diff --git a/crt/shaders/crt-royale/src/bloom-functions.h b/crt/shaders/crt-royale/src/bloom-functions.h new file mode 100644 index 0000000..251a11a --- /dev/null +++ b/crt/shaders/crt-royale/src/bloom-functions.h @@ -0,0 +1,214 @@ +#define BLOOM_FUNCTIONS + +/////////////////////////////// BLOOM CONSTANTS ////////////////////////////// + +// Compute constants with manual inlines of the functions below: +const float bloom_diff_thresh = 1.0/256.0; + +// Assume an extremely large viewport size for asymptotic results: +const float max_viewport_size_x = 1080.0*1024.0*(4.0/3.0); + +/////////////////////////////////// HELPERS ////////////////////////////////// + +float get_min_sigma_to_blur_triad(const float triad_size, + const float thresh) +{ + // Requires: 1.) triad_size is the final phosphor triad size in pixels + // 2.) thresh is the max desired pixel difference in the + // blurred triad (e.g. 1.0/256.0). + // Returns: Return the minimum sigma that will fully blur a phosphor + // triad on the screen to an even color, within thresh. + // This closed-form function was found by curve-fitting data. + // Estimate: max error = ~0.086036, mean sq. error = ~0.0013387: + return -0.05168 + 0.6113*triad_size - + 1.122*triad_size*sqrt(0.000416 + thresh); + // Estimate: max error = ~0.16486, mean sq. error = ~0.0041041: + //return 0.5985*triad_size - triad_size*sqrt(thresh) +} + +float get_absolute_scale_blur_sigma(const float thresh) +{ + // Requires: 1.) min_expected_triads must be a global float. The number + // of horizontal phosphor triads in the final image must be + // >= min_allowed_viewport_triads.x for realistic results. + // 2.) bloom_approx_scale_x must be a global float equal to the + // absolute horizontal scale of BLOOM_APPROX. + // 3.) bloom_approx_scale_x/min_allowed_viewport_triads.x + // should be <= 1.1658025090 to keep the final result < + // 0.62666015625 (the largest sigma ensuring the largest + // unused texel weight stays < 1.0/256.0 for a 3x3 blur). + // 4.) thresh is the max desired pixel difference in the + // blurred triad (e.g. 1.0/256.0). + // Returns: Return the minimum Gaussian sigma that will blur the pass + // output as much as it would have taken to blur away + // bloom_approx_scale_x horizontal phosphor triads. + // Description: + // BLOOM_APPROX should look like a downscaled phosphor blur. Ideally, we'd + // use the same blur sigma as the actual phosphor bloom and scale it down + // to the current resolution with (bloom_approx_scale_x/viewport_size_x), but + // we don't know the viewport size in this pass. Instead, we'll blur as + // much as it would take to blur away min_allowed_viewport_triads.x. This + // will blur "more than necessary" if the user actually uses more triads, + // but that's not terrible either, because blurring a constant fraction of + // the viewport may better resemble a true optical bloom anyway (since the + // viewport will generally be about the same fraction of each player's + // field of view, regardless of screen size and resolution). + // Assume an extremely large viewport size for asymptotic results. + return bloom_approx_scale_x/max_viewport_size_x * + get_min_sigma_to_blur_triad( + max_viewport_size_x/min_allowed_viewport_triads.x, thresh); +} + +float get_center_weight(const float sigma) +{ + // Given a Gaussian blur sigma, get the blur weight for the center texel. + #ifdef RUNTIME_PHOSPHOR_BLOOM_SIGMA + return get_fast_gaussian_weight_sum_inv(sigma); + #else + const float denom_inv = 0.5/(sigma*sigma); + const float w0 = 1.0; + const float w1 = exp(-1.0 * denom_inv); + const float w2 = exp(-4.0 * denom_inv); + const float w3 = exp(-9.0 * denom_inv); + const float w4 = exp(-16.0 * denom_inv); + const float w5 = exp(-25.0 * denom_inv); + const float w6 = exp(-36.0 * denom_inv); + const float w7 = exp(-49.0 * denom_inv); + const float w8 = exp(-64.0 * denom_inv); + const float w9 = exp(-81.0 * denom_inv); + const float w10 = exp(-100.0 * denom_inv); + const float w11 = exp(-121.0 * denom_inv); + const float w12 = exp(-144.0 * denom_inv); + const float w13 = exp(-169.0 * denom_inv); + const float w14 = exp(-196.0 * denom_inv); + const float w15 = exp(-225.0 * denom_inv); + const float w16 = exp(-256.0 * denom_inv); + const float w17 = exp(-289.0 * denom_inv); + const float w18 = exp(-324.0 * denom_inv); + const float w19 = exp(-361.0 * denom_inv); + const float w20 = exp(-400.0 * denom_inv); + const float w21 = exp(-441.0 * denom_inv); + // Note: If the implementation uses a smaller blur than the max allowed, + // the worst case scenario is that the center weight will be overestimated, + // so we'll put a bit more energy into the brightpass...no huge deal. + // Then again, if the implementation uses a larger blur than the max + // "allowed" because of dynamic branching, the center weight could be + // underestimated, which is more of a problem...consider always using + #ifdef PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_12_PIXELS + // 43x blur: + const float weight_sum_inv = 1.0 / + (w0 + 2.0 * (w1 + w2 + w3 + w4 + w5 + w6 + w7 + w8 + w9 + w10 + + w11 + w12 + w13 + w14 + w15 + w16 + w17 + w18 + w19 + w20 + w21)); + #else + #ifdef PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_9_PIXELS + // 31x blur: + const float weight_sum_inv = 1.0 / + (w0 + 2.0 * (w1 + w2 + w3 + w4 + w5 + w6 + w7 + + w8 + w9 + w10 + w11 + w12 + w13 + w14 + w15)); + #else + #ifdef PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_6_PIXELS + // 25x blur: + const float weight_sum_inv = 1.0 / (w0 + 2.0 * ( + w1 + w2 + w3 + w4 + w5 + w6 + w7 + w8 + w9 + w10 + w11 + w12)); + #else + #ifdef PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_3_PIXELS + // 17x blur: + const float weight_sum_inv = 1.0 / (w0 + 2.0 * ( + w1 + w2 + w3 + w4 + w5 + w6 + w7 + w8)); + #else + // 9x blur: + const float weight_sum_inv = 1.0 / (w0 + 2.0 * (w1 + w2 + w3 + w4)); + #endif // PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_3_PIXELS + #endif // PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_6_PIXELS + #endif // PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_9_PIXELS + #endif // PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_12_PIXELS + const float center_weight = weight_sum_inv * weight_sum_inv; + return center_weight; + #endif +} + +float get_bloom_approx_sigma(const float output_size_x_runtime, + const float estimated_viewport_size_x) +{ + // Requires: 1.) output_size_x_runtime == BLOOM_APPROX.output_size.x. + // This is included for dynamic codepaths just in case the + // following two globals are incorrect: + // 2.) bloom_approx_size_x_for_skip should == the same + // if PHOSPHOR_BLOOM_FAKE is #defined + // 3.) bloom_approx_size_x should == the same otherwise + // Returns: For gaussian4x4, return a dynamic small bloom sigma that's + // as close to optimal as possible given available information. + // For blur3x3, return the a static small bloom sigma that + // works well for typical cases. Otherwise, we're using simple + // bilinear filtering, so use static calculations. + // Assume the default static value. This is a compromise that ensures + // typical triads are blurred, even if unusually large ones aren't. + const float mask_num_triads_static = + max(min_allowed_viewport_triads.x, mask_num_triads_desired_static); + const float mask_num_triads_from_size = + estimated_viewport_size_x/mask_triad_size_desired; + const float mask_num_triads_runtime = max(min_allowed_viewport_triads.x, + mix(mask_num_triads_from_size, mask_num_triads_desired, + mask_specify_num_triads)); + // Assume an extremely large viewport size for asymptotic results: + const float max_viewport_size_x = 1080.0*1024.0*(4.0/3.0); + if(bloom_approx_filter > 1.5) // 4x4 true Gaussian resize + { + // Use the runtime num triads and output size: + const float asymptotic_triad_size = + max_viewport_size_x/mask_num_triads_runtime; + const float asymptotic_sigma = get_min_sigma_to_blur_triad( + asymptotic_triad_size, bloom_diff_thresh); + const float bloom_approx_sigma = + asymptotic_sigma * output_size_x_runtime/max_viewport_size_x; + // The BLOOM_APPROX input has to be ORIG_LINEARIZED to avoid moire, but + // account for the Gaussian scanline sigma from the last pass too. + // The bloom will be too wide horizontally but tall enough vertically. + return length(vec2(bloom_approx_sigma, beam_max_sigma)); + } + else // 3x3 blur resize (the bilinear resize doesn't need a sigma) + { + // We're either using blur3x3 or bilinear filtering. The biggest + // reason to choose blur3x3 is to avoid dynamic weights, so use a + // static calculation. + #ifdef PHOSPHOR_BLOOM_FAKE + const float output_size_x_static = + bloom_approx_size_x_for_fake; + #else + const float output_size_x_static = bloom_approx_size_x; + #endif + const float asymptotic_triad_size = + max_viewport_size_x/mask_num_triads_static; + const float asymptotic_sigma = get_min_sigma_to_blur_triad( + asymptotic_triad_size, bloom_diff_thresh); + const float bloom_approx_sigma = + asymptotic_sigma * output_size_x_static/max_viewport_size_x; + // The BLOOM_APPROX input has to be ORIG_LINEARIZED to avoid moire, but + // try accounting for the Gaussian scanline sigma from the last pass + // too; use the static default value: + return length(vec2(bloom_approx_sigma, beam_max_sigma_static)); + } +} + +float get_final_bloom_sigma(const float bloom_sigma_runtime) +{ + // Requires: 1.) bloom_sigma_runtime is a precalculated sigma that's + // optimal for the [known] triad size. + // 2.) Call this from a fragment shader (not a vertex shader), + // or blurring with static sigmas won't be constant-folded. + // Returns: Return the optimistic static sigma if the triad size is + // known at compile time. Otherwise return the optimal runtime + // sigma (10% slower) or an implementation-specific compromise + // between an optimistic or pessimistic static sigma. + // Notes: Call this from the fragment shader, NOT the vertex shader, + // so static sigmas can be constant-folded! + const float bloom_sigma_optimistic = get_min_sigma_to_blur_triad( + mask_triad_size_desired_static, bloom_diff_thresh); + #ifdef RUNTIME_PHOSPHOR_BLOOM_SIGMA + return bloom_sigma_runtime; + #else + // Overblurring looks as bad as underblurring, so assume average-size + // triads, not worst-case huge triads: + return bloom_sigma_optimistic; + #endif +} \ No newline at end of file diff --git a/crt/shaders/crt-royale/src/blur-functions-old.h b/crt/shaders/crt-royale/src/blur-functions-old.h new file mode 100644 index 0000000..05da1c7 --- /dev/null +++ b/crt/shaders/crt-royale/src/blur-functions-old.h @@ -0,0 +1,1916 @@ +#ifndef BLUR_FUNCTIONS_H +#define BLUR_FUNCTIONS_H + +///////////////////////////////// MIT LICENSE //////////////////////////////// + +// Copyright (C) 2014 TroggleMonkey +// +// Permission is hereby granted, free of charge, to any person obtaining a copy +// of this software and associated documentation files (the "Software"), to +// deal in the Software without restriction, including without limitation the +// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or +// sell copies of the Software, and to permit persons to whom the Software is +// furnished to do so, subject to the following conditions: +// +// The above copyright notice and this permission notice shall be included in +// all copies or substantial portions of the Software. +// +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING +// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS +// IN THE SOFTWARE. + +///////////////////////////////// DESCRIPTION //////////////////////////////// + +// This file provides reusable one-pass and separable (two-pass) blurs. +// Requires: All blurs share these requirements (dxdy requirement is split): +// 1.) All requirements of gamma-management.h must be satisfied! +// 2.) filter_linearN must == "true" in your .cgp preset unless +// you're using tex2DblurNresize at 1x scale. +// 3.) mipmap_inputN must == "true" in your .cgp preset if +// IN.output_size < IN.video_size. +// 4.) IN.output_size == IN.video_size / pow(2, M), where M is some +// positive integer. tex2Dblur*resize can resize arbitrarily +// (and the blur will be done after resizing), but arbitrary +// resizes "fail" with other blurs due to the way they mix +// static weights with bilinear sample exploitation. +// 5.) In general, dxdy should contain the uv pixel spacing: +// dxdy = (IN.video_size/IN.output_size)/IN.texture_size +// 6.) For separable blurs (tex2DblurNresize and tex2DblurNfast), +// zero out the dxdy component in the unblurred dimension: +// dxdy = vec2(dxdy.x, 0.0) or vec2(0.0, dxdy.y) +// Many blurs share these requirements: +// 1.) One-pass blurs require scale_xN == scale_yN or scales > 1.0, +// or they will blur more in the lower-scaled dimension. +// 2.) One-pass shared sample blurs require ddx(), ddy(), and +// tex2Dlod() to be supported by the current Cg profile, and +// the drivers must support high-quality derivatives. +// 3.) One-pass shared sample blurs require: +// tex_uv.w == log2(IN.video_size/IN.output_size).y; +// Non-wrapper blurs share this requirement: +// 1.) sigma is the intended standard deviation of the blur +// Wrapper blurs share this requirement, which is automatically +// met (unless OVERRIDE_BLUR_STD_DEVS is #defined; see below): +// 1.) blurN_std_dev must be global static const float values +// specifying standard deviations for Nx blurs in units +// of destination pixels +// Optional: 1.) The including file (or an earlier included file) may +// optionally #define USE_BINOMIAL_BLUR_STD_DEVS to replace +// default standard deviations with those matching a binomial +// distribution. (See below for details/properties.) +// 2.) The including file (or an earlier included file) may +// optionally #define OVERRIDE_BLUR_STD_DEVS and override: +// static const float blur3_std_dev +// static const float blur4_std_dev +// static const float blur5_std_dev +// static const float blur6_std_dev +// static const float blur7_std_dev +// static const float blur8_std_dev +// static const float blur9_std_dev +// static const float blur10_std_dev +// static const float blur11_std_dev +// static const float blur12_std_dev +// static const float blur17_std_dev +// static const float blur25_std_dev +// static const float blur31_std_dev +// static const float blur43_std_dev +// 