slang-shaders/handheld/gameboy/shader-files/gb-pass0.slang

144 lines
8.1 KiB
Plaintext
Raw Normal View History

2016-07-20 06:17:23 +10:00
#version 450
layout(std140, set = 0, binding = 0) uniform UBO
{
mat4 MVP;
vec4 OutputSize;
vec4 OriginalSize;
vec4 SourceSize;
vec4 OriginalHistorySize1;
vec4 OriginalHistorySize2;
vec4 OriginalHistorySize3;
vec4 OriginalHistorySize4;
vec4 OriginalHistorySize5;
vec4 OriginalHistorySize6;
vec4 OriginalHistorySize7;
} global;
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//config //
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
#define baseline_alpha 0.10 //the alpha value of dots in their "off" state, does not affect the border region of the screen - [0, 1]
#define response_time 0.333 //simulate response time, higher values result in longer color transition periods - [0, 1]
///////////////////////////////////////////////////////////////////////////
// //
// Gameboy Classic Shader v0.2.2 //
// //
// Copyright (C) 2013 Harlequin : unknown92835@gmail.com //
// //
// This program is free software: you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation, either version 3 of the License, or //
// (at your option) any later version. //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
// //
///////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//vertex shader //
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
#pragma stage vertex
layout(location = 0) in vec4 Position;
layout(location = 1) in vec2 TexCoord;
layout(location = 0) out vec2 vTexCoord;
layout(location = 1) out vec2 tex;
layout(location = 2) out vec2 dot_size;
layout(location = 3) out vec2 one_texel;
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//vertex definitions //
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
#define video_scale floor(global.OutputSize.y / global.SourceSize.y) //largest integer scale of input video that will fit in the current output (y axis would typically be limiting on widescreens)
#define scaled_video_out (global.SourceSize.xy * vec2(video_scale)) //size of the scaled video
#define half_pixel (vec2(0.5) / global.OutputSize.xy) //it's... half a pixel
void main()
{
gl_Position = global.MVP * Position / vec4(vec2(global.OutputSize.xy / scaled_video_out), 1.0, 1.0 );
vTexCoord = TexCoord + half_pixel;
tex = floor(global.OriginalHistorySize1.xy * vTexCoord);
tex = (tex + 0.5) * global.OriginalHistorySize1.zw;
dot_size = 1.0 / global.SourceSize.xy;
one_texel = 1.0 / (global.SourceSize.xy * video_scale);
}
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//fragment shader //
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
#pragma stage fragment
layout(location = 0) in vec2 vTexCoord;
layout(location = 1) in vec2 tex;
layout(location = 2) in vec2 dot_size;
layout(location = 3) in vec2 one_texel;
layout(location = 0) out vec4 FragColor;
layout(set = 0, binding = 2) uniform sampler2D Source;
layout(set = 0, binding = 3) uniform sampler2D OriginalHistory1;
layout(set = 0, binding = 4) uniform sampler2D OriginalHistory2;
layout(set = 0, binding = 5) uniform sampler2D OriginalHistory3;
layout(set = 0, binding = 6) uniform sampler2D OriginalHistory4;
layout(set = 0, binding = 7) uniform sampler2D OriginalHistory5;
layout(set = 0, binding = 8) uniform sampler2D OriginalHistory6;
layout(set = 0, binding = 9) uniform sampler2D OriginalHistory7;
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//fragment definitions //
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
#define foreground_color vec3(0.11, 0.4141, 0.41) //tex2D(COLOR_PALETTE, fixed2(0.75, 0.5)).rgb //hardcoded to look up the foreground color from the right half of the palette image
//#define rgb_to_alpha(rgb) ( ((rgb.r + rgb.g + rgb.b) / 3.0) + (is_on_dot * vec2(baseline_alpha), 1.0) ) //averages rgb values (allows it to work with color games), modified for contrast and base alpha
//frame sampling definitions
#define curr_rgb abs(1.0 - texture(Source, vTexCoord).rgb)
#define prev0_rgb abs(1.0 - texture(OriginalHistory1, tex).rgb)
#define prev1_rgb abs(1.0 - texture(OriginalHistory2, tex).rgb)
#define prev2_rgb abs(1.0 - texture(OriginalHistory3, tex).rgb)
#define prev3_rgb abs(1.0 - texture(OriginalHistory4, tex).rgb)
#define prev4_rgb abs(1.0 - texture(OriginalHistory5, tex).rgb)
#define prev5_rgb abs(1.0 - texture(OriginalHistory6, tex).rgb)
#define prev6_rgb abs(1.0 - texture(OriginalHistory7, tex).rgb)
void main()
{
//determine if the corrent texel lies on a dot or in the space between dots
float is_on_dot;
if ( mod(vTexCoord.x, dot_size.x) > one_texel.x && mod(vTexCoord.y, dot_size.y) > one_texel.y )
{is_on_dot = 1.0;}
else
{is_on_dot = 0.0;}
//sample color from the current and previous frames, apply response time modifier
//response time effect implmented through an exponential dropoff algorithm
vec3 input_rgb = curr_rgb;
input_rgb += (prev0_rgb - input_rgb) * response_time;
input_rgb += (prev1_rgb - input_rgb) * pow(response_time, 2.0);
input_rgb += (prev2_rgb - input_rgb) * pow(response_time, 3.0);
input_rgb += (prev3_rgb - input_rgb) * pow(response_time, 4.0);
input_rgb += (prev4_rgb - input_rgb) * pow(response_time, 5.0);
input_rgb += (prev5_rgb - input_rgb) * pow(response_time, 6.0);
input_rgb += (prev6_rgb - input_rgb) * pow(response_time, 7.0);
vec2 rgb_to_alpha = vec2((input_rgb.r + input_rgb.g + input_rgb.b) / 3.0) + (is_on_dot * baseline_alpha);
//apply foreground color and assign alpha value
vec4 out_color = vec4(foreground_color, rgb_to_alpha); //apply the foreground color to all texels (the color will be modified by alpha later) and assign alpha based on rgb input
//overlay the matrix
out_color.a *= is_on_dot; //if the fragment is not on a dot, set its alpha value to 0
//return fragment color
FragColor = vec4(out_color);
}