0973)
//#define HASHSCALE4 vec4(1031, .1030, .0973, .1099)
// For smaller input rangers like audio tick or 0-1 UVs use these...
#define HASHSCALE1 443.8975
#define HASHSCALE3 vec3(443.897, 441.423, 437.195)
#define HASHSCALE4 vec3(443.897, 441.423, 437.195, 444.129)
//----------------------------------------------------------------------------------------
// 1 out, 1 in...
float hash11(float p)
{
vec3 p3 = fract(vec3(p) * HASHSCALE1);
p3 += dot(p3, p3.yzx + 19.19);
return fract((p3.x + p3.y) * p3.z);
}
// 2 out, 1 in...
vec2 hash21(float p)
{
vec3 p3 = fract(vec3(p) * HASHSCALE3);
p3 += dot(p3, p3.yzx + 19.19);
return fract((p3.xx+p3.yz)*p3.zy);
}
/// 2 out, 3 in...
vec2 hash23(vec3 p3)
{
p3 = fract(p3 * HASHSCALE3);
p3 += dot(p3, p3.yzx+19.19);
return fract((p3.xx+p3.yz)*p3.zy);
}
// 1 out, 3 in...
float hash13(vec3 p3)
{
p3 = fract(p3 * HASHSCALE1);
p3 += dot(p3, p3.yzx + 19.19);
return fract((p3.x + p3.y) * p3.z);
}
///////////////////////////
// Data Storage
///////////////////////////
vec4 LoadVec4( sampler2D tex, in ivec2 vAddr )
{
return texelFetch( tex, vAddr, 0 );
}
vec3 LoadVec3( sampler2D tex, in ivec2 vAddr )
{
return LoadVec4( tex, vAddr ).xyz;
}
bool AtAddress( ivec2 p, ivec2 c ) { return all( equal( p, c ) ); }
void StoreVec4( in ivec2 vAddr, in vec4 vValue, inout vec4 fragColor, in ivec2 fragCoord )
{
fragColor = AtAddress( fragCoord, vAddr ) ? vValue : fragColor;
}
void StoreVec3( in ivec2 vAddr, in vec3 vValue, inout vec4 fragColor, in ivec2 fragCoord )
{
StoreVec4( vAddr, vec4( vValue, 0.0 ), fragColor, fragCoord);
}
///////////////////////////
// Camera
///////////////////////////
struct CameraState
{
vec3 vPos;
vec3 vTarget;
float fFov;
vec2 vJitter;
float fPlaneInFocus;
};
void Cam_LoadState( out CameraState cam, sampler2D tex, ivec2 addr )
{
vec4 vPos = LoadVec4( tex, addr + ivec2(0,0) );
cam.vPos = vPos.xyz;
vec4 targetFov = LoadVec4( tex, addr + ivec2(1,0) );
cam.vTarget = targetFov.xyz;
cam.fFov = targetFov.w;
vec4 jitterDof = LoadVec4( tex, addr + ivec2(2,0) );
cam.vJitter = jitterDof.xy;
cam.fPlaneInFocus = jitterDof.z;
}
void Cam_StoreState( ivec2 addr, const in CameraState cam, inout vec4 fragColor, in ivec2 fragCoord )
{
StoreVec4( addr + ivec2(0,0), vec4( cam.vPos, 0 ), fragColor, fragCoord );
StoreVec4( addr + ivec2(1,0), vec4( cam.vTarget, cam.fFov ), fragColor, fragCoord );
StoreVec4( addr + ivec2(2,0), vec4( cam.vJitter, cam.fPlaneInFocus, 0 ), fragColor, fragCoord );
}
mat3 Cam_GetWorldToCameraRotMatrix( const CameraState cameraState )
{
vec3 vForward = normalize( cameraState.vTarget - cameraState.vPos );
vec3 vRight = normalize( cross(vec3(0, 1, 0), vForward) );
vec3 vUp = normalize( cross(vForward, vRight) );
return mat3( vRight, vUp, vForward );
}
vec2 Cam_GetViewCoordFromUV( const in vec2 vUV )
{
vec2 vWindow = vUV * 2.0 - 1.0;
vWindow.x *= iResolution.x / iResolution.y;
return vWindow;
}
void Cam_GetCameraRay( const vec2 vUV, const CameraState cam, out vec3 vRayOrigin, out vec3 vRayDir )
{
vec2 vView = Cam_GetViewCoordFromUV( vUV );
vRayOrigin = cam.vPos;
float fPerspDist = 1.0 / tan( radians( cam.fFov ) );
vRayDir = normalize( Cam_GetWorldToCameraRotMatrix( cam ) * vec3( vView, fPerspDist ) );
}
vec2 Cam_GetUVFromWindowCoord( const in vec2 vWindow )
{
vec2 vScaledWindow = vWindow;
vScaledWindow.x *= iResolution.y / iResolution.x;
return (vScaledWindow * 0.5 + 0.5);
}
vec2 Cam_WorldToWindowCoord(const in vec3 vWorldPos, const in CameraState cameraState )
{
vec3 vOffset = vWorldPos - cameraState.vPos;
vec3 vCameraLocal;
vCameraLocal = vOffset * Cam_GetWorldToCameraRotMatrix( cameraState );
vec2 vWindowPos = vCameraLocal.xy / (vCameraLocal.z * tan( radians( cameraState.fFov ) ));
return vWindowPos;
}
float EncodeDepthAndObject( float depth, int objectId )
{
//depth = max( 0.0, depth );
//objectId = max( 0, objectId + 1 );
//return exp2(-depth) + float(objectId);
return depth;
}
float DecodeDepthAndObjectId( float value, out int objectId )
{
objectId = 0;
return max(0.0, value);
//objectId = int( floor( value ) ) - 1;