3.) The including file (or an earlier included file) may +// optionally #define OVERRIDE_ERROR_BLURRING and override: +// static const float error_blurring +// This tuning value helps mitigate weighting errors from one- +// pass shared-sample blurs sharing bilinear samples between +// fragments. Values closer to 0.0 have "correct" blurriness +// but allow more artifacts, and values closer to 1.0 blur away +// artifacts by sampling closer to halfway between texels. +// UPDATE 6/21/14: The above static constants may now be overridden +// by non-static uniform constants. This permits exposing blur +// standard deviations as runtime GUI shader parameters. However, +// using them keeps weights from being statically computed, and the +// speed hit depends on the blur: On my machine, uniforms kill over +// 53% of the framerate with tex2Dblur12x12shared, but they only +// drop the framerate by about 18% with tex2Dblur11fast. +// Quality and Performance Comparisons: +// For the purposes of the following discussion, "no sRGB" means +// GAMMA_ENCODE_EVERY_FBO is #defined, and "sRGB" means it isn't. +// 1.) tex2DblurNfast is always faster than tex2DblurNresize. +// 2.) tex2DblurNresize functions are the only ones that can arbitrarily resize +// well, because they're the only ones that don't exploit bilinear samples. +// This also means they're the only functions which can be truly gamma- +// correct without linear (or sRGB FBO) input, but only at 1x scale. +// 3.) One-pass shared sample blurs only have a speed advantage without sRGB. +// They also have some inaccuracies due to their shared-[bilinear-]sample +// design, which grow increasingly bothersome for smaller blurs and higher- +// frequency source images (relative to their resolution). I had high +// hopes for them, but their most realistic use case is limited to quickly +// reblurring an already blurred input at full resolution. Otherwise: +// a.) If you're blurring a low-resolution source, you want a better blur. +// b.) If you're blurring a lower mipmap, you want a better blur. +// c.) If you're blurring a high-resolution, high-frequency source, you +// want a better blur. +// 4.) The one-pass blurs without shared samples grow slower for larger blurs, +// but they're competitive with separable blurs at 5x5 and smaller, and +// even tex2Dblur7x7 isn't bad if you're wanting to conserve passes. +// Here are some framerates from a GeForce 8800GTS. The first pass resizes to +// viewport size (4x in this test) and linearizes for sRGB codepaths, and the +// remaining passes perform 6 full blurs. Mipmapped tests are performed at the +// same scale, so they just measure the cost of mipmapping each FBO (only every +// other FBO is mipmapped for separable blurs, to mimic realistic usage). +// Mipmap Neither sRGB+Mipmap sRGB Function +// 76.0 92.3 131.3 193.7 tex2Dblur3fast +// 63.2 74.4 122.4 175.5 tex2Dblur3resize +// 93.7 121.2 159.3 263.2 tex2Dblur3x3 +// 59.7 68.7 115.4 162.1 tex2Dblur3x3resize +// 63.2 74.4 122.4 175.5 tex2Dblur5fast +// 49.3 54.8 100.0 132.7 tex2Dblur5resize +// 59.7 68.7 115.4 162.1 tex2Dblur5x5 +// 64.9 77.2 99.1 137.2 tex2Dblur6x6shared +// 55.8 63.7 110.4 151.8 tex2Dblur7fast +// 39.8 43.9 83.9 105.8 tex2Dblur7resize +// 40.0 44.2 83.2 104.9 tex2Dblur7x7 +// 56.4 65.5 71.9 87.9 tex2Dblur8x8shared +// 49.3 55.1 99.9 132.5 tex2Dblur9fast +// 33.3 36.2 72.4 88.0 tex2Dblur9resize +// 27.8 29.7 61.3 72.2 tex2Dblur9x9 +// 37.2 41.1 52.6 60.2 tex2Dblur10x10shared +// 44.4 49.5 91.3 117.8 tex2Dblur11fast +// 28.8 30.8 63.6 75.4 tex2Dblur11resize +// 33.6 36.5 40.9 45.5 tex2Dblur12x12shared +// TODO: Fill in benchmarks for new untested blurs. +// tex2Dblur17fast +// tex2Dblur25fast +// tex2Dblur31fast +// tex2Dblur43fast +// tex2Dblur3x3resize + + +///////////////////////////// SETTINGS MANAGEMENT //////////////////////////// + +// Set static standard deviations, but allow users to override them with their +// own constants (even non-static uniforms if they're okay with the speed hit): +#ifndef OVERRIDE_BLUR_STD_DEVS + // blurN_std_dev values are specified in terms of dxdy strides. + #ifdef USE_BINOMIAL_BLUR_STD_DEVS + // By request, we can define standard deviations corresponding to a + // binomial distribution with p = 0.5 (related to Pascal's triangle). + // This distribution works such that blurring multiple times should + // have the same result as a single larger blur. These values are + // larger than default for blurs up to 6x and smaller thereafter. + const float blur3_std_dev = 0.84931640625; + const float blur4_std_dev = 0.84931640625; + const float blur5_std_dev = 1.0595703125; + const float blur6_std_dev = 1.06591796875; + const float blur7_std_dev = 1.17041015625; + const float blur8_std_dev = 1.1720703125; + const float blur9_std_dev = 1.2259765625; + const float blur10_std_dev = 1.21982421875; + const float blur11_std_dev = 1.25361328125; + const float blur12_std_dev = 1.2423828125; + const float blur17_std_dev = 1.27783203125; + const float blur25_std_dev = 1.2810546875; + const float blur31_std_dev = 1.28125; + const float blur43_std_dev = 1.28125; + #else + // The defaults are the largest values that keep the largest unused + // blur term on each side <= 1.0/256.0. (We could get away with more + // or be more conservative, but this compromise is pretty reasonable.) + const float blur3_std_dev = 0.62666015625; + const float blur4_std_dev = 0.66171875; + const float blur5_std_dev = 0.9845703125; + const float blur6_std_dev = 1.02626953125; + const float blur7_std_dev = 1.36103515625; + const float blur8_std_dev = 1.4080078125; + const float blur9_std_dev = 1.7533203125; + const float blur10_std_dev = 1.80478515625; + const float blur11_std_dev = 2.15986328125; + const float blur12_std_dev = 2.215234375; + const float blur17_std_dev = 3.45535583496; + const float blur25_std_dev = 5.3409576416; + const float blur31_std_dev = 6.86488037109; + const float blur43_std_dev = 10.1852050781; + #endif // USE_BINOMIAL_BLUR_STD_DEVS +#endif // OVERRIDE_BLUR_STD_DEVS + +#ifndef OVERRIDE_ERROR_BLURRING + // error_blurring should be in [0.0, 1.0]. Higher values reduce ringing + // in shared-sample blurs but increase blurring and feature shifting. + const float error_blurring = 0.5; +#endif + + +////////////////////////////////// INCLUDES ////////////////////////////////// + +// gamma-management.h relies on pass-specific settings to guide its behavior: +// FIRST_PASS, LAST_PASS, GAMMA_ENCODE_EVERY_FBO, etc. See it for details. +//#include "gamma-management.h" +#include "quad-pixel-communication.h" +#include "special-functions.h" + + +/////////////////////////////////// HELPERS ////////////////////////////////// + +vec4 uv2_to_uv4(vec2 tex_uv) +{ + // Make a vec2 uv offset safe for adding to vec4 tex2Dlod coords: + return vec4(tex_uv, 0.0, 0.0); +} + +// Make a length squared helper macro (for usage with static constants): +#define LENGTH_SQ(vec) (dot(vec, vec)) + +float get_fast_gaussian_weight_sum_inv(const float sigma) +{ + // We can use the Gaussian integral to calculate the asymptotic weight for + // the center pixel. Since the unnormalized center pixel weight is 1.0, + // the normalized weight is the same as the weight sum inverse. Given a + // large enough blur (9+), the asymptotic weight sum is close and faster: + // center_weight = 0.5 * + // (erf(0.5/(sigma*sqrt(2.0))) - erf(-0.5/(sigma*sqrt(2.0)))) + // erf(-x) == -erf(x), so we get 0.5 * (2.0 * erf(blah blah)): + // However, we can get even faster results with curve-fitting. These are + // also closer than the asymptotic results, because they were constructed + // from 64 blurs sizes from [3, 131) and 255 equally-spaced sigmas from + // (0, blurN_std_dev), so the results for smaller sigmas are biased toward + // smaller blurs. The max error is 0.0031793913. + // Relative FPS: 134.3 with erf, 135.8 with curve-fitting. + //static const float temp = 0.5/sqrt(2.0); + //return erf(temp/sigma); + return min(exp(exp(0.348348412457428/ + (sigma - 0.0860587260734721))), 0.399334576340352/sigma); +} + + +//////////////////// ARBITRARILY RESIZABLE SEPARABLE BLURS /////////////////// + +vec3 tex2Dblur11resize(const sampler2D texture, const vec2 tex_uv, + const vec2 dxdy, const float sigma) +{ + // Requires: Global requirements must be met (see file description). + // Returns: A 1D 11x Gaussian blurred texture lookup using a 11-tap blur. + // It may be mipmapped depending on settings and dxdy. + // Calculate Gaussian blur kernel weights and a normalization factor for + // distances of 0-4, ignoring constant factors (since we're normalizing). + const float denom_inv = 0.5/(sigma*sigma); + const float w0 = 1.0; + const float w1 = exp(-1.0 * denom_inv); + const float w2 = exp(-4.0 * denom_inv); + const float w3 = exp(-9.0 * denom_inv); + const float w4 = exp(-16.0 * denom_inv); + const float w5 = exp(-25.0 * denom_inv); + const float weight_sum_inv = 1.0 / + (w0 + 2.0 * (w1 + w2 + w3 + w4 + w5)); + // Statically normalize weights, sum weighted samples, and return. Blurs are + // currently optimized for dynamic weights. + vec3 sum = vec3(0.0); + sum += w5 * tex2D_linearize(texture, tex_uv - 5.0 * dxdy).rgb; + sum += w4 * tex2D_linearize(texture, tex_uv - 4.0 * dxdy).rgb; + sum += w3 * tex2D_linearize(texture, tex_uv - 3.0 * dxdy).rgb; + sum += w2 * tex2D_linearize(texture, tex_uv - 2.0 * dxdy).rgb; + sum += w1 * tex2D_linearize(texture, tex_uv - 1.0 * dxdy).rgb; + sum += w0 * tex2D_linearize(texture, tex_uv).rgb; + sum += w1 * tex2D_linearize(texture, tex_uv + 1.0 * dxdy).rgb; + sum += w2 * tex2D_linearize(texture, tex_uv + 2.0 * dxdy).rgb; + sum += w3 * tex2D_linearize(texture, tex_uv + 3.0 * dxdy).rgb; + sum += w4 * tex2D_linearize(texture, tex_uv + 4.0 * dxdy).rgb; + sum += w5 * tex2D_linearize(texture, tex_uv + 5.0 * dxdy).rgb; + return sum * weight_sum_inv; +} + +vec3 tex2Dblur9resize(const sampler2D texture, const vec2 tex_uv, + const vec2 dxdy, const float sigma) +{ + // Requires: Global requirements must be met (see file description). + // Returns: A 1D 9x Gaussian blurred texture lookup using a 9-tap blur. + // It may be mipmapped depending on settings and dxdy. + // First get the texel weights and normalization factor as above. + const float denom_inv = 0.5/(sigma*sigma); + const float w0 = 1.0; + const float w1 = exp(-1.0 * denom_inv); + const float w2 = exp(-4.0 * denom_inv); + const float w3 = exp(-9.0 * denom_inv); + const float w4 = exp(-16.0 * denom_inv); + const float weight_sum_inv = 1.0 / (w0 + 2.0 * (w1 + w2 + w3 + w4)); + // Statically normalize weights, sum weighted samples, and return: + vec3 sum = vec3(0.0); + sum += w4 * tex2D_linearize(texture, tex_uv - 4.0 * dxdy).rgb; + sum += w3 * tex2D_linearize(texture, tex_uv - 3.0 * dxdy).rgb; + sum += w2 * tex2D_linearize(texture, tex_uv - 2.0 * dxdy).rgb; + sum += w1 * tex2D_linearize(texture, tex_uv - 1.0 * dxdy).rgb; + sum += w0 * tex2D_linearize(texture, tex_uv).rgb; + sum += w1 * tex2D_linearize(texture, tex_uv + 1.0 * dxdy).rgb; + sum += w2 * tex2D_linearize(texture, tex_uv + 2.0 * dxdy).rgb; + sum += w3 * tex2D_linearize(texture, tex_uv + 3.0 * dxdy).rgb; + sum += w4 * tex2D_linearize(texture, tex_uv + 4.0 * dxdy).rgb; + return sum * weight_sum_inv; +} + +vec3 tex2Dblur7resize(const sampler2D texture, const vec2 tex_uv, + const vec2 dxdy, const float sigma) +{ + // Requires: Global requirements must be met (see file description). + // Returns: A 1D 7x Gaussian blurred texture lookup using a 7-tap blur. + // It may be mipmapped depending on settings and dxdy. + // First get the texel weights and normalization factor as above. + const float denom_inv = 0.5/(sigma*sigma); + const float w0 = 1.0; + const float w1 = exp(-1.0 * denom_inv); + const float w2 = exp(-4.0 * denom_inv); + const float w3 = exp(-9.0 * denom_inv); + const float weight_sum_inv = 1.0 / (w0 + 2.0 * (w1 + w2 + w3)); + // Statically normalize weights, sum weighted samples, and return: + vec3 sum = vec3(0.0); + sum += w3 * tex2D_linearize(texture, tex_uv - 3.0 * dxdy).rgb; + sum += w2 * tex2D_linearize(texture, tex_uv - 2.0 * dxdy).rgb; + sum += w1 * tex2D_linearize(texture, tex_uv - 1.0 * dxdy).rgb; + sum += w0 * tex2D_linearize(texture, tex_uv).rgb; + sum += w1 * tex2D_linearize(texture, tex_uv + 1.0 * dxdy).rgb; + sum += w2 * tex2D_linearize(texture, tex_uv + 2.0 * dxdy).rgb; + sum += w3 * tex2D_linearize(texture, tex_uv + 3.0 * dxdy).rgb; + return sum * weight_sum_inv; +} + +vec3 tex2Dblur5resize(const sampler2D texture, const vec2 tex_uv, + const vec2 dxdy, const float sigma) +{ + // Requires: Global requirements must be met (see file description). + // Returns: A 1D 5x Gaussian blurred texture lookup using a 5-tap blur. + // It may be mipmapped depending on settings and dxdy. + // First get the texel weights and normalization factor as above. + const float denom_inv = 0.5/(sigma*sigma); + const float w0 = 1.0; + const float w1 = exp(-1.0 * denom_inv); + const float w2 = exp(-4.0 * denom_inv); + const float weight_sum_inv = 1.0 / (w0 + 2.0 * (w1 + w2)); + // Statically normalize weights, sum weighted samples, and return: + vec3 sum = vec3(0.0); + sum += w2 * tex2D_linearize(texture, tex_uv - 2.0 * dxdy).rgb; + sum += w1 * tex2D_linearize(texture, tex_uv - 1.0 * dxdy).rgb; + sum += w0 * tex2D_linearize(texture, tex_uv).rgb; + sum += w1 * tex2D_linearize(texture, tex_uv + 1.0 * dxdy).rgb; + sum += w2 * tex2D_linearize(texture, tex_uv + 2.0 * dxdy).rgb; + return sum * weight_sum_inv; +} + +vec3 tex2Dblur3resize(const sampler2D texture, const vec2 tex_uv, + const vec2 dxdy, const float sigma) +{ + // Requires: Global requirements must be met (see file description). + // Returns: A 1D 3x Gaussian blurred texture lookup using a 3-tap blur. + // It may be mipmapped depending on settings and dxdy. + // First get the texel weights and normalization factor as above. + const float denom_inv = 0.5/(sigma*sigma); + const float w0 = 1.0; + const float w1 = exp(-1.0 * denom_inv); + const float weight_sum_inv = 1.0 / (w0 + 2.0 * w1); + // Statically normalize weights, sum weighted samples, and return: + vec3 sum = vec3(0.0); + sum += w1 * tex2D_linearize(texture, tex_uv - 1.0 * dxdy).rgb; + sum += w0 * tex2D_linearize(texture, tex_uv).rgb; + sum += w1 * tex2D_linearize(texture, tex_uv + 1.0 * dxdy).rgb; + return sum * weight_sum_inv; +} + + +/////////////////////////// FAST SEPARABLE