mirror of
https://github.com/italicsjenga/slang-shaders.git
synced 2024-11-23 08:11:29 +11:00
commit
0aff10aa3e
|
@ -64,8 +64,8 @@ vec3 srgb_linear(vec3 x) {
|
||||||
#endif
|
#endif
|
||||||
}
|
}
|
||||||
|
|
||||||
vec3 linear_to_sRGB(vec3 color, float gamma){
|
vec3 linear_to_sRGB(vec3 color, float gamma)
|
||||||
|
{
|
||||||
color = clamp(color, 0.0, 1.0);
|
color = clamp(color, 0.0, 1.0);
|
||||||
color.r = (color.r <= 0.00313066844250063) ?
|
color.r = (color.r <= 0.00313066844250063) ?
|
||||||
color.r * 12.92 : 1.055 * pow(color.r, 1.0 / gamma) - 0.055;
|
color.r * 12.92 : 1.055 * pow(color.r, 1.0 / gamma) - 0.055;
|
||||||
|
@ -77,8 +77,8 @@ vec3 linear_to_sRGB(vec3 color, float gamma){
|
||||||
return color.rgb;
|
return color.rgb;
|
||||||
}
|
}
|
||||||
|
|
||||||
vec3 sRGB_to_linear(vec3 color, float gamma){
|
vec3 sRGB_to_linear(vec3 color, float gamma)
|
||||||
|
{
|
||||||
color = clamp(color, 0.0, 1.0);
|
color = clamp(color, 0.0, 1.0);
|
||||||
color.r = (color.r <= 0.04045) ?
|
color.r = (color.r <= 0.04045) ?
|
||||||
color.r / 12.92 : pow((color.r + 0.055) / (1.055), gamma);
|
color.r / 12.92 : pow((color.r + 0.055) / (1.055), gamma);
|
||||||
|
@ -90,117 +90,165 @@ vec3 sRGB_to_linear(vec3 color, float gamma){
|
||||||
return color.rgb;
|
return color.rgb;
|
||||||
}
|
}
|
||||||
|
|
||||||
//Conversion matrices
|
/*------------------------------------------------------------------------------
|
||||||
vec3 RGBtoXYZ(vec3 RGB)
|
[RGB TO GRAYSCALE / LUMA CODE SECTION]
|
||||||
{
|
------------------------------------------------------------------------------*/
|
||||||
const mat3x3 m = mat3x3(
|
|
||||||
0.6068909, 0.1735011, 0.2003480,
|
|
||||||
0.2989164, 0.5865990, 0.1144845,
|
|
||||||
0.0000000, 0.0660957, 1.1162243);
|
|
||||||
|
|
||||||
|
// if you're already in linear gamma, definitely use this one ( Y = 0.2126R + 0.7152G + 0.0722B )
|
||||||
|
// the Rec. 709 spec uses these same coefficients but with gamma-compressed components ( Y' = 0.2126R' + 0.7152G' + 0.0722B' )
|
||||||
|
float luma(vec3 color)
|
||||||
|
{
|
||||||
|
return dot(color, vec3(0.2126, 0.7152, 0.0722));
|
||||||
|
}
|
||||||
|
|
||||||
|
// for digital formats following CCIR 601 (that is, most digital standard def formats)
|
||||||
|
// expects gamma-compressed components and doesn't look very good
|
||||||
|
// ( Y' = 0.299R' + 0.587G' + 0.114B' )
|
||||||
|
float luma_CCIR601(vec3 color)
|
||||||
|
{
|
||||||
|
return dot(color, vec3(0.299, 0.587, 0.114));
|
||||||
|
}
|
||||||
|
|
||||||
|
// SMPTE 240M; used by some transitional 1035i HDTV signals. Expects gamma-compressed components
|
||||||
|
// ( Y' = 0.212R' + 0.701G' + 0.087B' )
|
||||||
|
float luma_240M(vec3 color)
|
||||||
|
{
|
||||||
|
return dot(color, vec3(0.212, 0.701, 0.087));
|
||||||
|
}
|
||||||
|
|
||||||
|
// Same as Rec. 709 but with quick-and-dirty gamma linearization added on top