//return abs( -log2(fract(value)) );
}
///////////////////////////////
///////////////////////////
// Scene
///////////////////////////
struct SceneResult
{
float fDist;
int iObjectId;
vec3 vUVW;
};
void Scene_Union( inout SceneResult a, in SceneResult b )
{
if ( b.fDist < a.fDist )
{
a = b;
}
}
void Scene_Subtract( inout SceneResult a, in SceneResult b )
{
if ( a.fDist < -b.fDist )
{
a.fDist = -b.fDist;
a.iObjectId = b.iObjectId;
a.vUVW = b.vUVW;
}
}
SceneResult Scene_GetDistance( vec3 vPos );
vec3 Scene_GetNormal(const in vec3 vPos)
{
const float fDelta = 0.0001;
vec2 e = vec2( -1, 1 );
vec3 vNormal =
Scene_GetDistance( e.yxx * fDelta + vPos ).fDist * e.yxx +
Scene_GetDistance( e.xxy * fDelta + vPos ).fDist * e.xxy +
Scene_GetDistance( e.xyx * fDelta + vPos ).fDist * e.xyx +
Scene_GetDistance( e.yyy * fDelta + vPos ).fDist * e.yyy;
return normalize( vNormal );
}
SceneResult Scene_Trace( const in vec3 vRayOrigin, const in vec3 vRayDir, float minDist, float maxDist )
{
SceneResult result;
result.fDist = 0.0;
result.vUVW = vec3(0.0);
result.iObjectId = -1;
float t = minDist;
const int kRaymarchMaxIter = 128;
for(int i=0; i<kRaymarchMaxIter; i++)
{
float epsilon = 0.0001 * t;
result = Scene_GetDistance( vRayOrigin + vRayDir * t );
if ( abs(result.fDist) < epsilon )
{
break;
}
if ( t > maxDist )
{
result.iObjectId = -1;
t = maxDist;
break;
}
if ( result.fDist > 1.0 )
{
result.iObjectId = -1;
}
t += result.fDist;
}
result.fDist = t;
return result;
}
float Scene_TraceShadow( const in vec3 vRayOrigin, const in vec3 vRayDir, const in float fMinDist, const in float fLightDist )
{
//return 1.0;
//return ( Scene_Trace( vRayOrigin, vRayDir, 0.1, fLightDist ).fDist < fLightDist ? 0.0 : 1.0;
float res = 1.0;
float t = fMinDist;
for( int i=0; i<16; i++ )
{
float h = Scene_GetDistance( vRayOrigin + vRayDir * t ).fDist;
res = min( res, 8.0*h/t );
t += clamp( h, 0.02, 0.10 );
if( h<0.0001 || t>fLightDist ) break;
}
return clamp( res, 0.0, 1.0 );
}
float Scene_GetAmbientOcclusion( const in vec3 vPos, const in vec3 vDir )
{
float fOcclusion = 0.0;
float fScale = 1.0;
for( int i=0; i<5; i++ )
{
float fOffsetDist = 0.001 + 0.1*float(i)/4.0;
vec3 vAOPos = vDir * fOffsetDist + vPos;
float fDist = Scene_GetDistance( vAOPos ).fDist;
fOcclusion += (fOffsetDist - fDist) * fScale;
fScale *= 0.4;
}
return clamp( 1.0 - 30.0*fOcclusion, 0.0, 1.0 );
}
///////////////////////////
// Lighting
///////////////////////////
struct SurfaceInfo
{
vec3 vPos;
vec3 vNormal;
vec3 vBumpNormal;
vec3 vAlbedo;
vec3 vR0;
float fSmoothness;
vec3 vEmissive;
};
SurfaceInfo Scene_GetSurfaceInfo( const in vec3 vRayOrigin, const in vec3 vRayDir, SceneResult traceResult );
struct SurfaceLighting
{
vec3 vDiffuse;
vec3 vSpecular;
};
SurfaceLighting Scene_GetSurfaceLighting( const in vec3 vRayDir, in SurfaceInfo surfaceInfo );
float Light_GIV( float dotNV, float k)
{
return 1.0 / ((dotNV + 0.0001) * (1.0 - k)+k);
}
void Light_Add(inout SurfaceLighting lighting, SurfaceInfo surface, const in vec3 vViewDir, const in vec3 vLightDir, const in vec3 vLightColour)
{
float fNDotL = clamp(dot(vLightDir, surface.vBumpNormal), 0.0, 1.0);
lighting.vDiffuse += vLightColour * fNDotL;
vec3 vH = normalize( -vViewDir + vLightDir );
float fNdotV = clamp(dot(-vViewDir, surface.vBumpNormal), 0.0, 1.0);
float fNdotH = clamp(dot(surface.vBumpNormal, vH), 0.0, 1.0);
float alpha = 1.0 - surface.fSmoothness;
// D
float alphaSqr = alpha * alpha;
float denom = fNdotH * fNdotH * (alphaSqr - 1.0) + 1.0;
float d = alphaSqr / (PI * denom * denom);
float k = alpha / 2.0;
float vis = Light_GIV(fNDotL, k) * Light_GIV(fNdotV, k);
float fSpecularIntensity = d * vis * fNDotL;
lighting.vSpecular += vLightColour * fSpecularIntensity;
}
void Light_AddPoint(inout SurfaceLighting lighting, SurfaceInfo surface, const in vec3 vViewDir, const in vec3 vLightPos, const in vec3 vLightColour)
{
vec3 vPos = surface.vPos;
vec3 vToLight = vLightPos - vPos;
vec3 vLightDir = normalize(vToLight);
float fDistance2 = dot(vToLight, vToLight);