BLURS /////////////////////////// + +vec3 tex2Dblur11fast(const sampler2D texture, const vec2 tex_uv, + const vec2 dxdy, const float sigma) +{ + // Requires: 1.) Global requirements must be met (see file description). + // 2.) filter_linearN must = "true" in your .cgp file. + // 3.) For gamma-correct bilinear filtering, global + // gamma_aware_bilinear == true (from gamma-management.h) + // Returns: A 1D 11x Gaussian blurred texture lookup using 6 linear + // taps. It may be mipmapped depending on settings and dxdy. + // First get the texel weights and normalization factor as above. + const float denom_inv = 0.5/(sigma*sigma); + const float w0 = 1.0; + const float w1 = exp(-1.0 * denom_inv); + const float w2 = exp(-4.0 * denom_inv); + const float w3 = exp(-9.0 * denom_inv); + const float w4 = exp(-16.0 * denom_inv); + const float w5 = exp(-25.0 * denom_inv); + const float weight_sum_inv = 1.0 / + (w0 + 2.0 * (w1 + w2 + w3 + w4 + w5)); + // Calculate combined weights and linear sample ratios between texel pairs. + // The center texel (with weight w0) is used twice, so halve its weight. + const float w01 = w0 * 0.5 + w1; + const float w23 = w2 + w3; + const float w45 = w4 + w5; + const float w01_ratio = w1/w01; + const float w23_ratio = w3/w23; + const float w45_ratio = w5/w45; + // Statically normalize weights, sum weighted samples, and return: + vec3 sum = vec3(0.0); + sum += w45 * tex2D_linearize(texture, tex_uv - (4.0 + w45_ratio) * dxdy).rgb; + sum += w23 * tex2D_linearize(texture, tex_uv - (2.0 + w23_ratio) * dxdy).rgb; + sum += w01 * tex2D_linearize(texture, tex_uv - w01_ratio * dxdy).rgb; + sum += w01 * tex2D_linearize(texture, tex_uv + w01_ratio * dxdy).rgb; + sum += w23 * tex2D_linearize(texture, tex_uv + (2.0 + w23_ratio) * dxdy).rgb; + sum += w45 * tex2D_linearize(texture, tex_uv + (4.0 + w45_ratio) * dxdy).rgb; + return sum * weight_sum_inv; +} + +vec3 tex2Dblur9fast(const sampler2D texture, const vec2 tex_uv, + const vec2 dxdy, const float sigma) +{ + // Requires: Same as tex2Dblur11() + // Returns: A 1D 9x Gaussian blurred texture lookup using 1 nearest + // neighbor and 4 linear taps. It may be mipmapped depending + // on settings and dxdy. + // First get the texel weights and normalization factor as above. + const float denom_inv = 0.5/(sigma*sigma); + const float w0 = 1.0; + const float w1 = exp(-1.0 * denom_inv); + const float w2 = exp(-4.0 * denom_inv); + const float w3 = exp(-9.0 * denom_inv); + const float w4 = exp(-16.0 * denom_inv); + const float weight_sum_inv = 1.0 / (w0 + 2.0 * (w1 + w2 + w3 + w4)); + // Calculate combined weights and linear sample ratios between texel pairs. + const float w12 = w1 + w2; + const float w34 = w3 + w4; + const float w12_ratio = w2/w12; + const float w34_ratio = w4/w34; + // Statically normalize weights, sum weighted samples, and return: + vec3 sum = vec3(0.0); + sum += w34 * tex2D_linearize(texture, tex_uv - (3.0 + w34_ratio) * dxdy).rgb; + sum += w12 * tex2D_linearize(texture, tex_uv - (1.0 + w12_ratio) * dxdy).rgb; + sum += w0 * tex2D_linearize(texture, tex_uv).rgb; + sum += w12 * tex2D_linearize(texture, tex_uv + (1.0 + w12_ratio) * dxdy).rgb; + sum += w34 * tex2D_linearize(texture, tex_uv + (3.0 + w34_ratio) * dxdy).rgb; + return sum * weight_sum_inv; +} + +vec3 tex2Dblur7fast(const sampler2D texture, const vec2 tex_uv, + const vec2 dxdy, const float sigma) +{ + // Requires: Same as tex2Dblur11() + // Returns: A 1D 7x Gaussian blurred texture lookup using 4 linear + // taps. It may be mipmapped depending on settings and dxdy. + // First get the texel weights and normalization factor as above. + const float denom_inv = 0.5/(sigma*sigma); + const float w0 = 1.0; + const float w1 = exp(-1.0 * denom_inv); + const float w2 = exp(-4.0 * denom_inv); + const float w3 = exp(-9.0 * denom_inv); + const float weight_sum_inv = 1.0 / (w0 + 2.0 * (w1 + w2 + w3)); + // Calculate combined weights and linear sample ratios between texel pairs. + // The center texel (with weight w0) is used twice, so halve its weight. + const float w01 = w0 * 0.5 + w1; + const float w23 = w2 + w3; + const float w01_ratio = w1/w01; + const float w23_ratio = w3/w23; + // Statically normalize weights, sum weighted samples, and return: + vec3 sum = vec3(0.0); + sum += w23 * tex2D_linearize(texture, tex_uv - (2.0 + w23_ratio) * dxdy).rgb; + sum += w01 * tex2D_linearize(texture, tex_uv - w01_ratio * dxdy).rgb; + sum += w01 * tex2D_linearize(texture, tex_uv + w01_ratio * dxdy).rgb; + sum += w23 * tex2D_linearize(texture, tex_uv + (2.0 + w23_ratio) * dxdy).rgb; + return sum * weight_sum_inv; +} + +vec3 tex2Dblur5fast(const sampler2D texture, const vec2 tex_uv, + const vec2 dxdy, const float sigma) +{ + // Requires: Same as tex2Dblur11() + // Returns: A 1D 5x Gaussian blurred texture lookup using 1 nearest + // neighbor and 2 linear taps. It may be mipmapped depending + // on settings and dxdy. + // First get the texel weights and normalization factor as above. + const float denom_inv = 0.5/(sigma*sigma); + const float w0 = 1.0; + const float w1 = exp(-1.0 * denom_inv); + const float w2 = exp(-4.0 * denom_inv); + const float weight_sum_inv = 1.0 / (w0 + 2.0 * (w1 + w2)); + // Calculate combined weights and linear sample ratios between texel pairs. + const float w12 = w1 + w2; + const float w12_ratio = w2/w12; + // Statically normalize weights, sum weighted samples, and return: + vec3 sum = vec3(0.0); + sum += w12 * tex2D_linearize(texture, tex_uv - (1.0 + w12_ratio) * dxdy).rgb; + sum += w0 * tex2D_linearize(texture, tex_uv).rgb; + sum += w12 * tex2D_linearize(texture, tex_uv + (1.0 + w12_ratio) * dxdy).rgb; + return sum * weight_sum_inv; +} + +vec3 tex2Dblur3fast(const sampler2D texture, const vec2 tex_uv, + const vec2 dxdy, const float sigma) +{ + // Requires: Same as tex2Dblur11() + // Returns: A 1D 3x Gaussian blurred texture lookup using 2 linear + // taps. It may be mipmapped depending on settings and dxdy. + // First get the texel weights and normalization factor as above. + const float denom_inv = 0.5/(sigma*sigma); + const float w0 = 1.0; + const float w1 = exp(-1.0 * denom_inv); + const float weight_sum_inv = 1.0 / (w0 + 2.0 * w1); + // Calculate combined weights and linear sample ratios between texel pairs. + // The center texel (with weight w0) is used twice, so halve its weight. + const float w01 = w0 * 0.5 + w1; + const float w01_ratio = w1/w01; + // Weights for all samples are the same, so just average them: + return 0.5 * ( + tex2D_linearize(texture, tex_uv - w01_ratio * dxdy).rgb + + tex2D_linearize(texture, tex_uv + w01_ratio * dxdy).rgb); +} + + +//////////////////////////// HUGE SEPARABLE BLURS //////////////////////////// + +// Huge separable blurs come only in "fast" versions. +vec3 tex2Dblur43fast(const sampler2D texture, const vec2 tex_uv, + const vec2 dxdy, const float sigma) +{ + // Requires: Same as tex2Dblur11() + // Returns: A 1D 43x Gaussian blurred texture lookup using 22 linear + // taps. It may be mipmapped depending on settings and dxdy. + // First get the texel weights and normalization factor as above. + const float denom_inv = 0.5/(sigma*sigma); + const float w0 = 1.0; + const float w1 = exp(-1.0 * denom_inv); + const float w2 = exp(-4.0 * denom_inv); + const float w3 = exp(-9.0 * denom_inv); + const float w4 = exp(-16.0 * denom_inv); + const float w5 = exp(-25.0 * denom_inv); + const float w6 = exp(-36.0 * denom_inv); + const float w7 = exp(-49.0 * denom_inv); + const float w8 = exp(-64.0 * denom_inv); + const float w9 = exp(-81.0 * denom_inv); + const float w10 = exp(-100.0 * denom_inv); + const float w11 = exp(-121.0 * denom_inv); + const float w12 = exp(-144.0 * denom_inv); + const float w13 = exp(-169.0 * denom_inv); + const float w14 = exp(-196.0 * denom_inv); + const float w15 = exp(-225.0 * denom_inv); + const float w16 = exp(-256.0 * denom_inv); + const float w17 = exp(-289.0 * denom_inv); + const float w18 = exp(-324.0 * denom_inv); + const float w19 = exp(-361.0 * denom_inv); + const float w20 = exp(-400.0 * denom_inv); + const float w21 = exp(-441.0 * denom_inv); + //const float weight_sum_inv = 1.0 / + // (w0 + 2.0 * (w1 + w2 + w3 + w4 + w5 + w6 + w7 + w8 + w9 + w10 + w11 + + // w12 + w13 + w14 + w15 + w16 + w17 + w18 + w19 + w20 + w21)); + const float weight_sum_inv = get_fast_gaussian_weight_sum_inv(sigma); + // Calculate combined weights and linear sample ratios between texel pairs. + // The center texel (with weight w0) is used twice, so halve its weight. + const float w0_1 = w0 * 0.5 + w1; + const float w2_3 = w2 + w3; + const float w4_5 = w4 + w5; + const float w6_7 = w6 + w7; + const float w8_9 = w8 + w9; + const float w10_11 = w10 + w11; + const float w12_13 = w12 + w13; + const float w14_15 = w14 + w15; + const float w16_17 = w16 + w17; + const float w18_19 = w18 + w19; + const float w20_21 = w20 + w21; + const float w0_1_ratio = w1/w0_1; + const float w2_3_ratio = w3/w2_3; + const float w4_5_ratio = w5/w4_5; + const float w6_7_ratio = w7/w6_7; + const float w8_9_ratio = w9/w8_9; + const float w10_11_ratio = w11/w10_11; + const float w12_13_ratio = w13/w12_13; + const float w14_15_ratio = w15/w14_15; + const float w16_17_ratio = w17/w16_17; + const float w18_19_ratio = w19/w18_19; + const float w20_21_ratio = w21/w20_21; + // Statically normalize weights, sum weighted samples, and return: + vec3 sum = vec3(0.0); + sum += w20_21 * tex2D_linearize(texture, tex_uv - (20.0 + w20_21_ratio) * dxdy).rgb; + sum += w18_19 * tex2D_linearize(texture, tex_uv - (18.0 + w18_19_ratio) * dxdy).rgb; + sum += w16_17 * tex2D_linearize(texture, tex_uv - (16.0 + w16_17_ratio) * dxdy).rgb; + sum += w14_15 * tex2D_linearize(texture, tex_uv - (14.0 + w14_15_ratio) * dxdy).rgb; + sum += w12_13 * tex2D_linearize(texture, tex_uv - (12.0 + w12_13_ratio) * dxdy).rgb; + sum += w10_11 * tex2D_linearize(texture, tex_uv - (10.0 + w10_11_ratio) * dxdy).rgb; + sum += w8_9 * tex2D_linearize(texture, tex_uv - (8.0 + w8_9_ratio) * dxdy).rgb; + sum += w6_7 * tex2D_linearize(texture, tex_uv - (6.0 + w6_7_ratio) * dxdy).rgb; + sum += w4_5 * tex2D_linearize(texture, tex_uv - (4.0 + w4_5_ratio) * dxdy).rgb; + sum += w2_3 * tex2D_linearize(texture, tex_uv - (2.0 + w2_3_ratio) * dxdy).rgb; + sum += w0_1 * tex2D_linearize(texture, tex_uv - w0_1_ratio * dxdy).rgb; + sum += w0_1 * tex2D_linearize(texture, tex_uv + w0_1_ratio * dxdy).rgb; + sum += w2_3 * tex2D_linearize(texture, tex_uv + (2.0 + w2_3_ratio) * dxdy).rgb; + sum += w4_5 * tex2D_linearize(texture, tex_uv + (4.0 + w4_5_ratio) * dxdy).rgb; + sum += w6_7 * tex2D_linearize(texture, tex_uv + (6.0 + w6_7_ratio) * dxdy).rgb; + sum += w8_9 * tex2D_linearize(texture, tex_uv + (8.0 + w8_9_ratio) * dxdy).rgb; + sum += w10_11 * tex2D_linearize(texture, tex_uv + (10.0 + w10_11_ratio) * dxdy).rgb; + sum += w12_13 * tex2D_linearize(texture, tex_uv + (12.0 + w12_13_ratio) * dxdy).rgb; + sum += w14_15 * tex2D_linearize(texture, tex_uv + (14.0 + w14_15_ratio) * dxdy).rgb; + sum += w16_17 * tex2D_linearize(texture, tex_uv + (16.0 + w16_17_ratio) * dxdy).rgb; + sum += w18_19 * tex2D_linearize(texture, tex_uv + (18.0 + w18_19_ratio) * dxdy).rgb; + sum += w20_21 * tex2D_linearize(texture, tex_uv + (20.0 + w20_21_ratio) * dxdy).rgb; + return sum * weight_sum_inv; +} + +vec3 tex2Dblur31fast(const sampler2D texture, const vec2 tex_uv, + const vec2 dxdy, const float sigma) +{ + // Requires: Same as tex2Dblur11() + // Returns: A 1D 31x Gaussian blurred texture lookup using 16 linear + // taps. It may be mipmapped depending on settings and dxdy. + // First get the texel weights and normalization factor as above. + const float denom_inv = 0.5/(sigma*sigma); + const float w0 = 1.0; + const float w1 = exp(-1.0 * denom_inv); + const float w2 = exp(-4.0 * denom_inv); + const float w3 = exp(-9.0 * denom_inv); + const float w4 = exp(-16.0 * denom_inv); + const float w5 = exp(-25.0 * denom_inv); + const float w6 = exp(-36.0 * denom_inv); + const float w7 = exp(-49.0 * denom_inv); + const float w8 = exp(-64.0 * denom_inv); + const float w9 = exp(-81.0 * denom_inv); + const float w10 = exp(-100.0 * denom_inv); + const float w11 = exp(-121.0 * denom_inv); + const float w12 = exp(-144.0 * denom_inv); + const float w13 = exp(-169.0 * denom_inv); + const float w14 = exp(-196.0 * denom_inv); + const float w15 = exp(-225.0 * denom_inv); + //const float weight_sum_inv = 1.0 / + // (w0 + 2.0 * (w1 + w2 + w3 + w4 + w5 + w6 + w7 + w8 + + // w9 + w10 + w11 + w12 + w13 + w14 + w15)); + const float weight_sum_inv = get_fast_gaussian_weight_sum_inv(sigma); + // Calculate combined weights and linear sample ratios between texel pairs. + // The center texel (with weight w0) is used twice, so halve its weight. + const float w0_1 = w0 * 0.5 + w1; + const float w2_3 = w2 + w3; + const float w4_5 = w4 + w5; + const float w6_7 = w6 + w7; + const float w8_9 = w8 + w9; + const float w10_11 = w10 + w11; + const float w12_13 = w12 + w13; + const float w14_15 = w14 + w15; + const float w0_1_ratio = w1/w0_1; + const float w2_3_ratio = w3/w2_3; + const float w4_5_ratio = w5/w4_5; + const float w6_7_ratio = w7/w6_7; + const float w8_9_ratio = w9/w8_9; + const float w10_11_ratio = w11/w10_11; + const float w12_13_ratio = w13/w12_13; + const float w14_15_ratio = w15/w14_15; + // Statically normalize weights, sum weighted samples, and return: + vec3 sum = vec3(0.0); + sum += w14_15 * tex2D_linearize(texture, tex_uv - (14.0 + w14_15_ratio) * dxdy).rgb; + sum += w12_13 * tex2D_linearize(texture, tex_uv - (12.0 + w12_13_ratio) * dxdy).rgb; + sum += w10_11 * tex2D_linearize(texture, tex_uv - (10.0 + w10_11_ratio) * dxdy).rgb; + sum += w8_9 * tex2D_linearize(texture, tex_uv - (8.0 + w8_9_ratio) * dxdy).rgb; + sum += w6_7 * tex2D_linearize(texture, tex_uv - (6.0 + w6_7_ratio) * dxdy).rgb; + sum += w4_5 * tex2D_linearize(texture, tex_uv - (4.0 + w4_5_ratio) * dxdy).rgb; + sum += w2_3 * tex2D_linearize(texture, tex_uv - (2.0 + w2_3_ratio) * dxdy).rgb; + sum += w0_1 * tex2D_linearize(texture, tex_uv - w0_1_ratio * dxdy).rgb; + sum += w0_1 * tex2D_linearize(texture, tex_uv + w0_1_ratio * dxdy).rgb; + sum += w2_3 * tex2D_linearize(texture, tex_uv + (2.0 + w2_3_ratio) * dxdy).rgb; + sum += w4_5 * tex2D_linearize(texture, tex_uv + (4.0 + w4_5_ratio) * dxdy).rgb; + sum += w6_7 * tex2D_linearize(texture, tex_uv + (6.0 + w6_7_ratio) * dxdy).rgb; + sum += w8_9 * tex2D_linearize(texture, tex_uv + (8.0 + w8_9_ratio) * dxdy).rgb; + sum += w10_11 * tex2D_linearize(texture, tex_uv + (10.0 + w10_11_ratio) * dxdy).rgb; + sum += w12_13 * tex2D_linearize(texture, tex_uv + (12.0 + w12_13_ratio) * dxdy).rgb; + sum += w14_15 * tex2D_linearize(texture, tex_uv + (14.0 + w14_15_ratio) * dxdy).rgb; + return sum * weight_sum_inv; +} + +vec3 tex2Dblur25fast(const sampler2D texture, const vec2 tex_uv, + const vec2 dxdy, const float sigma) +{ + // Requires: Same as tex2Dblur11() + // Returns: A 1D 25x Gaussian blurred texture lookup using 1 nearest + // neighbor and 12 linear taps. It may be mipmapped depending + // on settings and dxdy. + // First get the texel weights and normalization factor as above. + const float denom_inv = 0.5/(sigma*sigma); + const float w0 = 1.0; + const float w1 = exp(-1.0 * denom_inv); + const float w2 = exp(-4.0 * denom_inv); + const float w3 = exp(-9.0 * denom_inv); + const float w4 = exp(-16.0 * denom_inv); + const float w5 = exp(-25.0 * denom_inv); + const float w6 = exp(-36.0 * denom_inv); + const float w7 = exp(-49.0 * denom_inv); + const float w8 = exp(-64.0 * denom_inv); + const float w9 = exp(-81.0 * denom_inv); + const float w10 = exp(-100.0 * denom_inv); + const float w11 = exp(-121.0 * denom_inv); + const float w12 = exp(-144.0 * denom_inv); + //const float weight_sum_inv = 1.0 / (w0 + 2.0 * ( + // w1 + w2 + w3 + w4 + w5 + w6 + w7 + w8 + w9 + w10 + w11 + w12)); + const float weight_sum_inv = get_fast_gaussian_weight_sum_inv(sigma); + // Calculate combined weights and linear sample ratios between texel pairs. + const float w1_2 = w1 + w2; + const float w3_4 = w3 + w4; + const float w5_6 = w5 + w6; + const float w7_8 = w7 + w8; + const float w9_10 = w9 + w10; + const float w11_12 = w11 + w12; + const float w1_2_ratio = w2/w1_2; + const float w3_4_ratio = w4/w3_4; + const float w5_6_ratio = w6/w5_6; + const float w7_8_ratio = w8/w7_8; + const float w9_10_ratio = w10/w9_10; + const float w11_12_ratio = w12/w11_12; + // Statically normalize weights, sum weighted samples, and return: + vec3 sum = vec3(0.0); + sum += w11_12 * tex2D_linearize(texture, tex_uv - (11.0 + w11_12_ratio) * dxdy).rgb; + sum += w9_10 * tex2D_linearize(texture, tex_uv - (9.0 + w9_10_ratio) * dxdy).rgb; + sum += w7_8 * tex2D_linearize(texture, tex_uv - (7.0 + w7_8_ratio) * dxdy).rgb; + sum += w5_6 * tex2D_linearize(texture, tex_uv - (5.0 + w5_6_ratio) * dxdy).rgb; + sum += w3_4 * tex2D_linearize(texture, tex_uv - (3.0 + w3_4_ratio) * dxdy).rgb; + sum += w1_2 * tex2D_linearize(texture, tex_uv - (1.0 + w1_2_ratio) * dxdy).rgb; + sum += w0 * tex2D_linearize(texture, tex_uv).rgb; + sum += w1_2 * tex2D_linearize(texture, tex_uv + (1.0 + w1_2_ratio) * dxdy).rgb; + sum += w3_4 * tex2D_linearize(texture, tex_uv + (3.0 + w3_4_ratio) * dxdy).rgb; + sum += w5_6 * tex2D_linearize(texture, tex_uv + (5.0 + w5_6_ratio) * dxdy).rgb; + sum += w7_8 * tex2D_linearize(texture, tex_uv + (7.0 + w7_8_ratio) * dxdy).rgb; + sum += w9_10 * tex2D_linearize(texture, tex_uv + (9.0 + w9_10_ratio) * dxdy).rgb; + sum += w11_12 * tex2D_linearize(texture, tex_uv + (11.0 + w11_12_ratio) * dxdy).rgb; + return sum * weight_sum_inv; +} + +vec3 tex2Dblur17fast(const sampler2D texture, const vec2 tex_uv, + const vec2 dxdy, const float sigma) +{ + // Requires: Same as tex2Dblur11() + // Returns: A 1D 17x Gaussian blurred texture lookup using 1 nearest + // neighbor and 8 linear taps. It may be mipmapped depending + // on settings and dxdy. + // First get the texel weights and normalization factor as above. + const float denom_inv = 0.5/(sigma*sigma); + const float w0 = 1.0; + const float w1 = exp(-1.0 * denom_inv); + const float w2 = exp(-4.0 * denom_inv); + const float w3 = exp(-9.0 * denom_inv); + const float w4 = exp(-16.0 * denom_inv); + const float w5 = exp(-25.0 * denom_inv); + const float w6 = exp(-36.0 * denom_inv); + const float w7 = exp(-49.0 * denom_inv); + const float w8 = exp(-64.0 * denom_inv); + //const float weight_sum_inv = 1.0 / (w0 + 2.0 * ( + // w1 + w2 + w3 + w4 + w5 + w6 + w7 + w8)); + const float weight_sum_inv = get_fast_gaussian_weight_sum_inv(sigma); + // Calculate combined weights and linear sample ratios between texel pairs. + const float w1_2 = w1 + w2; + const float w3_4 = w3 + w4; + const float w5_6 = w5 + w6; + const float w7_8 = w7 + w8; + const float w1_2_ratio = w2/w1_2; + const float w3_4_ratio = w4/w3_4; + const float w5_6_ratio = w6/w5_6; + const float w7_8_ratio = w8/w7_8; + // Statically normalize weights, sum weighted samples, and return: + vec3 sum = vec3(0.0); + sum += w7_8 * tex2D_linearize(texture, tex_uv - (7.0 + w7_8_ratio) * dxdy).rgb; + sum += w5_6 * tex2D_linearize(texture, tex_uv - (5.0 + w5_6_ratio) * dxdy).rgb; + sum += w3_4 * tex2D_linearize(texture, tex_uv - (3.0 + w3_4_ratio) * dxdy).rgb; + sum += w1_2 * tex2D_linearize(texture, tex_uv - (1.0 + w1_2_ratio) * dxdy).rgb; + sum += w0 * tex2D_linearize(texture, tex_uv).rgb; + sum += w1_2 * tex2D_linearize(texture, tex_uv + (1.0 + w1_2_ratio) * dxdy).rgb; + sum += w3_4 * tex2D_linearize(texture, tex_uv + (3.0 + w3_4_ratio) * dxdy).rgb; + sum += w5_6 * tex2D_linearize(texture, tex_uv + (5.0 + w5_6_ratio) * dxdy).rgb; + sum += w7_8 * tex2D_linearize(texture, tex_uv + (7.0 + w7_8_ratio) * dxdy).rgb; + return sum * weight_sum_inv; +} + + +//////////////////// ARBITRARILY RESIZABLE ONE-PASS BLURS //////////////////// + +vec3 tex2Dblur3x3resize(const sampler2D texture, const vec2 tex_uv, + const vec2 dxdy, const float sigma) +{ + // Requires: Global requirements must be met (see file description). + // Returns: A 3x3 Gaussian blurred mipmapped texture lookup of the + // resized input. + // Description: + // This is the only arbitrarily resizable one-pass blur; tex2Dblur5x5resize + // would perform like tex2Dblur9x9, MUCH slower than tex2Dblur5resize. + const float denom_inv = 0.5/(sigma*sigma); + // Load each sample. We need all 3x3 samples. Quad-pixel communication + // won't help either: This should perform like tex2Dblur5x5, but sharing a + // 4x4 sample field would perform more like tex2Dblur8x8shared (worse). + const vec2 sample4_uv = tex_uv; + const vec2 dx = vec2(dxdy.x, 0.0); + const vec2 dy = vec2(0.0, dxdy.y); + const vec2 sample1_uv = sample4_uv - dy; + const vec2 sample7_uv = sample4_uv + dy; + const vec3 sample0 = tex2D_linearize(texture, sample1_uv - dx).rgb; + const vec3 sample1 = tex2D_linearize(texture, sample1_uv).rgb; + const vec3 sample2 = tex2D_linearize(texture, sample1_uv + dx).rgb; + const vec3 sample3 = tex2D_linearize(texture, sample4_uv - dx).rgb; + const vec3 sample4 = tex2D_linearize(texture, sample4_uv).rgb; + const vec3 sample5 = tex2D_linearize(texture, sample4_uv + dx).rgb; + const vec3 sample6 = tex2D_linearize(texture, sample7_uv - dx).rgb; + const vec3 sample7 = tex2D_linearize(texture, sample7_uv).rgb; + const vec3 sample8 = tex2D_linearize(texture, sample7_uv + dx).rgb; + // Statically compute Gaussian sample weights: + const float w4 = 1.0; + const float w1_3_5_7 = exp(-LENGTH_SQ(vec2(1.0, 0.0)) * denom_inv); + const float w0_2_6_8 = exp(-LENGTH_SQ(vec2(1.0, 1.0)) * denom_inv); + const float weight_sum_inv = 1.0/(w4 + 4.0 * (w1_3_5_7 + w0_2_6_8)); + // Weight and sum the samples: + const vec3 sum = w4 * sample4 + + w1_3_5_7 * (sample1 + sample3 + sample5 + sample7) + + w0_2_6_8 * (sample0 + sample2 + sample6 + sample8); + return sum * weight_sum_inv; +} + + +//////////////////////////// FASTER ONE-PASS BLURS /////////////////////////// + +vec3 tex2Dblur9x9(const sampler2D texture, const vec2 tex_uv, + const vec2 dxdy, const float sigma) +{ + // Perform a 1-pass 9x9 blur with 5x5 bilinear samples. + // Requires: Same as tex2Dblur9() + // Returns: A 9x9 Gaussian blurred mipmapped texture lookup composed of + // 5x5 carefully selected bilinear samples. + // Description: + // Perform a 1-pass 9x9 blur with 5x5 bilinear samples. Adjust the + // bilinear sample location to reflect the true Gaussian weights for each + // underlying texel. The following diagram illustrates the relative + // locations of bilinear samples. Each sample with the same number has the + // same weight (notice the symmetry). The letters a, b, c, d distinguish + // quadrants, and the letters U, D, L, R, C (up, down, left, right, center) + // distinguish 1D directions along the line containing the pixel center: + // 6a 5a 2U 5b 6b + // 4a 3a 1U 3b 4b + // 2L 1L 0C 1R 2R + // 4c 3c 1D 3d 4d + // 6c 5c 2D 5d 6d + // The following diagram illustrates the underlying equally spaced texels, + // named after the sample that accesses them and subnamed by their location + // within their 2x2, 2x1, 1x2, or 1x1 texel block: + // 6a4 6a3 5a4 5a3 2U2 5b3 5b4 6b3 6b4 + // 6a2 6a1 5a2 5a1 2U1 5b1 5b2 6b1 6b2 + // 4a4 4a3 3a4 3a3 1U2 3b3 3b4 4b3 4b4 + // 4a2 4a1 3a2 3a1 1U1 3b1 3b2 4b1 4b2 + // 2L2 2L1 1L2 1L1 0C1 1R1 1R2 2R1 2R2 + // 4c2 4c1 3c2 3c1 1D1 3d1 3d2 4d1 4d2 + // 4c4 4c3 3c4 3c3 1D2 3d3 3d4 4d3 4d4 + // 6c2 6c1 5c2 5c1 2D1 5d1 5d2 6d1 6d2 + // 6c4 6c3 5c4 5c3 2D2 5d3 5d4 6d3 6d4 + // Note there is only one C texel and only two texels for each U, D, L, or + // R sample. The center sample is effectively a nearest neighbor sample, + // and the U/D/L/R samples use 1D linear filtering. All other texels are + // read with bilinear samples somewhere within their 2x2 texel blocks. + + // COMPUTE TEXTURE COORDS: + // Statically compute sampling offsets within each 2x2 texel block, based + // on 1D sampling ratios between texels [1, 2] and [3, 4] texels away from + // the center, and reuse them independently for both dimensions. Compute + // these offsets based on the relative 1D Gaussian weights of the texels + // in question. (w1off means "Gaussian weight for the texel 1.0 texels + // away from the pixel center," etc.). + const float denom_inv = 0.5/(sigma*sigma); + const float w1off = exp(-1.0 * denom_inv); + const float w2off = exp(-4.0 * denom_inv); + const float w3off = exp(-9.0 * denom_inv); + const float w4off = exp(-16.0 * denom_inv); + const float texel1to2ratio = w2off/(w1off + w2off); + const float texel3to4ratio = w4off/(w3off + w4off); + // Statically compute texel offsets from the fragment center to each + // bilinear sample in the bottom-right quadrant, including x-axis-aligned: + const vec2 sample1R_texel_offset = vec2(1.0, 0.0) + vec2(texel1to2ratio, 0.0); + const vec2 sample2R_texel_offset = vec2(3.0, 0.0) + vec2(texel3to4ratio, 0.0); + const vec2 sample3d_texel_offset = vec2(1.0, 1.0) + vec2(texel1to2ratio, texel1to2ratio); + const vec2 sample4d_texel_offset = vec2(3.0, 1.0) + vec2(texel3to4ratio, texel1to2ratio); + const vec2 sample5d_texel_offset = vec2(1.0, 3.0) + vec2(texel1to2ratio, texel3to4ratio); + const vec2 sample6d_texel_offset = vec2(3.0, 3.0) + vec2(texel3to4ratio, texel3to4ratio); + + // CALCULATE KERNEL WEIGHTS FOR ALL SAMPLES: + // Statically compute Gaussian texel weights for the bottom-right quadrant. + // Read underscores as "and." + const float w1R1 = w1off; + const float w1R2 = w2off; + const float w2R1 = w3off; + const float w2R2 = w4off; + const float w3d1 = exp(-LENGTH_SQ(vec2(1.0, 1.0)) * denom_inv); + const float w3d2_3d3 = exp(-LENGTH_SQ(vec2(2.0, 1.0)) * denom_inv); + const float w3d4 = exp(-LENGTH_SQ(vec2(2.0, 2.0)) * denom_inv); + const float w4d1_5d1 = exp(-LENGTH_SQ(vec2(3.0, 1.0)) * denom_inv); + const float w4d2_5d3 = exp(-LENGTH_SQ(vec2(4.0, 1.0)) * denom_inv); + const float w4d3_5d2 = exp(-LENGTH_SQ(vec2(3.0, 2.0)) * denom_inv); + const float w4d4_5d4 = exp(-LENGTH_SQ(vec2(4.0, 2.0)) * denom_inv); + const float w6d1 = exp(-LENGTH_SQ(vec2(3.0, 3.0)) * denom_inv); + const float w6d2_6d3 = exp(-LENGTH_SQ(vec2(4.0, 3.0)) * denom_inv); + const float w6d4 = exp(-LENGTH_SQ(vec2(4.0, 4.0)) * denom_inv); + // Statically add texel weights in each sample to get sample weights: + const float w0 = 1.0; + const float w1 = w1R1 + w1R2; + const float w2 = w2R1 + w2R2; + const float w3 = w3d1 + 2.0 * w3d2_3d3 + w3d4; + const float w4 = w4d1_5d1 + w4d2_5d3 + w4d3_5d2 + w4d4_5d4; + const float w5 = w4; + const float w6 = w6d1 + 2.0 * w6d2_6d3 + w6d4; + // Get the weight sum inverse (normalization factor): + const float weight_sum_inv = + 1.0/(w0 + 4.0 * (w1 + w2 + w3 + w4 + w5 + w6)); + + // LOAD TEXTURE SAMPLES: + // Load all 25 samples (1 nearest, 8 linear, 16 bilinear) using symmetry: + const vec2 mirror_x = vec2(-1.0, 1.0); + const vec2 mirror_y = vec2(1.0, -1.0); + const vec2 mirror_xy = vec2(-1.0, -1.0); + const vec2 dxdy_mirror_x = dxdy * mirror_x; + const vec2 dxdy_mirror_y = dxdy * mirror_y; + const vec2 dxdy_mirror_xy = dxdy * mirror_xy; + // Sampling order doesn't seem to affect performance, so just be clear: + const vec3 sample0C = tex2D_linearize(texture, tex_uv).rgb; + const vec3 sample1R = tex2D_linearize(texture, tex_uv + dxdy * sample1R_texel_offset).rgb; + const vec3 sample1D = tex2D_linearize(texture, tex_uv + dxdy * sample1R_texel_offset.yx).rgb; + const vec3 sample1L = tex2D_linearize(texture, tex_uv - dxdy * sample1R_texel_offset).rgb; + const vec3 sample1U = tex2D_linearize(texture, tex_uv - dxdy * sample1R_texel_offset.yx).rgb; + const vec3 sample2R = tex2D_linearize(texture, tex_uv + dxdy * sample2R_texel_offset).rgb; + const vec3 sample2D = tex2D_linearize(texture, tex_uv + dxdy * sample2R_texel_offset.yx).rgb; + const vec3 sample2L = tex2D_linearize(texture, tex_uv - dxdy * sample2R_texel_offset).rgb; + const vec3 sample2U = tex2D_linearize(texture, tex_uv - dxdy * sample2R_texel_offset.yx).rgb; + const vec3 sample3d = tex2D_linearize(texture, tex_uv + dxdy * sample3d_texel_offset).rgb; + const vec3 sample3c = tex2D_linearize(texture, tex_uv + dxdy_mirror_x * sample3d_texel_offset).rgb; + const vec3 sample3b = tex2D_linearize(texture, tex_uv + dxdy_mirror_y * sample3d_texel_offset).rgb; + const vec3 sample3a = tex2D_linearize(texture, tex_uv + dxdy_mirror_xy * sample3d_texel_offset).rgb; + const vec3 sample4d = tex2D_linearize(texture, tex_uv + dxdy * sample4d_texel_offset).rgb; + const vec3 sample4c = tex2D_linearize(texture, tex_uv + dxdy_mirror_x * sample4d_texel_offset).rgb; + const vec3 sample4b = tex2D_linearize(texture, tex_uv + dxdy_mirror_y * sample4d_texel_offset).rgb; + const vec3 sample4a = tex2D_linearize(texture, tex_uv + dxdy_mirror_xy * sample4d_texel_offset).rgb; + const vec3 sample5d = tex2D_linearize(texture, tex_uv + dxdy * sample5d_texel_offset).rgb; + const vec3 sample5c = tex2D_linearize(texture, tex_uv + dxdy_mirror_x * sample5d_texel_offset).rgb; + const vec3 sample5b = tex2D_linearize(texture, tex_uv + dxdy_mirror_y * sample5d_texel_offset).rgb; + const vec3 sample5a = tex2D_linearize(texture, tex_uv + dxdy_mirror_xy * sample5d_texel_offset).rgb; + const vec3 sample6d = tex2D_linearize(texture, tex_uv + dxdy * sample6d_texel_offset).rgb; + const vec3 sample6c = tex2D_linearize(texture, tex_uv + dxdy_mirror_x * sample6d_texel_offset).rgb; + const vec3 sample6b = tex2D_linearize(texture, tex_uv + dxdy_mirror_y * sample6d_texel_offset).rgb; + const vec3 sample6a = tex2D_linearize(texture, tex_uv + dxdy_mirror_xy * sample6d_texel_offset).rgb; + + // SUM WEIGHTED SAMPLES: + // Statically normalize weights (so total = 1.0), and sum weighted samples. + vec3 sum = w0 * sample0C; + sum += w1 * (sample1R + sample1D + sample1L + sample1U); + sum += w2 * (sample2R + sample2D + sample2L + sample2U); + sum += w3 * (sample3d + sample3c + sample3b + sample3a); + sum += w4 * (sample4d + sample4c + sample4b + sample4a); + sum += w5 * (sample5d + sample5c + sample5b + sample5a); + sum += w6 * (sample6d + sample6c + sample6b + sample6a); + return sum * weight_sum_inv; +} + +vec3 tex2Dblur7x7(const sampler2D texture, const vec2 tex_uv, + const vec2 dxdy, const float sigma) +{ + // Perform a 1-pass 7x7 blur with 5x5 bilinear samples. + // Requires: Same as tex2Dblur9() + // Returns: A 7x7 Gaussian blurred mipmapped texture lookup composed of + // 4x4 carefully selected bilinear samples. + // Description: + // First see the descriptions for tex2Dblur9x9() and tex2Dblur7(). This + // blur mixes concepts from both. The sample layout is as follows: + // 4a 3a 3b 4b + // 2a 1a 1b 2b + // 2c 1c 1d 2d + // 4c 3c 3d 4d + // The texel layout is as follows. Note that samples 3a/3b, 1a/1b, 1c/1d, + // and 3c/3d share a vertical column of texels, and samples 2a/2c, 1a/1c, + // 1b/1d, and 2b/2d share a horizontal row of texels (all sample1's share + // the center texel): + // 4a4 4a3 3a4 3ab3 3b4 4b3 4b4 + // 4a2 4a1 3a2 3ab1 3b2 4b1 4b2 + // 2a4 2a3 1a4 1ab3 1b4 2b3 2b4 + // 2ac2 2ac1 1ac2 1* 1bd2 2bd1 2bd2 + // 2c4 2c3 1c4 1cd3 1d4 2d3 2d4 + // 4c2 4c1 3c2 3cd1 3d2 4d1 4d2 + // 4c4 4c3 3c4 3cd3 3d4 4d3 4d4 + + // COMPUTE TEXTURE COORDS: + // Statically compute bilinear sampling offsets (details in tex2Dblur9x9). + const float denom_inv = 0.5/(sigma*sigma); + const float w0off = 1.0; + const float w1off = exp(-1.0 * denom_inv); + const float w2off = exp(-4.0 * denom_inv); + const float w3off = exp(-9.0 * denom_inv); + const float texel0to1ratio = w1off/(w0off * 0.5 + w1off); + const float texel2to3ratio = w3off/(w2off + w3off); + // Statically compute texel offsets from the fragment center to each + // bilinear sample in the bottom-right quadrant, including axis-aligned: + const vec2 sample1d_texel_offset = vec2(texel0to1ratio, texel0to1ratio); + const vec2 sample2d_texel_offset = vec2(2.0, 0.0) + vec2(texel2to3ratio, texel0to1ratio); + const vec2 sample3d_texel_offset = vec2(0.0, 2.0) + vec2(texel0to1ratio, texel2to3ratio); + const vec2 sample4d_texel_offset = vec2(2.0, 2.0) + vec2(texel2to3ratio, texel2to3ratio); + + // CALCULATE KERNEL WEIGHTS FOR ALL SAMPLES: + // Statically compute Gaussian texel weights for the bottom-right quadrant. + // Read underscores as "and." + const float w1abcd = 1.0; + const float w1bd2_1cd3 = exp(-LENGTH_SQ(vec2(1.0, 0.0)) * denom_inv); + const float w2bd1_3cd1 = exp(-LENGTH_SQ(vec2(2.0, 0.0)) * denom_inv); + const float w2bd2_3cd2 = exp(-LENGTH_SQ(vec2(3.0, 0.0)) * denom_inv); + const float w1d4 = exp(-LENGTH_SQ(vec2(1.0, 1.0)) * denom_inv); + const float w2d3_3d2 = exp(-LENGTH_SQ(vec2(2.0, 1.0)) * denom_inv); + const float w2d4_3d4 = exp(-LENGTH_SQ(vec2(3.0, 1.0)) * denom_inv); + const float w4d1 = exp(-LENGTH_SQ(vec2(2.0, 2.0)) * denom_inv); + const float w4d2_4d3 = exp(-LENGTH_SQ(vec2(3.0, 2.0)) * denom_inv); + const float w4d4 = exp(-LENGTH_SQ(vec2(3.0, 3.0)) * denom_inv); + // Statically add texel weights in each sample to get sample weights. + // Split weights for shared texels between samples sharing them: + const float w1 = w1abcd * 0.25 + w1bd2_1cd3 + w1d4; + const float w2_3 = (w2bd1_3cd1 + w2bd2_3cd2) * 0.5 + w2d3_3d2 + w2d4_3d4; + const float w4 = w4d1 + 2.0 * w4d2_4d3 + w4d4; + // Get the weight sum inverse (normalization factor): + const float weight_sum_inv = + 1.0/(4.0 * (w1 + 2.0 * w2_3 + w4)); + + // LOAD TEXTURE SAMPLES: + // Load all 16 samples using symmetry: + const vec2 mirror_x = vec2(-1.0, 1.0); + const vec2 mirror_y = vec2(1.0, -1.0); + const vec2 mirror_xy = vec2(-1.0, -1.0); + const vec2 dxdy_mirror_x = dxdy * mirror_x; + const vec2 dxdy_mirror_y = dxdy * mirror_y; + const vec2 dxdy_mirror_xy = dxdy * mirror_xy; + const vec3 sample1a = tex2D_linearize(texture, tex_uv + dxdy_mirror_xy * sample1d_texel_offset).rgb; + const vec3 sample2a = tex2D_linearize(texture, tex_uv + dxdy_mirror_xy * sample2d_texel_offset).rgb; + const vec3 sample3a = tex2D_linearize(texture, tex_uv + dxdy_mirror_xy * sample3d_texel_offset).rgb; + const vec3 sample4a = tex2D_linearize(texture, tex_uv + dxdy_mirror_xy * sample4d_texel_offset).rgb; + const vec3 sample1b = tex2D_linearize(texture, tex_uv + dxdy_mirror_y * sample1d_texel_offset).rgb; + const vec3 sample2b = tex2D_linearize(texture, tex_uv + dxdy_mirror_y * sample2d_texel_offset).rgb; + const vec3 sample3b = tex2D_linearize(texture, tex_uv + dxdy_mirror_y * sample3d_texel_offset).rgb; + const vec3 sample4b = tex2D_linearize(texture, tex_uv + dxdy_mirror_y * sample4d_texel_offset).rgb; + const vec3 sample1c = tex2D_linearize(texture, tex_uv + dxdy_mirror_x * sample1d_texel_offset).rgb; + const vec3 sample2c = tex2D_linearize(texture, tex_uv + dxdy_mirror_x * sample2d_texel_offset).rgb; + const vec3 sample3c = tex2D_linearize(texture, tex_uv + dxdy_mirror_x * sample3d_texel_offset).rgb; + const vec3 sample4c = tex2D_linearize(texture, tex_uv + dxdy_mirror_x * sample4d_texel_offset).rgb; + const vec3 sample1d = tex2D_linearize(texture, tex_uv + dxdy * sample1d_texel_offset).rgb; + const vec3 sample2d = tex2D_linearize(texture, tex_uv + dxdy * sample2d_texel_offset).rgb; + const vec3 sample3d = tex2D_linearize(texture, tex_uv + dxdy * sample3d_texel_offset).rgb; + const vec3 sample4d = tex2D_linearize(texture, tex_uv + dxdy * sample4d_texel_offset).rgb; + + // SUM WEIGHTED SAMPLES: + // Statically normalize weights (so total = 1.0), and sum weighted samples. + vec3 sum = vec3(0.0); + sum += w1 * (sample1a + sample1b + sample1c + sample1d); + sum += w2_3 * (sample2a + sample2b + sample2c + sample2d); + sum += w2_3 * (sample3a + sample3b + sample3c + sample3d); + sum += w4 * (sample4a + sample4b + sample4c + sample4d); + return sum * weight_sum_inv; +} + +vec3 tex2Dblur5x5(const sampler2D texture, const vec2 tex_uv, + const vec2 dxdy, const float sigma) +{ + // Perform a 1-pass 5x5 blur with 3x3 bilinear samples. + // Requires: Same as tex2Dblur9() + // Returns: A 5x5 Gaussian blurred mipmapped texture lookup composed of + // 3x3 carefully selected bilinear samples. + // Description: + // First see the description for tex2Dblur9x9(). This blur uses the same + // concept and sample/texel locations except on a smaller scale. Samples: + // 2a 1U 2b + // 1L 0C 1R + // 2c 1D 2d + // Texels: + // 2a4 2a3 1U2 2b3 2b4 + // 2a2 2a1 1U1 2b1 2b2 + // 1L2 1L1 0C1 1R1 1R2 + // 2c2 2c1 1D1 2d1 2d2 + // 2c4 2c3 1D2 2d3 2d4 + + // COMPUTE TEXTURE COORDS: + // Statically compute bilinear sampling offsets (details in tex2Dblur9x9). + const float denom_inv = 0.5/(sigma*sigma); + const float w1off = exp(-1.0 * denom_inv); + const float w2off = exp(-4.0 * denom_inv); + const float texel1to2ratio = w2off/(w1off + w2off); + // Statically compute texel offsets from the fragment center to each + // bilinear sample in the bottom-right quadrant, including x-axis-aligned: + const vec2 sample1R_texel_offset = vec2(1.0, 0.0) + vec2(texel1to2ratio, 0.0); + const vec2 sample2d_texel_offset = vec2(1.0, 1.0) + vec2(texel1to2ratio, texel1to2ratio); + + // CALCULATE KERNEL WEIGHTS FOR ALL SAMPLES: + // Statically compute Gaussian texel weights for the bottom-right quadrant. + // Read underscores as "and." + const float w1R1 = w1off; + const float w1R2 = w2off; + const float w2d1 = exp(-LENGTH_SQ(vec2(1.0, 1.0)) * denom_inv); + const float w2d2_3 = exp(-LENGTH_SQ(vec2(2.0, 1.0)) * denom_inv); + const float w2d4 = exp(-LENGTH_SQ(vec2(2.0, 2.0)) * denom_inv); + // Statically add texel weights in each sample to get sample weights: + const float w0 = 1.0; + const float w1 = w1R1 + w1R2; + const float w2 = w2d1 + 2.0 * w2d2_3 + w2d4; + // Get the weight sum inverse (normalization factor): + const float weight_sum_inv = 1.0/(w0 + 4.0 * (w1 + w2)); + + // LOAD TEXTURE SAMPLES: + // Load all 9 samples (1 nearest, 4 linear, 4 bilinear) using symmetry: + const vec2 mirror_x = vec2(-1.0, 1.0); + const vec2 mirror_y = vec2(1.0, -1.0); + const vec2 mirror_xy = vec2(-1.0, -1.0); + const vec2 dxdy_mirror_x = dxdy * mirror_x; + const vec2 dxdy_mirror_y = dxdy * mirror_y; + const vec2 dxdy_mirror_xy = dxdy * mirror_xy; + const vec3 sample0C = tex2D_linearize(texture, tex_uv).rgb; + const vec3 sample1R = tex2D_linearize(texture, tex_uv + dxdy * sample1R_texel_offset).rgb; + const vec3 sample1D = tex2D_linearize(texture, tex_uv + dxdy * sample1R_texel_offset.yx).rgb; + const vec3 sample1L = tex2D_linearize(texture, tex_uv - dxdy * sample1R_texel_offset).rgb; + const vec3 sample1U = tex2D_linearize(texture, tex_uv - dxdy * sample1R_texel_offset.yx).rgb; + const vec3 sample2d = tex2D_linearize(texture, tex_uv + dxdy * sample2d_texel_offset).rgb; + const vec3 sample2c = tex2D_linearize(texture, tex_uv + dxdy_mirror_x * sample2d_texel_offset).rgb; + const vec3 sample2b = tex2D_linearize(texture, tex_uv + dxdy_mirror_y * sample2d_texel_offset).rgb; + const vec3 sample2a = tex2D_linearize(texture, tex_uv + dxdy_mirror_xy * sample2d_texel_offset).rgb; + + // SUM WEIGHTED SAMPLES: + // Statically normalize weights (so total = 1.0), and sum weighted samples. + vec3 sum = w0 * sample0C; + sum += w1 * (sample1R + sample1D + sample1L + sample1U); + sum += w2 * (sample2a + sample2b + sample2c + sample2d); + return sum * weight_sum_inv; +} + +vec3 tex2Dblur3x3(const sampler2D texture, const vec2 tex_uv, + const vec2 dxdy, const float sigma) +{ + // Perform a 1-pass 3x3 blur with 5x5 bilinear samples. + // Requires: Same as tex2Dblur9() + // Returns: A 3x3 Gaussian blurred mipmapped texture lookup composed of + // 2x2 carefully selected bilinear samples. + // Description: + // First see the descriptions for tex2Dblur9x9() and tex2Dblur7(). This + // blur mixes concepts from both. The sample layout is as follows: + // 0a 0b + // 0c 0d + // The texel layout is as follows. Note that samples 0a/0b and 0c/0d share + // a vertical column of texels, and samples 0a/0c and 0b/0d share a + // horizontal row of texels (all samples share the center texel): + // 0a3 0ab2 0b3 + // 0ac1 0*0 0bd1 + // 0c3 0cd2 0d3 + + // COMPUTE TEXTURE COORDS: + // Statically compute bilinear sampling offsets (details in tex2Dblur9x9). + const float denom_inv = 0.5/(sigma*sigma); + const float w0off = 1.0; + const float w1off = exp(-1.0 * denom_inv); + const float texel0to1ratio = w1off/(w0off * 0.5 + w1off); + // Statically compute texel offsets from the fragment center to each + // bilinear sample in the bottom-right quadrant, including axis-aligned: + const vec2 sample0d_texel_offset = vec2(texel0to1ratio, texel0to1ratio); + + // LOAD TEXTURE SAMPLES: + // Load all 4 samples using symmetry: + const vec2 mirror_x = vec2(-1.0, 1.0); + const vec2 mirror_y = vec2(1.0, -1.0); + const vec2 mirror_xy = vec2(-1.0, -1.0); + const vec2 dxdy_mirror_x = dxdy * mirror_x; + const vec2 dxdy_mirror_y = dxdy * mirror_y; + const vec2 dxdy_mirror_xy = dxdy * mirror_xy; + const vec3 sample0a = tex2D_linearize(texture, tex_uv + dxdy_mirror_xy * sample0d_texel_offset).rgb; + const vec3 sample0b = tex2D_linearize(texture, tex_uv + dxdy_mirror_y * sample0d_texel_offset).rgb; + const vec3 sample0c = tex2D_linearize(texture, tex_uv + dxdy_mirror_x * sample0d_texel_offset).rgb; + const vec3 sample0d = tex2D_linearize(texture, tex_uv + dxdy * sample0d_texel_offset).rgb; + + // SUM WEIGHTED SAMPLES: + // Weights for all samples are the same, so just average them: + return 0.25 * (sample0a + sample0b + sample0c + sample0d); +} + + +////////////////// LINEAR ONE-PASS BLURS WITH SHARED SAMPLES ///////////////// + +vec3 tex2Dblur12x12shared(const sampler2D texture, + const vec4 tex_uv, const vec2 dxdy, const vec4 quad_vector, + const float sigma) +{ + // Perform a 1-pass mipmapped blur with shared samples across a pixel quad. + // Requires: 1.) Same as tex2Dblur9() + // 2.) ddx() and ddy() are present in the current Cg profile. + // 3.) The GPU driver is using fine/high-quality derivatives. + // 4.) quad_vector *correctly* describes the current fragment's + // location in its pixel quad, by the conventions noted in + // get_quad_vector[_naive]. + // 5.) tex_uv.w = log2(IN.video_size/IN.output_size).y + // 6.) tex2Dlod() is present in the current Cg profile. + // Optional: Tune artifacts vs. excessive blurriness with the global + // float error_blurring. + // Returns: A blurred texture lookup using a "virtual" 12x12 Gaussian + // blur (a 6x6 blur of carefully selected bilinear samples) + // of the given mip level. There will be subtle inaccuracies, + // especially for small or high-frequency detailed sources. + // Description: + // Perform a 1-pass blur with shared texture lookups across a pixel quad. + // We'll get neighboring samples with high-quality ddx/ddy derivatives, as + // in GPU Pro 2, Chapter VI.2, "Shader Amortization using Pixel Quad + // Message Passing" by Eric Penner. + // + // Our "virtual" 12x12 blur will be comprised of ((6 - 1)^2)/4 + 3 = 12 + // bilinear samples, where bilinear sampling positions are computed from + // the relative Gaussian weights of the 4 surrounding texels. The catch is + // that the appropriate texel weights and sample coords differ for each + // fragment, but we're reusing most of the same samples across a quad of + // destination fragments. (We do use unique coords for the four nearest + // samples at each fragment.) Mixing bilinear filtering and sample-sharing + // therefore introduces some error into the weights, and