|
||||||
|
float luma_gamma(vec3 color)
|
||||||
|
{
|
||||||
|
color = color * color;
|
||||||
|
float luma = dot(color, vec3(0.2126, 0.7152, 0.0722));
|
||||||
|
return sqrt(luma);
|
||||||
|
}
|
||||||
|
|
||||||
|
/*------------------------------------------------------------------------------
|
||||||
|
[COLORSPACE CONVERSION CODE SECTION]
|
||||||
|
------------------------------------------------------------------------------*/
|
||||||
|
|
||||||
|
/* XYZ color space is a device-invariant representation that encompasses all color sensations that are visible to a person
|
||||||
|
with average eyesight. Y is the luminance, Z is quasi-equal to blue and X is a mix of the three CIE RGB curves chosen to be non-negative */
|
||||||
|
|
||||||
|
vec3 RGBtoXYZ(vec3 RGB)
|
||||||
|
{
|
||||||
|
const mat3x3 m = mat3x3(
|
||||||
|
0.6068909, 0.1735011, 0.2003480,
|
||||||
|
0.2989164, 0.5865990, 0.1144845,
|
||||||
|
0.0000000, 0.0660957, 1.1162243);
|
||||||
return RGB * m;
|
return RGB * m;
|
||||||
}
|
}
|
||||||
|
|
||||||
vec3 XYZtoRGB(vec3 XYZ)
|
vec3 XYZtoRGB(vec3 XYZ)
|
||||||
{
|
{
|
||||||
const mat3x3 m = mat3x3(
|
const mat3x3 m = mat3x3(
|
||||||
1.9099961, -0.5324542, -0.2882091,
|
1.9099961, -0.5324542, -0.2882091,
|
||||||
-0.9846663, 1.9991710, -0.0283082,
|
-0.9846663, 1.9991710, -0.0283082,
|
||||||
0.0583056, -0.1183781, 0.8975535);
|
0.0583056, -0.1183781, 0.8975535);
|
||||||
|
|
||||||
return XYZ * m;
|
return XYZ * m;
|
||||||
}
|
}
|
||||||
|
|
||||||
vec3 XYZtoSRGB(vec3 XYZ)
|
vec3 XYZtoSRGB(vec3 XYZ)
|
||||||
{
|
{
|
||||||
const mat3x3 m = mat3x3(
|
const mat3x3 m = mat3x3(
|
||||||
3.2404542,-1.5371385,-0.4985314,
|
3.2404542,-1.5371385,-0.4985314,
|
||||||
-0.9692660, 1.8760108, 0.0415560,
|
-0.9692660, 1.8760108, 0.0415560,
|
||||||
0.0556434,-0.2040259, 1.0572252);
|
0.0556434,-0.2040259, 1.0572252);
|
||||||
|
|
||||||
return XYZ * m;
|
return XYZ * m;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/* YUV is a color space that takes human perception into account, allowing reduced bandwidth for chrominance components,
|
||||||
|
as compared with a direct RGB representation. It includes a luminance component, Y, with nonlinear perceptual brightness,
|
||||||
|
and two color components, U and V. This colorspace was used in the PAL color broadcast standard and is the counterpart to
|
||||||
|
NTSC's YIQ colorspace. It is still commonly used to describe YCbCr signals. */
|
||||||
|
|
||||||
vec3 RGBtoYUV(vec3 RGB)
|
vec3 RGBtoYUV(vec3 RGB)
|
||||||
{
|
{
|
||||||
const mat3x3 m = mat3x3(
|
const mat3x3 m = mat3x3(
|
||||||
0.2126, 0.7152, 0.0722,
|
0.2126, 0.7152, 0.0722,
|
||||||
-0.09991,-0.33609, 0.436,
|
-0.09991,-0.33609, 0.436,
|
||||||
0.615, -0.55861, -0.05639);
|
0.615, -0.55861, -0.05639);
|
||||||
|
return RGB * m;
|
||||||
return RGB * m;
|
}
|
||||||
}
|
|
||||||
|
|
||||||
vec3 YUVtoRGB(vec3 YUV)