float fAttenuation = 100.0 / (fDistance2);
float fShadowFactor = Scene_TraceShadow( surface.vPos, vLightDir, 0.1, length(vToLight) );
Light_Add( lighting, surface, vViewDir, vLightDir, vLightColour * fShadowFactor * fAttenuation);
}
void Light_AddDirectional(inout SurfaceLighting lighting, SurfaceInfo surface, const in vec3 vViewDir, const in vec3 vLightDir, const in vec3 vLightColour)
{
float fAttenuation = 1.0;
float fShadowFactor = Scene_TraceShadow( surface.vPos, vLightDir, 0.1, 10.0 );
Light_Add( lighting, surface, vViewDir, vLightDir, vLightColour * fShadowFactor * fAttenuation);
}
vec3 Light_GetFresnel( vec3 vView, vec3 vNormal, vec3 vR0, float fGloss )
{
float NdotV = max( 0.0, dot( vView, vNormal ) );
return vR0 + (vec3(1.0) - vR0) * pow( 1.0 - NdotV, 5.0 ) * pow( fGloss, 20.0 );
}
void Env_AddPointLightFlare(inout vec3 vEmissiveGlow, const in vec3 vRayOrigin, const in vec3 vRayDir, const in float fIntersectDistance, const in vec3 vLightPos, const in vec3 vLightColour)
{
vec3 vToLight = vLightPos - vRayOrigin;
float fPointDot = dot(vToLight, vRayDir);
fPointDot = clamp(fPointDot, 0.0, fIntersectDistance);
vec3 vClosestPoint = vRayOrigin + vRayDir * fPointDot;
float fDist = length(vClosestPoint - vLightPos);
vEmissiveGlow += sqrt(vLightColour * 0.05 / (fDist * fDist));
}
void Env_AddDirectionalLightFlareToFog(inout vec3 vFogColour, const in vec3 vRayDir, const in vec3 vLightDir, const in vec3 vLightColour)
{
float fDirDot = clamp(dot(vLightDir, vRayDir) * 0.5 + 0.5, 0.0, 1.0);
float kSpreadPower = 2.0;
vFogColour += vLightColour * pow(fDirDot, kSpreadPower) * 0.25;
}
///////////////////////////
// Rendering
///////////////////////////
vec4 Env_GetSkyColor( const vec3 vViewPos, const vec3 vViewDir );
vec3 Env_ApplyAtmosphere( const in vec3 vColor, const in vec3 vRayOrigin, const in vec3 vRayDir, const in float fDist );
vec3 FX_Apply( in vec3 vColor, const in vec3 vRayOrigin, const in vec3 vRayDir, const in float fDist);
vec4 Scene_GetColorAndDepth( vec3 vRayOrigin, vec3 vRayDir )
{
vec3 vResultColor = vec3(0.0);
SceneResult firstTraceResult;
float fStartDist = 0.0f;
float fMaxDist = 10.0f;
vec3 vRemaining = vec3(1.0);
for( int iPassIndex=0; iPassIndex < 3; iPassIndex++ )
{
SceneResult traceResult = Scene_Trace( vRayOrigin, vRayDir, fStartDist, fMaxDist );
if ( iPassIndex == 0 )
{
firstTraceResult = traceResult;
}
vec3 vColor = vec3(0);
vec3 vReflectAmount = vec3(0);
if( traceResult.iObjectId < 0 )
{
vColor = Env_GetSkyColor( vRayOrigin, vRayDir ).rgb;
}
else
{
SurfaceInfo surfaceInfo = Scene_GetSurfaceInfo( vRayOrigin, vRayDir, traceResult );
SurfaceLighting surfaceLighting = Scene_GetSurfaceLighting( vRayDir, surfaceInfo );
// calculate reflectance (Fresnel)
vReflectAmount = Light_GetFresnel( -vRayDir, surfaceInfo.vBumpNormal, surfaceInfo.vR0, surfaceInfo.fSmoothness );
vColor = (surfaceInfo.vAlbedo * surfaceLighting.vDiffuse + surfaceInfo.vEmissive) * (vec3(1.0) - vReflectAmount);
vec3 vReflectRayOrigin = surfaceInfo.vPos;
vec3 vReflectRayDir = normalize( reflect( vRayDir, surfaceInfo.vBumpNormal ) );
fStartDist = 0.001 / max(0.0000001,abs(dot( vReflectRayDir, surfaceInfo.vNormal )));
vColor += surfaceLighting.vSpecular * vReflectAmount;
vColor = Env_ApplyAtmosphere( vColor, vRayOrigin, vRayDir, traceResult.fDist );
vColor = FX_Apply( vColor, vRayOrigin, vRayDir, traceResult.fDist );
vRayOrigin = vReflectRayOrigin;
vRayDir = vReflectRayDir;
}
vResultColor += vColor * vRemaining;
vRemaining *= vReflectAmount;
}
return vec4( vResultColor, EncodeDepthAndObject( firstTraceResult.fDist, firstTraceResult.iObjectId ) );
}
/////////////////////////////////////////////////////////////////////////////////////////////////////////
/////////////////////////
// Scene Description
/////////////////////////
// Materials
#define MAT_SKY -1
#define MAT_DEFAULT 0
#define MAT_SCREEN 1
#define MAT_TV_CASING 2
#define MAT_TV_TRIM 3
#define MAT_CHROME 4
vec3 PulseIntegral( vec3 x, float s1, float s2 )
{
// Integral of function where result is 1.0 between s1 and s2 and 0 otherwise
