diff --git a/crt/crt-geom.slang b/crt/crt-geom.slang new file mode 100644 index 0000000..88fdb57 --- /dev/null +++ b/crt/crt-geom.slang @@ -0,0 +1,296 @@ +#version 450 + +layout(std140, set = 0, binding = 0) uniform UBO +{ + mat4 MVP; + vec4 OutputSize; + vec4 OriginalSize; + vec4 SourceSize; + uint FrameCount; +} global; + +#define CRTgamma 2.4 +#define monitorgamma 2.2 +#define d 1.5 +#define CURVATURE 1.0 +#define R 2.0 +#define cornersize 0.03 +#define cornersmooth 1000.0 +#define x_tilt 0.0 +#define y_tilt 0.0 +#define overscan_x 100.0 +#define overscan_y 100.0 +#define DOTMASK 0.3 +#define SHARPER 1.0 +#define scanline_weight 0.3 + +/* + CRT-interlaced + + Copyright (C) 2010-2012 cgwg, Themaister and DOLLS + + This program is free software; you can redistribute it and/or modify it + under the terms of the GNU General Public License as published by the Free + Software Foundation; either version 2 of the License, or (at your option) + any later version. + + (cgwg gave their consent to have the original version of this shader + distributed under the GPL in this message: + + http://board.byuu.org/viewtopic.php?p=26075#p26075 + + "Feel free to distribute my shaders under the GPL. After all, the + barrel distortion code was taken from the Curvature shader, which is + under the GPL." + ) + This shader variant is pre-configured with screen curvature +*/ + + // Comment the next line to disable interpolation in linear gamma (and + // gain speed). + #define LINEAR_PROCESSING + + // Enable 3x oversampling of the beam profile; improves moire effect caused by scanlines+curvature + #define OVERSAMPLE + + // Use the older, purely gaussian beam profile; uncomment for speed + //#define USEGAUSSIAN + + // Use interlacing detection; may interfere with other shaders if combined + #define INTERLACED + + // Enable Dot-mask emulation: + // Output pixels are alternately tinted green and magenta. +// #define DOTMASK + + // Macros. + #define FIX(c) max(abs(c), 1e-5); + #define PI 3.141592653589 + + #ifdef LINEAR_PROCESSING + # define TEX2D(c) pow(texture(Source, (c)), vec4(CRTgamma)) + #else + # define TEX2D(c) texture(Source, (c)) + #endif + + // aspect ratio + static vec2 aspect = vec2(1.0, 0.75); + +float intersect(vec2 xy, vec2 sinangle, vec2 cosangle) + { + float A = dot(xy,xy)+d*d; + float B = 2.0*(R*(dot(xy,sinangle)-d*cosangle.x*cosangle.y)-d*d); + float C = d*d + 2.0*R*d*cosangle.x*cosangle.y; + return (-B-sqrt(B*B-4.0*A*C))/(2.0*A); + } + +loat2 bkwtrans(vec2 xy, vec2 sinangle, vec2 cosangle) + { + float c = intersect(xy, sinangle, cosangle); + float2 point = vec2(c)*xy; + point -= vec2(-R)*sinangle; + point /= vec2(R); + vec2 tang = sinangle/cosangle; + vec2 poc = point/cosangle; + float A = dot(tang,tang)+1.0; + float B = -2.0*dot(poc,tang); + float C = dot(poc,poc)-1.0; + float a = (-B+sqrt(B*B-4.0*A*C))/(2.0*A); + vec2 uv = (point-a*sinangle)/cosangle; + float r = FIX(R*acos(a)); + return uv*r/sin(r/R); + } + +vec2 fwtrans(vec2 uv, vec2 sinangle, vec2 cosangle) + { + float r = FIX(sqrt(dot(uv,uv))); + uv *= sin(r/R)/r; + float x = 1.0-cos(r/R); + float D = d/R + x*cosangle.x*cosangle.y+dot(uv,sinangle); + return d*(uv*cosangle-x*sinangle)/D; + } + +vec3 maxscale(vec2 sinangle, float2 