|
vec3 YUVtoRGB(vec3 YUV)
|
||||||
{
|
{
|
||||||
const mat3x3 m = mat3x3(
|
const mat3x3 m = mat3x3(
|
||||||
1.000, 0.000, 1.28033,
|
1.000, 0.000, 1.28033,
|
||||||
1.000,-0.21482,-0.38059,
|
1.000,-0.21482,-0.38059,
|
||||||
1.000, 2.12798, 0.000);
|
1.000, 2.12798, 0.000);
|
||||||
|
return YUV * m;
|
||||||
|
}
|
||||||
|
|
||||||
return YUV * m;
|
/* YIQ is the color space used for analog NTSC color broadcasts, whereby Y stands for luma, I stands for in-phase and
|
||||||
}
|
Q stands for quadrature, referring to the components used in quadrature amplitude modulation. The IQ axes exist on the
|
||||||
|
same plane as the UV axes from the YUV color space, just rotated 33 degrees. */
|
||||||
|
|
||||||
vec3 RGBtoYIQ(vec3 RGB)
|
vec3 RGBtoYIQ(vec3 RGB)
|
||||||
{
|
{
|
||||||
const mat3x3 m = mat3x3(
|
const mat3x3 m = mat3x3(
|
||||||
0.2989, 0.5870, 0.1140,
|
0.2989, 0.5870, 0.1140,
|
||||||
0.5959, -0.2744, -0.3216,
|
0.5959, -0.2744, -0.3216,
|
||||||
0.2115, -0.5229, 0.3114);
|
0.2115, -0.5229, 0.3114);
|
||||||
return RGB * m;
|
return RGB * m;
|
||||||
}
|
}
|
||||||
|
|
||||||
vec3 YIQtoRGB(vec3 YIQ)
|
vec3 YIQtoRGB(vec3 YIQ)
|
||||||
{
|
{
|
||||||
const mat3x3 m = mat3x3(
|
const mat3x3 m = mat3x3(
|
||||||
1.0, 0.956, 0.6210,
|
1.0, 0.956, 0.6210,
|
||||||
1.0, -0.2720, -0.6474,
|
1.0, -0.2720, -0.6474,
|
||||||
1.0, -1.1060, 1.7046);
|
1.0, -1.1060, 1.7046);
|
||||||
return YIQ * m;
|
return YIQ * m;
|
||||||
}
|
}
|
||||||
|
|
||||||
vec3 XYZtoYxy(vec3 XYZ)
|
vec3 XYZtoYxy(vec3 XYZ)
|
||||||
{
|
{
|
||||||
float w = (XYZ.r + XYZ.g + XYZ.b);
|
float w = (XYZ.r + XYZ.g + XYZ.b);
|
||||||
vec3 Yxy;
|
vec3 Yxy;
|
||||||
Yxy.r = XYZ.g;
|
Yxy.r = XYZ.g;
|
||||||
Yxy.g = XYZ.r / w;
|
Yxy.g = XYZ.r / w;
|
||||||
Yxy.b = XYZ.g / w;
|
Yxy.b = XYZ.g / w;
|
||||||
|
|
||||||
return Yxy;
|
return Yxy;
|
||||||
}
|
}
|
||||||
|
|
||||||
vec3 YxytoXYZ(vec3 Yxy)
|
vec3 YxytoXYZ(vec3 Yxy)
|
||||||
{
|
{
|
||||||
vec3 XYZ;
|
vec3 XYZ;
|
||||||
XYZ.g = Yxy.r;
|
XYZ.g = Yxy.r;
|
||||||
XYZ.r = Yxy.r * Yxy.g / Yxy.b;
|
XYZ.r = Yxy.r * Yxy.g / Yxy.b;
|
||||||
XYZ.b = Yxy.r * (1.0 - Yxy.g - Yxy.b) / Yxy.b;
|
XYZ.b = Yxy.r * (1.0 - Yxy.g - Yxy.b) / Yxy.b;
|
||||||
|
|
||||||
return XYZ;
|
return XYZ;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/* CMYK--aka process color or four color--is a subtractive color model based on the CMY color model that is
|
||||||
|
used in color printing and to describe the printing process itself. C is for Cyan, M is for Magenta, Y is for
|
||||||
|
Yellow and K is for 'key' or black. */
|
||||||
|
|
||||||
// RGB <-> CMYK conversions require 4 channels
|
// RGB <-> CMYK conversions require 4 channels
|
||||||
vec4 RGBtoCMYK(vec3 RGB){
|
vec4 RGBtoCMYK(vec3 RGB){
|
||||||
float Red = RGB.r;
|
float Red = RGB.r;
|
||||||
float Green = RGB.g;
|
float Green = RGB.g;
|
||||||
float Blue = RGB.b;
|
float Blue = RGB.b;
|