// V1
//if ( x > s2 ) return s2 - s1;
//else if ( x > s1 ) return x - s1;
//return 0.0f;
// V2
//return clamp( (x - s1), 0.0f, s2 - s1);
//return t;
return clamp( (x - s1), vec3(0.0f), vec3(s2 - s1));
}
float PulseIntegral( float x, float s1, float s2 )
{
// Integral of function where result is 1.0 between s1 and s2 and 0 otherwise
// V1
//if ( x > s2 ) return s2 - s1;
//else if ( x > s1 ) return x - s1;
//return 0.0f;
// V2
//return clamp( (x - s1), 0.0f, s2 - s1);
//return t;
return clamp( (x - s1), (0.0f), (s2 - s1));
}
vec3 Bayer( vec2 vUV, vec2 vBlur )
{
vec3 x = vec3(vUV.x);
vec3 y = vec3(vUV.y);
x += vec3(0.66, 0.33, 0.0);
y += 0.5 * step( fract( x * 0.5 ), vec3(0.5) );
//x -= 0.5f;
//y -= 0.5f;
x = fract( x );
y = fract( y );
// cell centered at 0.5
vec2 vSize = vec2(0.16f, 0.75f);
vec2 vMin = 0.5 - vSize * 0.5;
vec2 vMax = 0.5 + vSize * 0.5;
vec3 vResult= vec3(0.0);
vec3 vResultX = (PulseIntegral( x + vBlur.x, vMin.x, vMax.x) - PulseIntegral( x - vBlur.x, vMin.x, vMax.x)) / min( vBlur.x, 1.0);
vec3 vResultY = (PulseIntegral(y + vBlur.y, vMin.y, vMax.y) - PulseIntegral(y - vBlur.y, vMin.y, vMax.y)) / min( vBlur.y, 1.0);
vResult = min(vResultX,vResultY) * 5.0;
//vResult = vec3(1.0);
return vResult;
}
vec3 GetPixelMatrix( vec2 vUV )
{
#if 1
vec2 dx = dFdx( vUV );
vec2 dy = dFdy( vUV );
float dU = length( vec2( dx.x, dy.x ) );
float dV = length( vec2( dx.y, dy.y ) );
if (dU <= 0.0 || dV <= 0.0 ) return vec3(1.0);
return Bayer( vUV, vec2(dU, dV) * 1.0);
#else
return vec3(1.0);
#endif
}
float Scanline( float y, float fBlur )
{
float fResult = sin( y * 10.0 ) * 0.45 + 0.55;
return mix( fResult, 1.0f, min( 1.0, fBlur ) );
}
float GetScanline( vec2 vUV )
{
#if 1
vUV.y *= 0.25;
vec2 dx = dFdx( vUV );
vec2 dy = dFdy( vUV );
float dV = length( vec2( dx.y, dy.y ) );
if (dV <= 0.0 ) return 1.0;
return Scanline( vUV.y, dV * 1.3 );
#else
return 1.0;
#endif
}
vec2 kScreenRsolution = vec2(480.0f, 576.0f);
struct Interference
{
float noise;
float scanLineRandom;
};
float InterferenceHash(float p)
{
float hashScale = 0.1031;
vec3 p3 = fract(vec3(p, p, p) * hashScale);
p3 += dot(p3, p3.yzx + 19.19);
return fract((p3.x + p3.y) * p3.z);
}
float InterferenceSmoothNoise1D( float x )
{
float f0 = floor(x);
float fr = fract(x);
float h0 = InterferenceHash( f0 );
float h1 = InterferenceHash( f0 + 1.0 );
return h1 * fr + h0 * (1.0 - fr);
}
float InterferenceNoise( vec2 uv )
{
float displayVerticalLines = 483.0;
float scanLine = floor(uv.y * displayVerticalLines);
float scanPos = scanLine + uv.x;
float timeSeed = fract( iTime * 123.78 );
return InterferenceSmoothNoise1D( scanPos * 234.5 + timeSeed * 12345.6 );
}
Interference GetInterference( vec2 vUV )
{
Interference interference;
interference.noise = InterferenceNoise( vUV );
interference.scanLineRandom = InterferenceHash(vUV.y * 100.0 + fract(iTime * 1234.0) * 12345.0);
return interference;
}
vec3 SampleScreen( vec3 vUVW )
{
2019-12-21 04:47:12 +11:00
vec3 vAmbientEmissive = vec3(0.01);
2019-12-20 09:38:17 +11:00
vec3 vBlackEmissive = vec3(0.02);
float fBrightness = 1.75;
2019-12-21 04:47:12 +11:00
vec2 vResolution = 2.4999 * params.SourceSize.xy;
2019-12-20 09:38:17 +11:00
vec2 vPixelCoord = vUVW.xy * vResolution;
vec3 vPixelMatrix = GetPixelMatrix( vPixelCoord );
float fScanline = GetScanline( vPixelCoord );
vec2 vTextureUV = vUVW.xy;
//vec2 vTextureUV = vPixelCoord;
vTextureUV = floor(vTextureUV * vResolution * 2.0) / (vResolution * 2.0f);
Interference interference = GetInterference( vTextureUV );
float noiseIntensity = params.noise_intensity;
//vTextureUV.x += (interference.scanLineRandom * 2.0f - 1.0f) * 0.025f * noiseIntensity;
vec3 vPixelEmissive = textureLod( iChannel0, vec2(vTextureUV.x, 1.0 - vTextureUV.y), 0.0 ).rgb;
vPixelEmissive = clamp( vPixelEmissive + (interference.noise - 0.5) * 2.0 * noiseIntensity, 0.0, 1.0 );
vec3 vResult = (vPixelEmissive * vPixelEmissive * fBrightness + vBlackEmissive) * vPixelMatrix * fScanline + vAmbientEmissive;
// TODO: feather edge?