this can get nasty + // when the source image is small or high-frequency. Computing bilinear + // ratios based on weights at the sample field center results in sharpening + // and ringing artifacts, but we can move samples closer to halfway between + // texels to try blurring away the error (which can move features around by + // a texel or so). Tune this with the global float "error_blurring". + // + // The pixel quad's sample field covers 12x12 texels, accessed through 6x6 + // bilinear (2x2 texel) taps. Each fragment depends on a window of 10x10 + // texels (5x5 bilinear taps), and each fragment is responsible for loading + // a 6x6 texel quadrant as a 3x3 block of bilinear taps, plus 3 more taps + // to use unique bilinear coords for sample0* for each fragment. This + // diagram illustrates the relative locations of bilinear samples 1-9 for + // each quadrant a, b, c, d (note samples will not be equally spaced): + // 8a 7a 6a 6b 7b 8b + // 5a 4a 3a 3b 4b 5b + // 2a 1a 0a 0b 1b 2b + // 2c 1c 0c 0d 1d 2d + // 5c 4c 3c 3d 4d 5d + // 8c 7c 6c 6d 7d 8d + // The following diagram illustrates the underlying equally spaced texels, + // named after the sample that accesses them and subnamed by their location + // within their 2x2 texel block: + // 8a3 8a2 7a3 7a2 6a3 6a2 6b2 6b3 7b2 7b3 8b2 8b3 + // 8a1 8a0 7a1 7a0 6a1 6a0 6b0 6b1 7b0 7b1 8b0 8b1 + // 5a3 5a2 4a3 4a2 3a3 3a2 3b2 3b3 4b2 4b3 5b2 5b3 + // 5a1 5a0 4a1 4a0 3a1 3a0 3b0 3b1 4b0 4b1 5b0 5b1 + // 2a3 2a2 1a3 1a2 0a3 0a2 0b2 0b3 1b2 1b3 2b2 2b3 + // 2a1 2a0 1a1 1a0 0a1 0a0 0b0 0b1 1b0 1b1 2b0 2b1 + // 2c1 2c0 1c1 1c0 0c1 0c0 0d0 0d1 1d0 1d1 2d0 2d1 + // 2c3 2c2 1c3 1c2 0c3 0c2 0d2 0d3 1d2 1d3 2d2 2d3 + // 5c1 5c0 4c1 4c0 3c1 3c0 3d0 3d1 4d0 4d1 5d0 5d1 + // 5c3 5c2 4c3 4c2 3c3 3c2 3d2 3d3 4d2 4d3 5d2 5d3 + // 8c1 8c0 7c1 7c0 6c1 6c0 6d0 6d1 7d0 7d1 8d0 8d1 + // 8c3 8c2 7c3 7c2 6c3 6c2 6d2 6d3 7d2 7d3 8d2 8d3 + // With this symmetric arrangement, we don't have to know which absolute + // quadrant a sample lies in to assign kernel weights; it's enough to know + // the sample number and the relative quadrant of the sample (relative to + // the current quadrant): + // {current, adjacent x, adjacent y, diagonal} + + // COMPUTE COORDS FOR TEXTURE SAMPLES THIS FRAGMENT IS RESPONSIBLE FOR: + // Statically compute sampling offsets within each 2x2 texel block, based + // on appropriate 1D Gaussian sampling ratio between texels [0, 1], [2, 3], + // and [4, 5] away from the fragment, and reuse them independently for both + // dimensions. Use the sample field center as the estimated destination, + // but nudge the result closer to halfway between texels to blur error. + const float denom_inv = 0.5/(sigma*sigma); + const float w0off = 1.0; + const float w0_5off = exp(-(0.5*0.5) * denom_inv); + const float w1off = exp(-(1.0*1.0) * denom_inv); + const float w1_5off = exp(-(1.5*1.5) * denom_inv); + const float w2off = exp(-(2.0*2.0) * denom_inv); + const float w2_5off = exp(-(2.5*2.5) * denom_inv); + const float w3_5off = exp(-(3.5*3.5) * denom_inv); + const float w4_5off = exp(-(4.5*4.5) * denom_inv); + const float w5_5off = exp(-(5.5*5.5) * denom_inv); + const float texel0to1ratio = mix(w1_5off/(w0_5off + w1_5off), 0.5, error_blurring); + const float texel2to3ratio = mix(w3_5off/(w2_5off + w3_5off), 0.5, error_blurring); + const float texel4to5ratio = mix(w5_5off/(w4_5off + w5_5off), 0.5, error_blurring); + // We don't share sample0*, so use the nearest destination fragment: + const float texel0to1ratio_nearest = w1off/(w0off + w1off); + const float texel1to2ratio_nearest = w2off/(w1off + w2off); + // Statically compute texel offsets from the bottom-right fragment to each + // bilinear sample in the bottom-right quadrant: + const vec2 sample0curr_texel_offset = vec2(0.0, 0.0) + vec2(texel0to1ratio_nearest, texel0to1ratio_nearest); + const vec2 sample0adjx_texel_offset = vec2(-1.0, 0.0) + vec2(-texel1to2ratio_nearest, texel0to1ratio_nearest); + const vec2 sample0adjy_texel_offset = vec2(0.0, -1.0) + vec2(texel0to1ratio_nearest, -texel1to2ratio_nearest); + const vec2 sample0diag_texel_offset = vec2(-1.0, -1.0) + vec2(-texel1to2ratio_nearest, -texel1to2ratio_nearest); + const vec2 sample1_texel_offset = vec2(2.0, 0.0) + vec2(texel2to3ratio, texel0to1ratio); + const vec2 sample2_texel_offset = vec2(4.0, 0.0) + vec2(texel4to5ratio, texel0to1ratio); + const vec2 sample3_texel_offset = vec2(0.0, 2.0) + vec2(texel0to1ratio, texel2to3ratio); + const vec2 sample4_texel_offset = vec2(2.0, 2.0) + vec2(texel2to3ratio, texel2to3ratio); + const vec2 sample5_texel_offset = vec2(4.0, 2.0) + vec2(texel4to5ratio, texel2to3ratio); + const vec2 sample6_texel_offset = vec2(0.0, 4.0) + vec2(texel0to1ratio, texel4to5ratio); + const vec2 sample7_texel_offset = vec2(2.0, 4.0) + vec2(texel2to3ratio, texel4to5ratio); + const vec2 sample8_texel_offset = vec2(4.0, 4.0) + vec2(texel4to5ratio, texel4to5ratio); + + // CALCULATE KERNEL WEIGHTS: + // Statically compute bilinear sample weights at each destination fragment + // based on the sum of their 4 underlying texel weights. Assume a same- + // resolution blur, so each symmetrically named sample weight will compute + // the same at every fragment in the pixel quad: We can therefore compute + // texel weights based only on the bottom-right quadrant (fragment at 0d0). + // Too avoid too much boilerplate code, use a macro to get all 4 texel + // weights for a bilinear sample based on the offset of its top-left texel: + #define GET_TEXEL_QUAD_WEIGHTS(xoff, yoff) \ + (exp(-LENGTH_SQ(vec2(xoff, yoff)) * denom_inv) + \ + exp(-LENGTH_SQ(vec2(xoff + 1.0, yoff)) * denom_inv) + \ + exp(-LENGTH_SQ(vec2(xoff, yoff + 1.0)) * denom_inv) + \ + exp(-LENGTH_SQ(vec2(xoff + 1.0, yoff + 1.0)) * denom_inv)) + const float w8diag = GET_TEXEL_QUAD_WEIGHTS(-6.0, -6.0); + const float w7diag = GET_TEXEL_QUAD_WEIGHTS(-4.0, -6.0); + const float w6diag = GET_TEXEL_QUAD_WEIGHTS(-2.0, -6.0); + const float w6adjy = GET_TEXEL_QUAD_WEIGHTS(0.0, -6.0); + const float w7adjy = GET_TEXEL_QUAD_WEIGHTS(2.0, -6.0); + const float w8adjy = GET_TEXEL_QUAD_WEIGHTS(4.0, -6.0); + const float w5diag = GET_TEXEL_QUAD_WEIGHTS(-6.0, -4.0); + const float w4diag = GET_TEXEL_QUAD_WEIGHTS(-4.0, -4.0); + const float w3diag = GET_TEXEL_QUAD_WEIGHTS(-2.0, -4.0); + const float w3adjy = GET_TEXEL_QUAD_WEIGHTS(0.0, -4.0); + const float w4adjy = GET_TEXEL_QUAD_WEIGHTS(2.0, -4.0); + const float w5adjy = GET_TEXEL_QUAD_WEIGHTS(4.0, -4.0); + const float w2diag = GET_TEXEL_QUAD_WEIGHTS(-6.0, -2.0); + const float w1diag = GET_TEXEL_QUAD_WEIGHTS(-4.0, -2.0); + const float w0diag = GET_TEXEL_QUAD_WEIGHTS(-2.0, -2.0); + const float w0adjy = GET_TEXEL_QUAD_WEIGHTS(0.0, -2.0); + const float w1adjy = GET_TEXEL_QUAD_WEIGHTS(2.0, -2.0); + const float w2adjy = GET_TEXEL_QUAD_WEIGHTS(4.0, -2.0); + const float w2adjx = GET_TEXEL_QUAD_WEIGHTS(-6.0, 0.0); + const float w1adjx = GET_TEXEL_QUAD_WEIGHTS(-4.0, 0.0); + const float w0adjx = GET_TEXEL_QUAD_WEIGHTS(-2.0, 0.0); + const float w0curr = GET_TEXEL_QUAD_WEIGHTS(0.0, 0.0); + const float w1curr = GET_TEXEL_QUAD_WEIGHTS(2.0, 0.0); + const float w2curr = GET_TEXEL_QUAD_WEIGHTS(4.0, 0.0); + const float w5adjx = GET_TEXEL_QUAD_WEIGHTS(-6.0, 2.0); + const float w4adjx = GET_TEXEL_QUAD_WEIGHTS(-4.0, 2.0); + const float w3adjx = GET_TEXEL_QUAD_WEIGHTS(-2.0, 2.0); + const float w3curr = GET_TEXEL_QUAD_WEIGHTS(0.0, 2.0); + const float w4curr = GET_TEXEL_QUAD_WEIGHTS(2.0, 2.0); + const float w5curr = GET_TEXEL_QUAD_WEIGHTS(4.0, 2.0); + const float w8adjx = GET_TEXEL_QUAD_WEIGHTS(-6.0, 4.0); + const float w7adjx = GET_TEXEL_QUAD_WEIGHTS(-4.0, 4.0); + const float w6adjx = GET_TEXEL_QUAD_WEIGHTS(-2.0, 4.0); + const float w6curr = GET_TEXEL_QUAD_WEIGHTS(0.0, 4.0); + const float w7curr = GET_TEXEL_QUAD_WEIGHTS(2.0, 4.0); + const float w8curr = GET_TEXEL_QUAD_WEIGHTS(4.0, 4.0); + #undef GET_TEXEL_QUAD_WEIGHTS + // Statically pack weights for runtime: + const vec4 w0 = vec4(w0curr, w0adjx, w0adjy, w0diag); + const vec4 w1 = vec4(w1curr, w1adjx, w1adjy, w1diag); + const vec4 w2 = vec4(w2curr, w2adjx, w2adjy, w2diag); + const vec4 w3 = vec4(w3curr, w3adjx, w3adjy, w3diag); + const vec4 w4 = vec4(w4curr, w4adjx, w4adjy, w4diag); + const vec4 w5 = vec4(w5curr, w5adjx, w5adjy, w5diag); + const vec4 w6 = vec4(w6curr, w6adjx, w6adjy, w6diag); + const vec4 w7 = vec4(w7curr, w7adjx, w7adjy, w7diag); + const vec4 w8 = vec4(w8curr, w8adjx, w8adjy, w8diag); + // Get the weight sum inverse (normalization factor): + const vec4 weight_sum4 = w0 + w1 + w2 + w3 + w4 + w5 + w6 + w7 + w8; + const vec2 weight_sum2 = weight_sum4.xy + weight_sum4.zw; + const float weight_sum = weight_sum2.x + weight_sum2.y; + const float weight_sum_inv = 1.0/(weight_sum); + + // LOAD TEXTURE SAMPLES THIS FRAGMENT IS RESPONSIBLE FOR: + // Get a uv vector from texel 0q0 of this quadrant to texel 0q3: + const vec2 dxdy_curr = dxdy * quad_vector.xy; + // Load bilinear samples for the current quadrant (for this fragment): + const vec3 sample0curr = tex2D_linearize(texture, tex_uv.xy + dxdy_curr * sample0curr_texel_offset).rgb; + const vec3 sample0adjx = tex2D_linearize(texture, tex_uv.xy + dxdy_curr * sample0adjx_texel_offset).rgb; + const vec3 sample0adjy = tex2D_linearize(texture, tex_uv.xy + dxdy_curr * sample0adjy_texel_offset).rgb; + const vec3 sample0diag = tex2D_linearize(texture, tex_uv.xy + dxdy_curr * sample0diag_texel_offset).rgb; + const vec3 sample1curr = tex2Dlod_linearize(texture, tex_uv + uv2_to_uv4(dxdy_curr * sample1_texel_offset)).rgb; + const vec3 sample2curr = tex2Dlod_linearize(texture, tex_uv + uv2_to_uv4(dxdy_curr * sample2_texel_offset)).rgb; + const vec3 sample3curr = tex2Dlod_linearize(texture, tex_uv + uv2_to_uv4(dxdy_curr * sample3_texel_offset)).rgb; + const vec3 sample4curr = tex2Dlod_linearize(texture, tex_uv + uv2_to_uv4(dxdy_curr * sample4_texel_offset)).rgb; + const vec3 sample5curr = tex2Dlod_linearize(texture, tex_uv + uv2_to_uv4(dxdy_curr * sample5_texel_offset)).rgb; + const vec3 sample6curr = tex2Dlod_linearize(texture, tex_uv + uv2_to_uv4(dxdy_curr * sample6_texel_offset)).rgb; + const vec3 sample7curr = tex2Dlod_linearize(texture, tex_uv + uv2_to_uv4(dxdy_curr * sample7_texel_offset)).rgb; + const vec3 sample8curr = tex2Dlod_linearize(texture, tex_uv + uv2_to_uv4(dxdy_curr * sample8_texel_offset)).rgb; + + // GATHER NEIGHBORING SAMPLES AND SUM WEIGHTED SAMPLES: + // Fetch the samples from other fragments in the 2x2 quad: + vec3 sample1adjx, sample1adjy, sample1diag; + vec3 sample2adjx, sample2adjy, sample2diag; + vec3 sample3adjx, sample3adjy, sample3diag; + vec3 sample4adjx, sample4adjy, sample4diag; + vec3 sample5adjx, sample5adjy, sample5diag; + vec3 sample6adjx, sample6adjy, sample6diag; + vec3 sample7adjx, sample7adjy, sample7diag; + vec3 sample8adjx, sample8adjy, sample8diag; + quad_gather(quad_vector, sample1curr, sample1adjx, sample1adjy, sample1diag); + quad_gather(quad_vector, sample2curr, sample2adjx, sample2adjy, sample2diag); + quad_gather(quad_vector, sample3curr, sample3adjx, sample3adjy, sample3diag); + quad_gather(quad_vector, sample4curr, sample4adjx, sample4adjy, sample4diag); + quad_gather(quad_vector, sample5curr, sample5adjx, sample5adjy, sample5diag); + quad_gather(quad_vector, sample6curr, sample6adjx, sample6adjy, sample6diag); + quad_gather(quad_vector, sample7curr, sample7adjx, sample7adjy, sample7diag); + quad_gather(quad_vector, sample8curr, sample8adjx, sample8adjy, sample8diag); + // Statically normalize weights (so total = 1.0), and sum weighted samples. + // Fill each row of a matrix with an rgb sample and pre-multiply by the + // weights to obtain a weighted result: + vec3 sum = vec3(0.0); + sum += (mat4x3(sample0curr, sample0adjx, sample0adjy, sample0diag) * w0); + sum += (mat4x3(sample1curr, sample1adjx, sample1adjy, sample1diag) * w1); + sum += (mat4x3(sample2curr, sample2adjx, sample2adjy, sample2diag) * w2); + sum += (mat4x3(sample3curr, sample3adjx, sample3adjy, sample3diag) * w3); + sum += (mat4x3(sample4curr, sample4adjx, sample4adjy, sample4diag) * w4); + sum += (mat4x3(sample5curr, sample5adjx, sample5adjy, sample5diag) * w5); + sum += (mat4x3(sample6curr, sample6adjx, sample6adjy, sample6diag) * w6); + sum += (mat4x3(sample7curr, sample7adjx, sample7adjy, sample7diag) * w7); + sum += (mat4x3(sample8curr, sample8adjx, sample8adjy, sample8diag) * w8); + return sum * weight_sum_inv; +} + +vec3 tex2Dblur10x10shared(const sampler2D texture, + const vec4 tex_uv, const vec2 dxdy, const vec4 quad_vector, + const float sigma) +{ + // Perform a 1-pass mipmapped blur with shared samples across a pixel quad. + // Requires: Same as tex2Dblur12x12shared() + // Returns: A blurred texture lookup using a "virtual" 10x10 Gaussian + // blur (a 5x5 blur of carefully selected bilinear samples) + // of the given mip level. There will be subtle inaccuracies, + // especially for small or high-frequency detailed sources. + // Description: + // First see the description for tex2Dblur12x12shared(). This + // function shares the same concept and sample placement, but each fragment + // only uses 25 of the 36 samples taken across the pixel quad (to cover a + // 5x5 sample area, or 10x10 texel area), and it uses a lower standard + // deviation to compensate. Thanks to symmetry, the 11 omitted samples + // are always the "same:" + // 8adjx, 2adjx, 5adjx, + // 6adjy, 7adjy, 8adjy, + // 2diag, 5diag, 6diag, 7diag, 8diag + + // COMPUTE COORDS FOR TEXTURE SAMPLES THIS FRAGMENT IS RESPONSIBLE FOR: + // Statically compute bilinear sampling offsets (details in tex2Dblur12x12shared). + const float denom_inv = 0.5/(sigma*sigma); + const float w0off = 1.0; + const float w0_5off = exp(-(0.5*0.5) * denom_inv); + const float w1off = exp(-(1.0*1.0) * denom_inv); + const float w1_5off = exp(-(1.5*1.5) * denom_inv); + const float w2off = exp(-(2.0*2.0) * denom_inv); + const float w2_5off = exp(-(2.5*2.5) * denom_inv); + const float w3_5off = exp(-(3.5*3.5) * denom_inv); + const float w4_5off = exp(-(4.5*4.5) * denom_inv); + const float w5_5off = exp(-(5.5*5.5) * denom_inv); + const float texel0to1ratio = mix(w1_5off/(w0_5off + w1_5off), 0.5, error_blurring); + const float texel2to3ratio = mix(w3_5off/(w2_5off + w3_5off), 0.5, error_blurring); + const float texel4to5ratio = mix(w5_5off/(w4_5off + w5_5off), 0.5, error_blurring); + // We don't share sample0*, so use the nearest destination