||||||
float Black = min(1.0 - Red, min(1.0 - Green, 1.0 - Blue));
|
float Black = min(1.0 - Red, min(1.0 - Green, 1.0 - Blue));
|
||||||
float Cyan = (1.0 - Red - Black) / (1.0 - Black);
|
float Cyan = (1.0 - Red - Black) / (1.0 - Black);
|
||||||
float Magenta = (1.0 - Green - Black) / (1.0 - Black);
|
float Magenta = (1.0 - Green - Black) / (1.0 - Black);
|
||||||
float Yellow = (1.0 - Blue - Black) / (1.0 - Black);
|
float Yellow = (1.0 - Blue - Black) / (1.0 - Black);
|
||||||
return vec4(Cyan, Magenta, Yellow, Black);
|
return vec4(Cyan, Magenta, Yellow, Black);
|
||||||
}
|
}
|
||||||
|
|
||||||
vec3 CMYKtoRGB(vec4 CMYK){
|
vec3 CMYKtoRGB(vec4 CMYK){
|
||||||
float Cyan = CMYK.x;
|
float Cyan = CMYK.x;
|
||||||
float Magenta = CMYK.y;
|
float Magenta = CMYK.y;
|
||||||
float Yellow = CMYK.z;
|
float Yellow = CMYK.z;
|
||||||
float Black = CMYK.w;
|
float Black = CMYK.w;
|
||||||
float Red = 1.0 - min(1.0, Cyan * (1.0 - Black) + Black);
|
float Red = 1.0 - min(1.0, Cyan * (1.0 - Black) + Black);
|
||||||
float Green = 1.0 - min(1.0, Magenta * (1.0 - Black) + Black);
|
float Green = 1.0 - min(1.0, Magenta * (1.0 - Black) + Black);
|
||||||
float Blue = 1.0 - min(1.0, Yellow * (1.0 - Black) + Black);
|
float Blue = 1.0 - min(1.0, Yellow * (1.0 - Black) + Black);
|
||||||
return vec3(Red, Green, Blue);
|
return vec3(Red, Green, Blue);
|
||||||
}
|
}
|
||||||
|
|
||||||
// Converting pure hue to RGB
|
// Converting pure hue to RGB
|
||||||
|
@ -291,20 +339,27 @@ const vec3 D9000KDS = vec3(0.90354,1.00000,1.31190);//8939K, 0.0114 Duv
|
||||||
//}
|
//}
|
||||||
|
|
||||||
// --- sRGB --- //
|
// --- sRGB --- //
|
||||||
vec3 XYZ_to_sRGB(vec3 x) {
|
vec3 XYZ_to_sRGB(vec3 x)
|
||||||
|
{
|
||||||
x = x * mat3x3( 3.2404542, -1.5371385, -0.4985314, -0.9692660, 1.8760108, 0.0415560, 0.0556434, -0.2040259, 1.0572252 );
|
x = x * mat3x3( 3.2404542, -1.5371385, -0.4985314, -0.9692660, 1.8760108, 0.0415560, 0.0556434, -0.2040259, 1.0572252 );
|
||||||
x = mix(1.055*pow(x, vec3(1./2.4)) - 0.055, 12.92*x, step(x,vec3(0.0031308)));
|
x = mix(1.055*pow(x, vec3(1./2.4)) - 0.055, 12.92*x, step(x,vec3(0.0031308)));
|
||||||
return x;
|
return x;
|
||||||
}
|
}
|
||||||
|
|
||||||
vec3 sRGB_to_XYZ(vec3 x) {
|
vec3 sRGB_to_XYZ(vec3 x)
|
||||||
|
{
|
||||||
x = mix(pow((x + 0.055)/1.055,vec3(2.4)), x / 12.92, step(x,vec3(0.04045)));
|
x = mix(pow((x + 0.055)/1.055,vec3(2.4)), x / 12.92, step(x,vec3(0.04045)));
|
||||||
x = x * mat3x3( 0.4124564, 0.3575761, 0.1804375, 0.2126729, 0.7151522, 0.0721750, 0.0193339, 0.1191920, 0.9503041 );
|
x = x * mat3x3( 0.4124564, 0.3575761, 0.1804375, 0.2126729, 0.7151522, 0.0721750, 0.0193339, 0.1191920, 0.9503041 );
|
||||||
return x;
|
return x;
|
||||||
}
|
}
|
||||||
|
|
||||||
// --- Jzazbz --- //{
|
/* Jzazbz is a color space designed for perceptual uniformity in high dynamic range (HDR) and wide color gamut (WCG) applications.