if( any( greaterThanEqual( vUVW.xy, vec2(1.0) ) ) || any ( lessThan( vUVW.xy, vec2(0.0) ) ) || ( vUVW.z > 0.0 ) )
{
return vec3(0.0);
}
return vResult;
}
SurfaceInfo Scene_GetSurfaceInfo( const in vec3 vRayOrigin, const in vec3 vRayDir, SceneResult traceResult )
{
SurfaceInfo surfaceInfo;
surfaceInfo.vPos = vRayOrigin + vRayDir * (traceResult.fDist);
surfaceInfo.vNormal = Scene_GetNormal( surfaceInfo.vPos );
surfaceInfo.vBumpNormal = surfaceInfo.vNormal;
surfaceInfo.vAlbedo = vec3(1.0);
surfaceInfo.vR0 = vec3( 0.02 );
surfaceInfo.fSmoothness = 1.0;
surfaceInfo.vEmissive = vec3( 0.0 );
//return surfaceInfo;
if ( traceResult.iObjectId == MAT_DEFAULT )
{
surfaceInfo.vR0 = vec3( 0.02 );
surfaceInfo.vAlbedo = textureLod( iChannel2, traceResult.vUVW.xz * 2.0, 0.0 ).rgb;
surfaceInfo.vAlbedo = surfaceInfo.vAlbedo * surfaceInfo.vAlbedo;
surfaceInfo.fSmoothness = clamp( 1.0 - surfaceInfo.vAlbedo.r * surfaceInfo.vAlbedo.r * 2.0, 0.0, 1.0);
}
if ( traceResult.iObjectId == MAT_SCREEN )
{
surfaceInfo.vAlbedo = vec3(0.02);
surfaceInfo.vEmissive = SampleScreen( traceResult.vUVW );
}
if ( traceResult.iObjectId == MAT_TV_CASING )
{
surfaceInfo.vAlbedo = vec3(0.5, 0.4, 0.3);
surfaceInfo.fSmoothness = 0.4;
}
if ( traceResult.iObjectId == MAT_TV_TRIM )
{
surfaceInfo.vAlbedo = vec3(0.03, 0.03, 0.05);
surfaceInfo.fSmoothness = 0.5;
}
if ( traceResult.iObjectId == MAT_CHROME )
{
surfaceInfo.vAlbedo = vec3(0.01, 0.01, 0.01);
surfaceInfo.fSmoothness = 0.9;
surfaceInfo.vR0 = vec3( 0.8 );
}
return surfaceInfo;
}
// Scene Description
float SmoothMin( float a, float b, float k )
{
//return min(a,b);
//float k = 0.06;
float h = clamp( 0.5 + 0.5*(b-a)/k, 0.0, 1.0 );
return mix( b, a, h ) - k*h*(1.0-h);
}
float UdRoundBox( vec3 p, vec3 b, float r )
{
//vec3 vToFace = abs(p) - b;
//vec3 vConstrained = max( vToFace, 0.0 );
//return length( vConstrained ) - r;
return length(max(abs(p)-b,0.0))-r;
}
SceneResult Scene_GetCRT( vec3 vScreenDomain, vec2 vScreenWH, float fScreenCurveRadius, float fBevel, float fDepth )
{
SceneResult resultScreen;
#if 1
vec3 vScreenClosest;
vScreenClosest.xy = max(abs(vScreenDomain.xy)-vScreenWH,0.0);
vec2 vCurveScreenDomain = vScreenDomain.xy;
vCurveScreenDomain = clamp( vCurveScreenDomain, -vScreenWH, vScreenWH );
float fCurveScreenProjection2 = fScreenCurveRadius * fScreenCurveRadius - vCurveScreenDomain.x * vCurveScreenDomain.x - vCurveScreenDomain.y * vCurveScreenDomain.y;
float fCurveScreenProjection = sqrt( fCurveScreenProjection2 ) - fScreenCurveRadius;
vScreenClosest.z = vScreenDomain.z - clamp( vScreenDomain.z, -fCurveScreenProjection, fDepth );
resultScreen.vUVW.z = vScreenDomain.z + fCurveScreenProjection;
resultScreen.fDist = (length( vScreenClosest ) - fBevel) * 0.95;
//resultScreen.fDist = (length( vScreenDomain - vec3(0,0,fScreenCurveRadius)) - fScreenCurveRadius - fBevel);
#endif
#if 0
vec3 vScreenClosest;
vScreenClosest.xyz = max(abs(vScreenDomain.xyz)-vec3(vScreenWH, fDepth),0.0);
float fRoundDist = length( vScreenClosest.xyz ) - fBevel;
float fSphereDist = length( vScreenDomain - vec3(0,0,fScreenCurveRadius) ) - (fScreenCurveRadius + fBevel);
resultScreen.fDist = max(fRoundDist, fSphereDist);
#endif
resultScreen.vUVW.xy = (vScreenDomain.xy / vScreenWH) * 0.5 + 0.5f;