cosangle) + { + vec2 c = bkwtrans(-R * sinangle / (1.0 + R/d*cosangle.x*cosangle.y), sinangle, cosangle); + vec2 a = vec2(0.5,0.5)*aspect; + vec2 lo = vec2(fwtrans(vec2(-a.x,c.y), sinangle, cosangle).x, + fwtrans(vec2(c.x,-a.y), sinangle, cosangle).y)/aspect; + vec2 hi = vec2(fwtrans(vec2(+a.x,c.y), sinangle, cosangle).x, + fwtrans(vec2(c.x,+a.y), sinangle, cosangle).y)/aspect; + return vec2((hi+lo)*aspect*0.5,max(hi.x-lo.x,hi.y-lo.y)); + } + + // Calculate the influence of a scanline on the current pixel. + // + // 'distance' is the distance in texture coordinates from the current + // pixel to the scanline in question. + // 'color' is the colour of the scanline at the horizontal location of + // the current pixel. + vec4 scanlineWeights(float distance, float4 color) + { + // "wid" controls the width of the scanline beam, for each RGB + // channel The "weights" lines basically specify the formula + // that gives you the profile of the beam, i.e. the intensity as + // a function of distance from the vertical center of the + // scanline. In this case, it is gaussian if width=2, and + // becomes nongaussian for larger widths. Ideally this should + // be normalized so that the integral across the beam is + // independent of its width. That is, for a narrower beam + // "weights" should have a higher peak at the center of the + // scanline than for a wider beam. + #ifdef USEGAUSSIAN + vec4 wid = 0.3 + 0.1 * pow(color, vec4(3.0)); + vec4 weights = vec4(distance / wid); + return 0.4 * exp(-weights * weights) / wid; + #else + vec4 wid = 2.0 + 2.0 * pow(color, vec4(4.0)); + vec4 weights = vec4(distance / scanline_weight); + return 1.4 * exp(-pow(weights * rsqrt(0.5 * wid), wid)) / (0.6 + 0.2 * wid); + #endif + } + + +#pragma stage vertex +layout(location = 0) in vec4 Position; +layout(location = 1) in vec2 TexCoord; +layout(location = 0) out vec2 vTexCoord; + +void main() +{ + gl_Position = global.MVP * Position; + vTexCoord = TexCoord; + + + // Precalculate a bunch of useful values we'll need in the fragment + // shader. + vec2 sinangle = sin(angle); + vec2 cosangle = cos(angle); + vec3 stretch = maxscale(); + + vec2 ilfac = vec2(1.0,floor(sourceSize[0].y/200.0)); + + // The size of one texel, in texture-coordinates. + vec2 one = ilfac / sourceSize[0].xy; + + // Resulting X pixel-coordinate of the pixel we're drawing. + float mod_factor = texCoord.x * targetSize.x; +} + +#pragma stage fragment +layout(location = 0) in vec2 vTexCoord; +layout(location = 1) in vec2 FragCoord; +layout(location = 0) out vec4 FragColor; +layout(set = 0, binding = 2) uniform sampler2D Source; + +void main() +{ + // Here's a helpful diagram to keep in mind while trying to + // understand the code: + // + // | | | | | + // ------------------------------- + // | | | | | + // | 01 | 11 | 21 | 31 | <-- current scanline + // | | @ | | | + // ------------------------------- + // | | | | | + // | 02 | 12 | 22 | 32 | <-- next scanline + // | | | | | + // ------------------------------- + // | | | | | + // + // Each character-cell represents a pixel on the output + // surface, "@" represents the current pixel (always somewhere + // in the bottom half of the current scan-line, or the top-half + // of the