fragment: + const float texel0to1ratio_nearest = w1off/(w0off + w1off); + const float texel1to2ratio_nearest = w2off/(w1off + w2off); + // Statically compute texel offsets from the bottom-right fragment to each + // bilinear sample in the bottom-right quadrant: + const vec2 sample0curr_texel_offset = vec2(0.0, 0.0) + vec2(texel0to1ratio_nearest, texel0to1ratio_nearest); + const vec2 sample0adjx_texel_offset = vec2(-1.0, 0.0) + vec2(-texel1to2ratio_nearest, texel0to1ratio_nearest); + const vec2 sample0adjy_texel_offset = vec2(0.0, -1.0) + vec2(texel0to1ratio_nearest, -texel1to2ratio_nearest); + const vec2 sample0diag_texel_offset = vec2(-1.0, -1.0) + vec2(-texel1to2ratio_nearest, -texel1to2ratio_nearest); + const vec2 sample1_texel_offset = vec2(2.0, 0.0) + vec2(texel2to3ratio, texel0to1ratio); + const vec2 sample2_texel_offset = vec2(4.0, 0.0) + vec2(texel4to5ratio, texel0to1ratio); + const vec2 sample3_texel_offset = vec2(0.0, 2.0) + vec2(texel0to1ratio, texel2to3ratio); + const vec2 sample4_texel_offset = vec2(2.0, 2.0) + vec2(texel2to3ratio, texel2to3ratio); + const vec2 sample5_texel_offset = vec2(4.0, 2.0) + vec2(texel4to5ratio, texel2to3ratio); + const vec2 sample6_texel_offset = vec2(0.0, 4.0) + vec2(texel0to1ratio, texel4to5ratio); + const vec2 sample7_texel_offset = vec2(2.0, 4.0) + vec2(texel2to3ratio, texel4to5ratio); + const vec2 sample8_texel_offset = vec2(4.0, 4.0) + vec2(texel4to5ratio, texel4to5ratio); + + // CALCULATE KERNEL WEIGHTS: + // Statically compute bilinear sample weights at each destination fragment + // from the sum of their 4 texel weights (details in tex2Dblur12x12shared). + #define GET_TEXEL_QUAD_WEIGHTS(xoff, yoff) \ + (exp(-LENGTH_SQ(vec2(xoff, yoff)) * denom_inv) + \ + exp(-LENGTH_SQ(vec2(xoff + 1.0, yoff)) * denom_inv) + \ + exp(-LENGTH_SQ(vec2(xoff, yoff + 1.0)) * denom_inv) + \ + exp(-LENGTH_SQ(vec2(xoff + 1.0, yoff + 1.0)) * denom_inv)) + // We only need 25 of the 36 sample weights. Skip the following weights: + // 8adjx, 2adjx, 5adjx, + // 6adjy, 7adjy, 8adjy, + // 2diag, 5diag, 6diag, 7diag, 8diag + const float w4diag = GET_TEXEL_QUAD_WEIGHTS(-4.0, -4.0); + const float w3diag = GET_TEXEL_QUAD_WEIGHTS(-2.0, -4.0); + const float w3adjy = GET_TEXEL_QUAD_WEIGHTS(0.0, -4.0); + const float w4adjy = GET_TEXEL_QUAD_WEIGHTS(2.0, -4.0); + const float w5adjy = GET_TEXEL_QUAD_WEIGHTS(4.0, -4.0); + const float w1diag = GET_TEXEL_QUAD_WEIGHTS(-4.0, -2.0); + const float w0diag = GET_TEXEL_QUAD_WEIGHTS(-2.0, -2.0); + const float w0adjy = GET_TEXEL_QUAD_WEIGHTS(0.0, -2.0); + const float w1adjy = GET_TEXEL_QUAD_WEIGHTS(2.0, -2.0); + const float w2adjy = GET_TEXEL_QUAD_WEIGHTS(4.0, -2.0); + const float w1adjx = GET_TEXEL_QUAD_WEIGHTS(-4.0, 0.0); + const float w0adjx = GET_TEXEL_QUAD_WEIGHTS(-2.0, 0.0); + const float w0curr = GET_TEXEL_QUAD_WEIGHTS(0.0, 0.0); + const float w1curr = GET_TEXEL_QUAD_WEIGHTS(2.0, 0.0); + const float w2curr = GET_TEXEL_QUAD_WEIGHTS(4.0, 0.0); + const float w4adjx = GET_TEXEL_QUAD_WEIGHTS(-4.0, 2.0); + const float w3adjx = GET_TEXEL_QUAD_WEIGHTS(-2.0, 2.0); + const float w3curr = GET_TEXEL_QUAD_WEIGHTS(0.0, 2.0); + const float w4curr = GET_TEXEL_QUAD_WEIGHTS(2.0, 2.0); + const float w5curr = GET_TEXEL_QUAD_WEIGHTS(4.0, 2.0); + const float w7adjx = GET_TEXEL_QUAD_WEIGHTS(-4.0, 4.0); + const float w6adjx = GET_TEXEL_QUAD_WEIGHTS(-2.0, 4.0); + const float w6curr = GET_TEXEL_QUAD_WEIGHTS(0.0, 4.0); + const float w7curr = GET_TEXEL_QUAD_WEIGHTS(2.0, 4.0); + const float w8curr = GET_TEXEL_QUAD_WEIGHTS(4.0, 4.0); + #undef GET_TEXEL_QUAD_WEIGHTS + // Get the weight sum inverse (normalization factor): + const float weight_sum_inv = 1.0/(w0curr + w1curr + w2curr + w3curr + + w4curr + w5curr + w6curr + w7curr + w8curr + + w0adjx + w1adjx + w3adjx + w4adjx + w6adjx + w7adjx + + w0adjy + w1adjy + w2adjy + w3adjy + w4adjy + w5adjy + + w0diag + w1diag + w3diag + w4diag); + // Statically pack most weights for runtime. Note the mixed packing: + const vec4 w0 = vec4(w0curr, w0adjx, w0adjy, w0diag); + const vec4 w1 = vec4(w1curr, w1adjx, w1adjy, w1diag); + const vec4 w3 = vec4(w3curr, w3adjx, w3adjy, w3diag); + const vec4 w4 = vec4(w4curr, w4adjx, w4adjy, w4diag); + const vec4 w2and5 = vec4(w2curr, w2adjy, w5curr, w5adjy); + const vec4 w6and7 = vec4(w6curr, w6adjx, w7curr, w7adjx); + + // LOAD TEXTURE SAMPLES THIS FRAGMENT IS RESPONSIBLE FOR: + // Get a uv vector from texel 0q0 of this quadrant to texel 0q3: + const vec2 dxdy_curr = dxdy * quad_vector.xy; + // Load bilinear samples for the current quadrant (for this fragment): + const vec3 sample0curr = tex2D_linearize(texture, tex_uv.xy + dxdy_curr * sample0curr_texel_offset).rgb; + const vec3 sample0adjx = tex2D_linearize(texture, tex_uv.xy + dxdy_curr * sample0adjx_texel_offset).rgb; + const vec3 sample0adjy = tex2D_linearize(texture, tex_uv.xy + dxdy_curr * sample0adjy_texel_offset).rgb; + const vec3 sample0diag = tex2D_linearize(texture, tex_uv.xy + dxdy_curr * sample0diag_texel_offset).rgb; + const vec3 sample1curr = tex2Dlod_linearize(texture, tex_uv + uv2_to_uv4(dxdy_curr * sample1_texel_offset)).rgb; + const vec3 sample2curr = tex2Dlod_linearize(texture, tex_uv + uv2_to_uv4(dxdy_curr * sample2_texel_offset)).rgb; + const vec3 sample3curr = tex2Dlod_linearize(texture, tex_uv + uv2_to_uv4(dxdy_curr * sample3_texel_offset)).rgb; + const vec3 sample4curr = tex2Dlod_linearize(texture, tex_uv + uv2_to_uv4(dxdy_curr * sample4_texel_offset)).rgb; + const vec3 sample5curr = tex2Dlod_linearize(texture, tex_uv + uv2_to_uv4(dxdy_curr * sample5_texel_offset)).rgb; + const vec3 sample6curr = tex2Dlod_linearize(texture, tex_uv + uv2_to_uv4(dxdy_curr * sample6_texel_offset)).rgb; + const vec3 sample7curr = tex2Dlod_linearize(texture, tex_uv + uv2_to_uv4(dxdy_curr * sample7_texel_offset)).rgb; + const vec3 sample8curr = tex2Dlod_linearize(texture, tex_uv + uv2_to_uv4(dxdy_curr * sample8_texel_offset)).rgb; + + // GATHER NEIGHBORING SAMPLES AND SUM WEIGHTED SAMPLES: + // Fetch the samples from other fragments in the 2x2 quad in order of need: + vec3 sample1adjx, sample1adjy, sample1diag; + vec3 sample2adjx, sample2adjy, sample2diag; + vec3 sample3adjx, sample3adjy, sample3diag; + vec3 sample4adjx, sample4adjy, sample4diag; + vec3 sample5adjx, sample5adjy, sample5diag; + vec3 sample6adjx, sample6adjy, sample6diag; + vec3 sample7adjx, sample7adjy, sample7diag; + quad_gather(quad_vector, sample1curr, sample1adjx, sample1adjy, sample1diag); + quad_gather(quad_vector, sample2curr, sample2adjx, sample2adjy, sample2diag); + quad_gather(quad_vector, sample3curr, sample3adjx, sample3adjy, sample3diag); + quad_gather(quad_vector, sample4curr, sample4adjx, sample4adjy, sample4diag); + quad_gather(quad_vector, sample5curr, sample5adjx, sample5adjy, sample5diag); + quad_gather(quad_vector, sample6curr, sample6adjx, sample6adjy, sample6diag); + quad_gather(quad_vector, sample7curr, sample7adjx, sample7adjy, sample7diag); + // Statically normalize weights (so total = 1.0), and sum weighted samples. + // Fill each row of a matrix with an rgb sample and pre-multiply by the + // weights to obtain a weighted result. First do the simple ones: + vec3 sum = vec3(0.0); + sum += (mat4x3(sample0curr, sample0adjx, sample0adjy, sample0diag) * w0); + sum += (mat4x3(sample1curr, sample1adjx, sample1adjy, sample1diag) * w1); + sum += (mat4x3(sample3curr, sample3adjx, sample3adjy, sample3diag) * w2); + sum += (mat4x3(sample4curr, sample4adjx, sample4adjy, sample4diag) * w3); + // Now do the mixed-sample ones: + sum += (mat4x3(sample2curr, sample2adjy, sample5curr, sample5adjy) * w2and5); + sum += (mat4x3(sample6curr, sample6adjx, sample7curr, sample7adjx) * w6and7); + sum += w8curr * sample8curr; + // Normalize the sum (so the weights add to 1.0) and return: + return sum * weight_sum_inv; +} + +vec3 tex2Dblur8x8shared(const sampler2D texture, + const vec4 tex_uv, const vec2 dxdy, const vec4 quad_vector, + const float sigma) +{ + // Perform a 1-pass mipmapped blur with shared samples across a pixel quad. + // Requires: Same as tex2Dblur12x12shared() + // Returns: A blurred texture lookup using a "virtual" 8x8 Gaussian + // blur (a 4x4 blur of carefully selected bilinear samples) + // of the given mip level. There will be subtle inaccuracies, + // especially for small or high-frequency detailed sources. + // Description: + // First see the description for tex2Dblur12x12shared(). This function + // shares the same concept and a similar sample placement, except each + // quadrant contains 4x4 texels and 2x2 samples instead of 6x6 and 3x3 + // respectively. There could be a total of 16 samples, 4 of which each + // fragment is responsible for, but each fragment loads 0a/0b/0c/0d with + // its own offset to reduce shared sample artifacts, bringing the sample + // count for each fragment to 7. Sample placement: + // 3a 2a 2b 3b + // 1a 0a 0b 1b + // 1c 0c 0d 1d + // 3c 2c 2d 3d + // Texel placement: + // 3a3 3a2 2a3 2a2 2b2 2b3 3b2 3b3 + // 3a1 3a0 2a1 2a0 2b0 2b1 3b0 3b1 + // 1a3 1a2 0a3 0a2 0b2 0b3 1b2 1b3 + // 1a1 1a0 0a1 0a0 0b0 0b1 1b0 1b1 + // 1c1 1c0 0c1 0c0 0d0 0d1 1d0 1d1 + // 1c3 1c2 0c3 0c2 0d2 0d3 1d2 1d3 + // 3c1 3c0 2c1 2c0 2d0 2d1 3d0 4d1 + // 3c3 3c2 2c3 2c2 2d2 2d3 3d2 4d3 + + // COMPUTE COORDS FOR TEXTURE SAMPLES THIS FRAGMENT IS RESPONSIBLE FOR: + // Statically compute bilinear sampling offsets (details in tex2Dblur12x12shared). + const float denom_inv = 0.5/(sigma*sigma); + const float w0off = 1.0; + const float w0_5off = exp(-(0.5*0.5) * denom_inv); + const float w1off = exp(-(1.0*1.0) * denom_inv); + const float w1_5off = exp(-(1.5*1.5) * denom_inv); + const float w2off = exp(-(2.0*2.0) * denom_inv); + const float w2_5off = exp(-(2.5*2.5) * denom_inv); + const float w3_5off = exp(-(3.5*3.5) * denom_inv); + const float texel0to1ratio = mix(w1_5off/(w0_5off + w1_5off), 0.5, error_blurring); + const float texel2to3ratio = mix(w3_5off/(w2_5off + w3_5off), 0.5, error_blurring); + // We don't share sample0*, so use the nearest destination fragment: + const float texel0to1ratio_nearest = w1off/(w0off + w1off); + const float texel1to2ratio_nearest = w2off/(w1off + w2off); + // Statically compute texel offsets from the bottom-right fragment to each + // bilinear sample in the bottom-right quadrant: + const vec2 sample0curr_texel_offset = vec2(0.0, 0.0) + vec2(texel0to1ratio_nearest, texel0to1ratio_nearest); + const vec2 sample0adjx_texel_offset = vec2(-1.0, 0.0) + vec2(-texel1to2ratio_nearest, texel0to1ratio_nearest); + const vec2 sample0adjy_texel_offset = vec2(0.0, -1.0) + vec2(texel0to1ratio_nearest, -texel1to2ratio_nearest); + const vec2 sample0diag_texel_offset = vec2(-1.0, -1.0) + vec2(-texel1to2ratio_nearest, -texel1to2ratio_nearest); + const vec2 sample1_texel_offset = vec2(2.0, 0.0) + vec2(texel2to3ratio, texel0to1ratio); + const vec2 sample2_texel_offset = vec2(0.0, 2.0) + vec2(texel0to1ratio, texel2to3ratio); + const vec2 sample3_texel_offset = vec2(2.0, 2.0) + vec2(texel2to3ratio, texel2to3ratio); + + // CALCULATE KERNEL WEIGHTS: + // Statically compute bilinear sample weights at each destination fragment + // from the sum of their 4 texel weights (details in tex2Dblur12x12shared). + #define GET_TEXEL_QUAD_WEIGHTS(xoff, yoff) \ + (exp(-LENGTH_SQ(vec2(xoff, yoff)) * denom_inv) + \ + exp(-LENGTH_SQ(vec2(xoff + 1.0, yoff)) * denom_inv) + \ + exp(-LENGTH_SQ(vec2(xoff, yoff + 1.0)) * denom_inv) + \ + exp(-LENGTH_SQ(vec2(xoff + 1.0, yoff + 1.0)) * denom_inv)) + const float w3diag = GET_TEXEL_QUAD_WEIGHTS(-4.0, -4.0); + const float w2diag = GET_TEXEL_QUAD_WEIGHTS(-2.0, -4.0); + const float w2adjy = GET_TEXEL_QUAD_WEIGHTS(0.0, -4.0); + const float w3adjy = GET_TEXEL_QUAD_WEIGHTS(2.0, -4.0); + const float w1diag = GET_TEXEL_QUAD_WEIGHTS(-4.0, -2.0); + const float w0diag = GET_TEXEL_QUAD_WEIGHTS(-2.0, -2.0); + const float w0adjy = GET_TEXEL_QUAD_WEIGHTS(0.0, -2.0); + const float w1adjy = GET_TEXEL_QUAD_WEIGHTS(2.0, -2.0); + const float w1adjx = GET_TEXEL_QUAD_WEIGHTS(-4.0, 0.0); + const float w0adjx = GET_TEXEL_QUAD_WEIGHTS(-2.0, 0.0); + const float w0curr = GET_TEXEL_QUAD_WEIGHTS(0.0, 0.0); + const float w1curr = GET_TEXEL_QUAD_WEIGHTS(2.0, 0.0); + const float w3adjx = GET_TEXEL_QUAD_WEIGHTS(-4.0, 2.0); + const float w2adjx = GET_TEXEL_QUAD_WEIGHTS(-2.0, 2.0); + const float w2curr = GET_TEXEL_QUAD_WEIGHTS(0.0, 2.0); + const float w3curr = GET_TEXEL_QUAD_WEIGHTS(2.0, 2.0); + #undef GET_TEXEL_QUAD_WEIGHTS + // Statically pack weights for runtime: + const vec4 w0 = vec4(w0curr, w0adjx, w0adjy, w0diag); + const vec4 w1 = vec4(w1curr, w1adjx, w1adjy, w1diag); + const vec4 w2 = vec4(w2curr, w2adjx, w2adjy, w2diag); + const vec4 w3 = vec4(w3curr, w3adjx, w3adjy, w3diag); + // Get the weight sum inverse (normalization factor): + const vec4 weight_sum4 = w0 + w1 + w2 + w3; + const vec2 weight_sum2 = weight_sum4.xy + weight_sum4.zw; + const float weight_sum = weight_sum2.x + weight_sum2.y; + const float weight_sum_inv = 1.0/(weight_sum); + + // LOAD TEXTURE SAMPLES THIS FRAGMENT IS RESPONSIBLE FOR: + // Get a uv vector from texel 0q0 of this quadrant to texel 0q3: + const vec2 dxdy_curr = dxdy * quad_vector.xy; + // Load bilinear samples for the current quadrant (for this fragment): + const vec3 sample0curr = tex2D_linearize(texture, tex_uv.xy + dxdy_curr * sample0curr_texel_offset).rgb; + const vec3 sample0adjx = tex2D_linearize(texture, tex_uv.xy + dxdy_curr * sample0adjx_texel_offset).rgb; + const vec3 sample0adjy = tex2D_linearize(texture, tex_uv.xy + dxdy_curr * sample0adjy_texel_offset).rgb; + const vec3 sample0diag = tex2D_linearize(texture, tex_uv.xy + dxdy_curr * sample0diag_texel_offset).rgb; + const vec3 sample1curr = tex2Dlod_linearize(texture, tex_uv + uv2_to_uv4(dxdy_curr * sample1_texel_offset)).rgb; + const vec3 sample2curr = tex2Dlod_linearize(texture, tex_uv + uv2_to_uv4(dxdy_curr * sample2_texel_offset)).rgb; + const vec3 sample3curr = tex2Dlod_linearize(texture, tex_uv + uv2_to_uv4(dxdy_curr * sample3_texel_offset)).rgb; + + // GATHER NEIGHBORING SAMPLES AND SUM WEIGHTED SAMPLES: + // Fetch the samples from other fragments in the 2x2 quad: + vec3 sample1adjx, sample1adjy, sample1diag; + vec3 sample2adjx, sample2adjy, sample2diag; + vec3 sample3adjx, sample3adjy, sample3diag; + quad_gather(quad_vector, sample1curr, sample1adjx, sample1adjy, sample1diag); + quad_gather(quad_vector, sample2curr, sample2adjx, sample2adjy, sample2diag); + quad_gather(quad_vector, sample3curr, sample3adjx, sample3adjy, sample3diag); + // Statically