resultScreen.iObjectId = MAT_SCREEN;
return resultScreen;
}
SceneResult Scene_GetComputer( vec3 vPos )
{
SceneResult resultComputer;
resultComputer.vUVW = vPos.xzy;
float fXSectionStart = -0.2;
float fXSectionLength = 0.15;
float fXSectionT = clamp( (vPos.z - fXSectionStart) / fXSectionLength, 0.0, 1.0);
float fXSectionR1 = 0.03;
float fXSectionR2 = 0.05;
float fXSectionR = mix( fXSectionR1, fXSectionR2, fXSectionT );
float fXSectionZ = fXSectionStart + fXSectionT * fXSectionLength;
vec2 vXSectionCentre = vec2(fXSectionR, fXSectionZ );
vec2 vToPos = vPos.yz - vXSectionCentre;
float l = length( vToPos );
if ( l > fXSectionR ) l = fXSectionR;
vec2 vXSectionClosest = vXSectionCentre + normalize(vToPos) * l;
//float fXSectionDist = length( vXSectionClosest ) - fXSectionR;
float x = max( abs( vPos.x ) - 0.2f, 0.0 );
resultComputer.fDist = length( vec3(x, vXSectionClosest - vPos.yz) )-0.01;
//resultComputer.fDist = x;
resultComputer.iObjectId = MAT_TV_CASING;
/*
vec3 vKeyPos = vPos.xyz - vec3(0,0.125,0);
vKeyPos.y -= vKeyPos.z * (fXSectionR2 - fXSectionR1) * 2.0 / fXSectionLength;
float fDomainRepeatScale = 0.02;
if ( fract(vKeyPos.z * 0.5 / fDomainRepeatScale + 0.25) > 0.5) vKeyPos.x += fDomainRepeatScale * 0.5;
vec2 vKeyIndex = round(vKeyPos.xz / fDomainRepeatScale);
vKeyIndex.x = clamp( vKeyIndex.x, -8.0, 8.0 );
vKeyIndex.y = clamp( vKeyIndex.y, -10.0, -5.0 );
//vKeyPos.xz = (fract( vKeyPos.xz / fDomainRepeatScale ) - 0.5) * fDomainRepeatScale;
vKeyPos.xz = (vKeyPos.xz - (vKeyIndex) * fDomainRepeatScale);
vKeyPos.xz /= 0.7 + vKeyPos.y;
SceneResult resultKey;
resultKey.vUVW = vPos.xzy;
resultKey.fDist = UdRoundBox( vKeyPos, vec3(0.01), 0.001 );
resultKey.iObjectId = MAT_TV_TRIM;
Scene_Union( resultComputer, resultKey );
*/
return resultComputer;
}
SceneResult Scene_GetDistance( vec3 vPos )
{
SceneResult result;
//result.fDist = vPos.y;
float fBenchBevel = 0.01;
result.fDist = UdRoundBox( vPos - vec3(0,-0.02-fBenchBevel,0.0), vec3(2.0, 0.02, 1.0), fBenchBevel );
result.vUVW = vPos;
result.iObjectId = MAT_DEFAULT;
vec3 vSetPos = vec3(0.0, 0.0, 0.0);
vec3 vScreenPos = vSetPos + vec3(0.0, 0.25, 0.00);
//vPos.x = fract( vPos.x - 0.5) - 0.5;
vec2 vScreenWH = vec2(4.0, 3.0) / 25.0;
SceneResult resultSet;
resultSet.vUVW = vPos.xzy;
resultSet.fDist = UdRoundBox( vPos - vScreenPos - vec3(0.0,-0.01,0.2), vec3(.21, 0.175, 0.18), 0.01 );
resultSet.iObjectId = MAT_TV_CASING;
Scene_Union( result, resultSet );
SceneResult resultSetRecess;
resultSetRecess.vUVW = vPos.xzy;
resultSetRecess.fDist = UdRoundBox( vPos - vScreenPos - vec3(0.0,-0.0, -0.05), vec3(vScreenWH + 0.01, 0.05) + 0.005, 0.015 );
resultSetRecess.iObjectId = MAT_TV_TRIM;
Scene_Subtract( result, resultSetRecess );
SceneResult resultSetBase;
resultSetBase.vUVW = vPos.xzy;
float fBaseBevel = 0.03;
resultSetBase.fDist = UdRoundBox( vPos - vSetPos - vec3(0.0,0.04,0.22), vec3(0.2, 0.04, 0.17) - fBaseBevel, fBaseBevel );
resultSetBase.iObjectId = MAT_TV_CASING;
Scene_Union( result, resultSetBase );
SceneResult resultScreen = Scene_GetCRT( vPos - vScreenPos, vScreenWH, 0.75f, 0.02f, 0.1f );
Scene_Union( result, resultScreen );
//SceneResult resultComputer = Scene_GetComputer( vPos - vec3(0.0, 0.0, -0.1) );
//Scene_Union( result, resultComputer );
SceneResult resultSphere;