next scanline). The grid of lines represents the + // edges of the texels of the underlying texture. + + // Texture coordinates of the texel containing the active pixel. +#ifdef CURVATURE + vec2 xy = transform(vTexCoord); +#else + vec2 xy = vTexCoord; +#endif + float cval = corner(xy); + + // Of all the pixels that are mapped onto the texel we are + // currently rendering, which pixel are we currently rendering? +#ifdef INTERLACED + vec2 ilvec = vec2(0.0,ilfac.y > 1.5 ? mod(float(global.FrameCount),2.0) : 0.0); +#else + vec2 ilvec = vec2(0.0,ilfac.y); +#endif + vec2 ratio_scale = (xy * global.SourceSize.xy - vec2(0.5, 0.5) + ilvec)/ilfac; +#ifdef OVERSAMPLE + float filter_ = global.SourceSize.y / global.OutputSize.y; +#endif + vec2 uv_ratio = fract(ratio_scale); + + // Snap to the center of the underlying texel. + xy = (floor(ratio_scale)*ilfac + vec2(0.5, 0.5) - ilvec) / global.OutputSize.xy; + + // Calculate Lanczos scaling coefficients describing the effect + // of various neighbour texels in a scanline on the current + // pixel. + vec4 coeffs = PI * vec4(1.0 + uv_ratio.x, uv_ratio.x, 1.0 - uv_ratio.x, 2.0 - uv_ratio.x); + + // Prevent division by zero. + coeffs = FIX(coeffs); + + // Lanczos2 kernel. + coeffs = 2.0 * sin(coeffs) * sin(coeffs / 2.0) / (coeffs * coeffs); + + // Normalize. + coeffs /= dot(coeffs, vec4(1.0)); + + // Calculate the effective colour of the current and next + // scanlines at the horizontal location of the current pixel, + // using the Lanczos coefficients above. + vec4 col = clamp(mat4( + TEX2D(xy + vec2(-one.x, 0.0)), + TEX2D(xy), + TEX2D(xy + vec2(one.x, 0.0)), + TEX2D(xy + vec2(2.0 * one.x, 0.0))) * coeffs, + 0.0, 1.0); + vec4 col2 = clamp(mat4( + TEX2D(xy + vec2(-one.x, one.y)), + TEX2D(xy + vec2(0.0, one.y)), + TEX2D(xy + one), + TEX2D(xy + vec2(2.0 * one.x, one.y))) * coeffs, + 0.0, 1.0); + +#ifndef LINEAR_PROCESSING + col = pow(col , vec4(CRTgamma)); + col2 = pow(col2, vec4(CRTgamma)); +#endif + + // Calculate the influence of the current and next scanlines on + // the current pixel. + vec4 weights = scanlineWeights(uv_ratio.y, col); + vec4 weights2 = scanlineWeights(1.0 - uv_ratio.y, col2); +#ifdef OVERSAMPLE + uv_ratio.y =uv_ratio.y+1.0/3.0*filter_; + weights = (weights+scanlineWeights(uv_ratio.y, col))/3.0; + weights2=(weights2+scanlineWeights(abs(1.0-uv_ratio.y), col2))/3.0; + uv_ratio.y =uv_ratio.y-2.0/3.0*filter_; + weights=weights+scanlineWeights(abs(uv_ratio.y), col)/3.0; + weights2=weights2+scanlineWeights(abs(1.0-uv_ratio.y), col2)/3.0; +#endif + vec3 mul_res = (col * weights + col2 * weights2).rgb * vec3(cval); + + // dot-mask emulation: + // Output pixels are alternately tinted green and magenta. + vec3 dotMaskWeights = mix( + vec3(1.0, 0.7, 1.0), + vec3(0.7, 1.0, 0.7), + floor(mod(mod_factor, 2.0)) + ); + + mul_res *= dotMaskWeights; + + // Convert the image gamma for display on our output device. + mul_res = pow(mul_res, vec3(1.0 / monitorgamma)); + +FragColor = vec4(mul_res, 1.0); +} diff --git a/crt/crt-geom.slangp b/crt/crt-geom.slangp new file mode 100644 index 0000000..7addf36 --- /dev/null +++ b/crt/crt-geom.slangp @@ -0,0 +1,5 @@ +shaders = 1 + +shader0 = crt-geom.slang +filter_linear0 = false +scale_type_0 = source