|
||||||
vec3 XYZ_to_Jzazbz(vec3 XYZ) {
|
It is conceptually similar to CIE Lab but is considered more "modern". As compared with Lab, perceptual color differences are
|
||||||
|
predicted by Euclidean distance, it is more perceptually uniform and changes in saturation or lightness produce less shifts in hue
|
||||||
|
(i.e., increased hue linearity). Jzazbz and JzCzhz are used by ImageMagick and not much else. */
|
||||||
|
|
||||||
|
vec3 XYZ_to_Jzazbz(vec3 XYZ)
|
||||||
|
{
|
||||||
float b = 1.15;
|
float b = 1.15;
|
||||||
float g = 0.66;
|
float g = 0.66;
|
||||||
vec3 XYZprime = XYZ;
|
vec3 XYZprime = XYZ;
|
||||||
|
@ -326,14 +381,18 @@ vec3 XYZ_to_Jzazbz(vec3 XYZ) {
|
||||||
return Jzazbz;
|
return Jzazbz;
|
||||||
}
|
}
|
||||||
|
|
||||||
vec3 Jzazbz_to_JzCzhz(vec3 Jzazbz) {
|
/* The polar version of Jzazbz */
|
||||||
|
|
||||||
|
vec3 Jzazbz_to_JzCzhz(vec3 Jzazbz)
|
||||||
|
{
|
||||||
float Cz = sqrt(Jzazbz.y*Jzazbz.y + Jzazbz.z*Jzazbz.z);
|
float Cz = sqrt(Jzazbz.y*Jzazbz.y + Jzazbz.z*Jzazbz.z);
|
||||||
float hz = atan(Jzazbz.z,Jzazbz.y);
|
float hz = atan(Jzazbz.z,Jzazbz.y);
|
||||||
vec3 JzCzhz = vec3(Jzazbz.x,Cz,hz);
|
vec3 JzCzhz = vec3(Jzazbz.x,Cz,hz);
|
||||||
return JzCzhz;
|
return JzCzhz;
|
||||||
}
|
}
|
||||||
|
|
||||||
vec3 JzCzhz_Normalize(vec3 JzCzhz) {
|
vec3 JzCzhz_Normalize(vec3 JzCzhz)
|
||||||
|
{
|
||||||
JzCzhz.x = JzCzhz.x*56.91964;
|
JzCzhz.x = JzCzhz.x*56.91964;
|
||||||
JzCzhz.y = JzCzhz.y*40.05235;
|
JzCzhz.y = JzCzhz.y*40.05235;
|
||||||
JzCzhz.z = (JzCzhz.z+2.761)/5.522;
|
JzCzhz.z = (JzCzhz.z+2.761)/5.522;
|
||||||
|
@ -343,19 +402,22 @@ vec3 JzCzhz_Normalize(vec3 JzCzhz) {
|
||||||
return JzCzhz;
|
return JzCzhz;
|
||||||
}
|
}
|
||||||
|
|
||||||
vec3 JzCzhz_Denormalize(vec3 JzCzhz) {
|
vec3 JzCzhz_Denormalize(vec3 JzCzhz)
|
||||||
|
{
|
||||||
JzCzhz.x = JzCzhz.x/56.91964;
|
JzCzhz.x = JzCzhz.x/56.91964;
|
||||||
JzCzhz.y = JzCzhz.y/40.05235;
|
JzCzhz.y = JzCzhz.y/40.05235;
|
||||||
JzCzhz.z = JzCzhz.z * 5.522 - 2.761;
|
JzCzhz.z = JzCzhz.z * 5.522 - 2.761;
|
||||||
return JzCzhz;
|
return JzCzhz;
|
||||||
}
|
}
|
||||||
|
|
||||||
vec3 JzCzhz_to_Jzazbz(vec3 JzCzhz) {
|
vec3 JzCzhz_to_Jzazbz(vec3 JzCzhz)
|
||||||
|
{
|
||||||
vec3 Jzazbz = vec3(JzCzhz.x,JzCzhz.y*cos(JzCzhz.z),JzCzhz.y*sin(JzCzhz.z));;
|
vec3 Jzazbz = vec3(JzCzhz.x,JzCzhz.y*cos(JzCzhz.z),JzCzhz.y*sin(JzCzhz.z));;
|
||||||
return Jzazbz;
|
return Jzazbz;
|
||||||
}
|
}
|
||||||
|
|
||||||
vec3 Jzazbz_to_XYZ(vec3 Jzazbz) {
|
vec3 Jzazbz_to_XYZ(vec3 Jzazbz)
|
||||||
|
{
|
||||||
float d0 = 1.6295499532821566 * pow(10.0,-11.0);
|
float d0 = 1.6295499532821566 * pow(10.0,-11.0);
|
||||||
float d = -0.56;
|
float d = -0.56;
|
||||||
float Iz = (Jzazbz.x + d0) / (1 + d - d * (Jzazbz.x + d0));
|
float Iz = (Jzazbz.x + d0) / (1 + d - d * (Jzazbz.x + d0));
|
||||||
|
|
Loading…
Reference in a new issue