resultSet.vUVW = vPos.xzy;
resultSet.fDist = length(vPos - vec3(0.35,0.075,-0.1)) - 0.075;
resultSet.iObjectId = MAT_CHROME;
Scene_Union( result, resultSet );
2019-12-21 04:47:12 +11:00
2019-12-20 09:38:17 +11:00
return result;
}
// Scene Lighting
vec3 g_vSunDir = normalize(vec3(0.3, 0.4, -0.5));
vec3 g_vSunColor = vec3(1, 0.95, 0.8) * 3.0;
vec3 g_vAmbientColor = vec3(0.8, 0.8, 0.8) * 1.0;
SurfaceLighting Scene_GetSurfaceLighting( const in vec3 vViewDir, in SurfaceInfo surfaceInfo )
{
SurfaceLighting surfaceLighting;
surfaceLighting.vDiffuse = vec3(0.0);
surfaceLighting.vSpecular = vec3(0.0);
Light_AddDirectional( surfaceLighting, surfaceInfo, vViewDir, g_vSunDir, g_vSunColor );
Light_AddPoint( surfaceLighting, surfaceInfo, vViewDir, vec3(1.4, 2.0, 0.8), vec3(1,1,1) * 0.2 );
float fAO = Scene_GetAmbientOcclusion( surfaceInfo.vPos, surfaceInfo.vNormal );
// AO
surfaceLighting.vDiffuse += fAO * (surfaceInfo.vBumpNormal.y * 0.5 + 0.5) * g_vAmbientColor;
return surfaceLighting;
}
// Environment
vec4 Env_GetSkyColor( const vec3 vViewPos, const vec3 vViewDir )
{
vec4 vResult = vec4( 0.0, 0.0, 0.0, kFarDist );
//#if 1
2019-12-21 04:47:12 +11:00
vec3 vEnvMap = textureLod( iChannel1, (vViewDir.xy - vec2(0.0, 1.0)) / 2., 0.0 ).rgb;
2019-12-20 09:38:17 +11:00
vResult.rgb = vEnvMap;
//#endif
//#if 0
// vec3 vEnvMap = textureLod( iChannel1, vViewDir.zyx, 0.0 ).rgb;
// vEnvMap = vEnvMap * vEnvMap;
// float kEnvmapExposure = 0.999;
// vResult.rgb = -log2(1.0 - vEnvMap * kEnvmapExposure);
//#endif
// Sun
//float NdotV = dot( g_vSunDir, vViewDir );
//vResult.rgb += smoothstep( cos(radians(.7)), cos(radians(.5)), NdotV ) * g_vSunColor * 5000.0;
return vResult;
}
float Env_GetFogFactor(const in vec3 vRayOrigin, const in vec3 vRayDir, const in float fDist )
{
float kFogDensity = 0.00001;
return exp(fDist * -kFogDensity);
}
vec3 Env_GetFogColor(const in vec3 vDir)
{
return vec3(0.2, 0.5, 0.6) * 2.0;
}
vec3 Env_ApplyAtmosphere( const in vec3 vColor, const in vec3 vRayOrigin, const in vec3 vRayDir, const in float fDist )
{
//return vColor;
vec3 vResult = vColor;
float fFogFactor = Env_GetFogFactor( vRayOrigin, vRayDir, fDist );
vec3 vFogColor = Env_GetFogColor( vRayDir );
//Env_AddDirectionalLightFlareToFog( vFogColor, vRayDir, g_vSunDir, g_vSunColor * 3.0);
vResult = mix( vFogColor, vResult, fFogFactor );
return vResult;
}
vec3 FX_Apply( in vec3 vColor, const in vec3 vRayOrigin, const in vec3 vRayDir, const in float fDist)
{
return vColor;
}
vec4 MainCommon( vec3 vRayOrigin, vec3 vRayDir )
{
vec4 vColorLinAndDepth = Scene_GetColorAndDepth( vRayOrigin, vRayDir );
vColorLinAndDepth.rgb = max( vColorLinAndDepth.rgb, vec3(0.0) );
vec4 vFragColor = vColorLinAndDepth;
float fExposure = 2.0f;
vFragColor.rgb *= fExposure;
vFragColor.a = vColorLinAndDepth.w;
return vFragColor;
}
CameraState GetCameraPosition( int index )
{
CameraState cam;
vec3 vFocus = vec3(0,0.25,-0.012);
if ( index > 9 )
{
index = int(hash11(float(index) / 10.234) * 100.0);
index = index % 10;
}
//index=2;
2019-12-21 04:47:12 +11:00
if ( index == 1 )
2019-12-20 09:38:17 +11:00
{
cam.vPos = vec3(-0.1,0.2,-0.08);
cam.vTarget = vec3(0,0.25,0.1);
cam.fFov = 10.0;
}
2019-12-21 04:47:12 +11:00
if ( index == 0 )
2019-12-20 09:38:17 +11:00
{
2019-12-21 04:47:12 +11:00
cam.vPos = vec3(params.cam_loc_x,params.cam_loc_y,params.cam_zoom);
cam.vTarget = vec3(params.cam_angle_x,params.cam_angle_y,0.0);
cam.fFov = params.cam_fov;
2019-12-20 09:38:17 +11:00
}
if ( index == 2 )
{
cam.vPos = vec3(-0.8,0.3,-1.0);
cam.vTarget = vec3(0.4,0.18,0.5);
cam.fFov = 10.0;
}
if ( index == 3 )
{
cam.vPos = vec3(-0.8,1.0,-1.5);
cam.vTarget = vec3(0.2,0.0,0.5);
cam.fFov = 10.0;
}
if ( index == 4 )
{
cam.vPos = vec3(-0.8,0.3,-1.0);
cam.vTarget = vec3(0.4,0.18,0.5);
cam.fFov = 20.0;
}
if ( index == 5 )
{
cam.vPos = vec3(-0.244,0.334,-0.0928);
cam.vTarget = vec3(0,0.25,0.1);
cam.fFov = 20.0;
}
if ( index == 6 )
{
cam.vPos = vec3(0.0,0.1,-0.5);
cam.vTarget = vec3(0.2,0.075,-0.1);
vFocus = cam.vTarget;
cam.fFov = 15.0;
}
if ( index == 7 )
{
cam.vPos = vec3(-0.01,0.01,-0.25);
cam.vTarget = vec3(0.01,0.27,0.1);
vFocus = cam.vTarget;
cam.fFov = 23.0;
}
if ( index == 8 )
{
cam.vPos = vec3(-0.23,0.3,-0.05);
cam.vTarget = vec3(0.1,0.2,0.1);
cam.fFov = 15.0;
}
if ( index == 9 )
{
cam.vPos = vec3(0.4,0.2,-0.2);
cam.vTarget = vec3(-0.1,0.25,0.1);
cam.fFov = 12.0;
}
cam.fPlaneInFocus = length( vFocus - cam.vPos);
cam.vJitter = vec2(0.0);
return cam;
}
void main()
{
vec2 vUV = vFragCoord.xy / iResolution.xy;
CameraState cam;
{
CameraState camA;
CameraState camB;
2019-12-21 04:47:12 +11:00
if(params.cam_spot > -0.5){
camA = GetCameraPosition(int(params.cam_spot));
cam.vPos = camA.vPos;
cam.vTarget = camA.vTarget;
cam.fFov = camA.fFov;
cam.fPlaneInFocus = camA.fPlaneInFocus;
}
else{
float fSeqTime = iTime;
2019-12-20 09:38:17 +11:00
float fSequenceSegLength = 5.0;
float fSeqIndex = floor(fSeqTime / fSequenceSegLength);
float fSeqPos = fract(fSeqTime / fSequenceSegLength);
2019-12-21 04:47:12 +11:00
int iIndex = int(fSeqIndex);
2019-12-20 09:38:17 +11:00
int iIndexNext = int(fSeqIndex) + 1;
camA = GetCameraPosition(iIndex);
camB = GetCameraPosition(iIndexNext);
float t = smoothstep(0.3, 1.0, fSeqPos);
cam.vPos = mix(camA.vPos, camB.vPos, t );
cam.vTarget = mix(camA.vTarget, camB.vTarget, t );
cam.fFov = mix(camA.fFov, camB.fFov, t );
cam.fPlaneInFocus = mix(camA.fPlaneInFocus, camB.fPlaneInFocus, t );
2019-12-21 04:47:12 +11:00
}
2019-12-20 09:38:17 +11:00
}
2019-12-21 04:47:12 +11:00
#if 0
2019-12-20 09:38:17 +11:00
if ( iMouse.z > 0.0 )
{
float fDist = 0.01 + 3.0 * (iMouse.y / iResolution.y);
float fAngle = (iMouse.x / iResolution.x) * radians(360.0);
//float fElevation = (iMouse.y / iResolution.y) * radians(90.0);
float fElevation = 0.15f * radians(90.0);
cam.vPos = vec3(sin(fAngle) * fDist * cos(fElevation),sin(fElevation) * fDist,cos(fAngle) * fDist * cos(fElevation));
cam.vTarget = vec3(0,0.25,0.1);
cam.vPos +=cam.vTarget;
cam.fFov = 20.0 / (1.0 + fDist * 0.5);
vec3 vFocus = vec3(0,0.25,-0.012);
cam.fPlaneInFocus = length( vFocus - cam.vPos );
}
2019-12-21 04:47:12 +11:00
#endif
2019-12-20 09:38:17 +11:00
#ifdef ENABLE_TAA_JITTER
cam.vJitter = hash21( fract( iTime ) ) - 0.5f;
#else
cam.vJitter = vec2(1.0);
#endif
vec3 vRayOrigin, vRayDir;
vec2 vJitterUV = vUV + cam.vJitter / iResolution.xy;
Cam_GetCameraRay( vJitterUV, cam, vRayOrigin, vRayDir );
float fHitDist = 0.0f;
vFragColor = MainCommon( vRayOrigin, vRayDir );
Cam_StoreState( ivec2(0), cam, vFragColor, ivec2(vFragCoord.xy) );
}