normalize weights (so total = 1.0), and sum weighted samples. + // Fill each row of a matrix with an rgb sample and pre-multiply by the + // weights to obtain a weighted result: + vec3 sum = vec3(0.0); + sum += (mat4x3(sample0curr, sample0adjx, sample0adjy, sample0diag) * w0); + sum += (mat4x3(sample1curr, sample1adjx, sample1adjy, sample1diag) * w1); + sum += (mat4x3(sample2curr, sample2adjx, sample2adjy, sample2diag) * w2); + sum += (mat4x3(sample3curr, sample3adjx, sample3adjy, sample3diag) * w3); + return sum * weight_sum_inv; +} + +vec3 tex2Dblur6x6shared(const sampler2D texture, + const vec4 tex_uv, const vec2 dxdy, const vec4 quad_vector, + const float sigma) +{ + // Perform a 1-pass mipmapped blur with shared samples across a pixel quad. + // Requires: Same as tex2Dblur12x12shared() + // Returns: A blurred texture lookup using a "virtual" 6x6 Gaussian + // blur (a 3x3 blur of carefully selected bilinear samples) + // of the given mip level. There will be some inaccuracies,subtle inaccuracies, + // especially for small or high-frequency detailed sources. + // Description: + // First see the description for tex2Dblur8x8shared(). This + // function shares the same concept and sample placement, but each fragment + // only uses 9 of the 16 samples taken across the pixel quad (to cover a + // 3x3 sample area, or 6x6 texel area), and it uses a lower standard + // deviation to compensate. Thanks to symmetry, the 7 omitted samples + // are always the "same:" + // 1adjx, 3adjx + // 2adjy, 3adjy + // 1diag, 2diag, 3diag + + // COMPUTE COORDS FOR TEXTURE SAMPLES THIS FRAGMENT IS RESPONSIBLE FOR: + // Statically compute bilinear sampling offsets (details in tex2Dblur12x12shared). + const float denom_inv = 0.5/(sigma*sigma); + const float w0off = 1.0; + const float w0_5off = exp(-(0.5*0.5) * denom_inv); + const float w1off = exp(-(1.0*1.0) * denom_inv); + const float w1_5off = exp(-(1.5*1.5) * denom_inv); + const float w2off = exp(-(2.0*2.0) * denom_inv); + const float w2_5off = exp(-(2.5*2.5) * denom_inv); + const float w3_5off = exp(-(3.5*3.5) * denom_inv); + const float texel0to1ratio = mix(w1_5off/(w0_5off + w1_5off), 0.5, error_blurring); + const float texel2to3ratio = mix(w3_5off/(w2_5off + w3_5off), 0.5, error_blurring); + // We don't share sample0*, so use the nearest destination fragment: + const float texel0to1ratio_nearest = w1off/(w0off + w1off); + const float texel1to2ratio_nearest = w2off/(w1off + w2off); + // Statically compute texel offsets from the bottom-right fragment to each + // bilinear sample in the bottom-right quadrant: + const vec2 sample0curr_texel_offset = vec2(0.0, 0.0) + vec2(texel0to1ratio_nearest, texel0to1ratio_nearest); + const vec2 sample0adjx_texel_offset = vec2(-1.0, 0.0) + vec2(-texel1to2ratio_nearest, texel0to1ratio_nearest); + const vec2 sample0adjy_texel_offset = vec2(0.0, -1.0) + vec2(texel0to1ratio_nearest, -texel1to2ratio_nearest); + const vec2 sample0diag_texel_offset = vec2(-1.0, -1.0) + vec2(-texel1to2ratio_nearest, -texel1to2ratio_nearest); + const vec2 sample1_texel_offset = vec2(2.0, 0.0) + vec2(texel2to3ratio, texel0to1ratio); + const vec2 sample2_texel_offset = vec2(0.0, 2.0) + vec2(texel0to1ratio, texel2to3ratio); + const vec2 sample3_texel_offset = vec2(2.0, 2.0) + vec2(texel2to3ratio, texel2to3ratio); + + // CALCULATE KERNEL WEIGHTS: + // Statically compute bilinear sample weights at each destination fragment + // from the sum of their 4 texel weights (details in tex2Dblur12x12shared). + #define GET_TEXEL_QUAD_WEIGHTS(xoff, yoff) \ + (exp(-LENGTH_SQ(vec2(xoff, yoff)) * denom_inv) + \ + exp(-LENGTH_SQ(vec2(xoff + 1.0, yoff)) * denom_inv) + \ + exp(-LENGTH_SQ(vec2(xoff, yoff + 1.0)) * denom_inv) + \ + exp(-LENGTH_SQ(vec2(xoff + 1.0, yoff + 1.0)) * denom_inv)) + // We only need 9 of the 16 sample weights. Skip the following weights: + // 1adjx, 3adjx + // 2adjy, 3adjy + // 1diag, 2diag, 3diag + const float w0diag = GET_TEXEL_QUAD_WEIGHTS(-2.0, -2.0); + const float w0adjy = GET_TEXEL_QUAD_WEIGHTS(0.0, -2.0); + const float w1adjy = GET_TEXEL_QUAD_WEIGHTS(2.0, -2.0); + const float w0adjx = GET_TEXEL_QUAD_WEIGHTS(-2.0, 0.0); + const float w0curr = GET_TEXEL_QUAD_WEIGHTS(0.0, 0.0); + const float w1curr = GET_TEXEL_QUAD_WEIGHTS(2.0, 0.0); + const float w2adjx = GET_TEXEL_QUAD_WEIGHTS(-2.0, 2.0); + const float w2curr = GET_TEXEL_QUAD_WEIGHTS(0.0, 2.0); + const float w3curr = GET_TEXEL_QUAD_WEIGHTS(2.0, 2.0); + #undef GET_TEXEL_QUAD_WEIGHTS + // Get the weight sum inverse (normalization factor): + const float weight_sum_inv = 1.0/(w0curr + w1curr + w2curr + w3curr + + w0adjx + w2adjx + w0adjy + w1adjy + w0diag); + // Statically pack some weights for runtime: + const vec4 w0 = vec4(w0curr, w0adjx, w0adjy, w0diag); + + // LOAD TEXTURE SAMPLES THIS FRAGMENT IS RESPONSIBLE FOR: + // Get a uv vector from texel 0q0 of this quadrant to texel 0q3: + const vec2 dxdy_curr = dxdy * quad_vector.xy; + // Load bilinear samples for the current quadrant (for this fragment): + const vec3 sample0curr = tex2D_linearize(texture, tex_uv.xy + dxdy_curr * sample0curr_texel_offset).rgb; + const vec3 sample0adjx = tex2D_linearize(texture, tex_uv.xy + dxdy_curr * sample0adjx_texel_offset).rgb; + const vec3 sample0adjy = tex2D_linearize(texture, tex_uv.xy + dxdy_curr * sample0adjy_texel_offset).rgb; + const vec3 sample0diag = tex2D_linearize(texture, tex_uv.xy + dxdy_curr * sample0diag_texel_offset).rgb; + const vec3 sample1curr = tex2Dlod_linearize(texture, tex_uv + uv2_to_uv4(dxdy_curr * sample1_texel_offset)).rgb; + const vec3 sample2curr = tex2Dlod_linearize(texture, tex_uv + uv2_to_uv4(dxdy_curr * sample2_texel_offset)).rgb; + const vec3 sample3curr = tex2Dlod_linearize(texture, tex_uv + uv2_to_uv4(dxdy_curr * sample3_texel_offset)).rgb; + + // GATHER NEIGHBORING SAMPLES AND SUM WEIGHTED SAMPLES: + // Fetch the samples from other fragments in the 2x2 quad: + vec3 sample1adjx, sample1adjy, sample1diag; + vec3 sample2adjx, sample2adjy, sample2diag; + quad_gather(quad_vector, sample1curr, sample1adjx, sample1adjy, sample1diag); + quad_gather(quad_vector, sample2curr, sample2adjx, sample2adjy, sample2diag); + // Statically normalize weights (so total = 1.0), and sum weighted samples. + // Fill each row of a matrix with an rgb sample and pre-multiply by the + // weights to obtain a weighted result for sample1*, and handle the rest + // of the weights more directly/verbosely: + vec3 sum = vec3(0.0); + sum += (mat4x3(sample0curr, sample0adjx, sample0adjy, sample0diag) * w0); + sum += w1curr * sample1curr + w1adjy * sample1adjy + w2curr * sample2curr + + w2adjx * sample2adjx + w3curr * sample3curr; + return sum * weight_sum_inv; +} + + +/////////////////////// MAX OPTIMAL SIGMA BLUR WRAPPERS ////////////////////// + +// The following blurs are static wrappers around the dynamic blurs above. +// HOPEFULLY, the compiler will be smart enough to do constant-folding. + +// Resizable separable blurs: +vec3 tex2Dblur11resize(const sampler2D texture, const vec2 tex_uv, + const vec2 dxdy) +{ + return tex2Dblur11resize(texture, tex_uv, dxdy, blur11_std_dev); +} +vec3 tex2Dblur9resize(const sampler2D texture, const vec2 tex_uv, + const vec2 dxdy) +{ + return tex2Dblur9resize(texture, tex_uv, dxdy, blur9_std_dev); +} +vec3 tex2Dblur7resize(const sampler2D texture, const vec2 tex_uv, + const vec2 dxdy) +{ + return tex2Dblur7resize(texture, tex_uv, dxdy, blur7_std_dev); +} +vec3 tex2Dblur5resize(const sampler2D texture, const vec2 tex_uv, + const vec2 dxdy) +{ + return tex2Dblur5resize(texture, tex_uv, dxdy, blur5_std_dev); +} +vec3 tex2Dblur3resize(const sampler2D texture, const vec2 tex_uv, + const vec2 dxdy) +{ + return tex2Dblur3resize(texture, tex_uv, dxdy, blur3_std_dev); +} +// Fast separable blurs: +vec3 tex2Dblur11fast(const sampler2D texture, const vec2 tex_uv, + const vec2 dxdy) +{ + return tex2Dblur11fast(texture, tex_uv, dxdy, blur11_std_dev); +} +vec3 tex2Dblur9fast(const sampler2D texture, const vec2 tex_uv, + const vec2 dxdy) +{ + return tex2Dblur9fast(texture, tex_uv, dxdy, blur9_std_dev); +} +vec3 tex2Dblur7fast(const sampler2D texture, const vec2 tex_uv, + const vec2 dxdy) +{ + return tex2Dblur7fast(texture, tex_uv, dxdy, blur7_std_dev); +} +vec3 tex2Dblur5fast(const sampler2D texture, const vec2 tex_uv, + const vec2 dxdy) +{ + return tex2Dblur5fast(texture, tex_uv, dxdy, blur5_std_dev); +} +vec3 tex2Dblur3fast(const sampler2D texture, const vec2 tex_uv, + const vec2 dxdy) +{ + return tex2Dblur3fast(texture, tex_uv, dxdy, blur3_std_dev); +} +// Huge, "fast" separable blurs: +vec3 tex2Dblur43fast(const sampler2D texture, const vec2 tex_uv, + const vec2 dxdy) +{ + return tex2Dblur43fast(texture, tex_uv, dxdy, blur43_std_dev); +} +vec3 tex2Dblur31fast(const sampler2D texture, const vec2 tex_uv, + const vec2 dxdy) +{ + return tex2Dblur31fast(texture, tex_uv, dxdy, blur31_std_dev); +} +vec3 tex2Dblur25fast(const sampler2D texture, const vec2 tex_uv, + const vec2 dxdy) +{ + return tex2Dblur25fast(texture, tex_uv, dxdy, blur25_std_dev); +} +vec3 tex2Dblur17fast(const sampler2D texture, const vec2 tex_uv, + const vec2 dxdy) +{ + return tex2Dblur17fast(texture, tex_uv, dxdy, blur17_std_dev); +} +// Resizable one-pass blurs: +vec3 tex2Dblur3x3resize(const sampler2D texture, const vec2 tex_uv, + const vec2 dxdy) +{ + return tex2Dblur3x3resize(texture, tex_uv, dxdy, blur3_std_dev); +} +// "Fast" one-pass blurs: +vec3 tex2Dblur9x9(const sampler2D texture, const vec2 tex_uv, + const vec2 dxdy) +{ + return tex2Dblur9x9(texture, tex_uv, dxdy, blur9_std_dev); +} +vec3 tex2Dblur7x7(const sampler2D texture, const vec2 tex_uv, + const vec2 dxdy) +{ + return tex2Dblur7x7(texture, tex_uv, dxdy, blur7_std_dev); +} +vec3 tex2Dblur5x5(const sampler2D texture, const vec2 tex_uv, + const vec2 dxdy) +{ + return tex2Dblur5x5(texture, tex_uv, dxdy, blur5_std_dev); +} +vec3 tex2Dblur3x3(const sampler2D texture, const vec2 tex_uv, + const vec2 dxdy) +{ + return tex2Dblur3x3(texture, tex_uv, dxdy, blur3_std_dev); +} +// "Fast" shared-sample one-pass blurs: +vec3 tex2Dblur12x12shared(const sampler2D texture, + const vec4 tex_uv, const vec2 dxdy, const vec4 quad_vector) +{ + return tex2Dblur12x12shared(texture, tex_uv, dxdy, quad_vector, blur12_std_dev); +} +vec3 tex2Dblur10x10shared(const sampler2D texture, + const vec4 tex_uv, const vec2 dxdy, const vec4 quad_vector) +{ + return tex2Dblur10x10shared(texture, tex_uv, dxdy, quad_vector, blur10_std_dev); +} +vec3 tex2Dblur8x8shared(const sampler2D texture, + const vec4 tex_uv, const vec2 dxdy, const vec4 quad_vector) +{ + return tex2Dblur8x8shared(texture, tex_uv, dxdy, quad_vector, blur8_std_dev); +} +vec3 tex2Dblur6x6shared(const sampler2D texture, + const vec4 tex_uv, const vec2 dxdy, const vec4 quad_vector) +{ + return tex2Dblur6x6shared(texture, tex_uv, dxdy, quad_vector, blur6_std_dev); +} + + +#endif // BLUR_FUNCTIONS_H + diff --git a/crt/shaders/crt-royale/src/blur-functions.h b/crt/shaders/crt-royale/src/blur-functions.h new file mode 100644 index 0000000..25b83dc --- /dev/null +++ b/crt/shaders/crt-royale/src/blur-functions.h @@ -0,0 +1,281 @@ +#define BLUR_FUNCTIONS + +///////////////////////////////// MIT LICENSE //////////////////////////////// + +// Copyright (C) 2014 TroggleMonkey +// +// Permission is hereby granted, free of charge, to any person obtaining a copy +// of this software and associated documentation files (the "Software"), to +// deal in the Software without restriction, including without limitation the +// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or +// sell copies of the Software, and to permit persons to whom the Software is +// furnished to do so, subject to the following conditions: +// +// The above copyright notice and this permission notice shall be included in +// all copies or substantial portions of the Software. +// +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING +// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS +// IN THE SOFTWARE. + +///////////////////////////////// DESCRIPTION //////////////////////////////// + +// This file provides reusable one-pass and separable (two-pass) blurs. +// Requires: All blurs share these requirements (dxdy requirement is split): +// 1.) All requirements of gamma-management.h must be satisfied! +// 2.) filter_linearN must == "true" in your .cgp preset unless +// you're using tex2DblurNresize at 1x scale. +// 3.) mipmap_inputN must == "true" in your .cgp preset if +// IN.output_size < IN.video_size. +// 4.) IN.output_size == IN.video_size / pow(2, M), where M is some +// positive integer. tex2Dblur*resize can resize arbitrarily +// (and the blur will be done after resizing), but arbitrary +// resizes "fail" with other blurs due to the way they mix +// static weights with bilinear sample exploitation. +// 5.) In general, dxdy should contain the uv pixel spacing: +// dxdy = (IN.video_size/IN.output_size)/IN.texture_size +// 6.) For separable blurs (tex2DblurNresize and tex2DblurNfast), +// zero out the dxdy component in the unblurred dimension: +// dxdy = vec2(dxdy.x, 0.0) or vec2(0.0, dxdy.y) +// Many blurs share these requirements: +// 1.) One-pass blurs require scale_xN == scale_yN or scales > 1.0, +// or they will blur more in the lower-scaled dimension. +// 2.) One-pass shared sample blurs require ddx(), ddy(), and +// tex2Dlod() to be supported by the current Cg profile, and +// the drivers must support high-quality derivatives. +// 3.) One-pass shared sample blurs require: +// tex_uv.w == log2(IN.video_size/IN.output_size).y; +// Non-wrapper blurs share this requirement: +// 1.) sigma is the intended standard deviation of the blur +// Wrapper blurs share this requirement, which is automatically +// met (unless OVERRIDE_BLUR_STD_DEVS is #defined; see below): +// 1.) blurN_std_dev must be global static const float values +// specifying standard deviations for Nx blurs in units +// of destination pixels +// Optional: 1.) The including file (or an earlier included file) may +// optionally #define USE_BINOMIAL_BLUR_STD_DEVS to replace +// default standard deviations with those matching a binomial +// distribution. (See below for details/properties.) +// 2.) The including file (or an earlier included file) may +// optionally #define OVERRIDE_BLUR_STD_DEVS and override: +// static const float blur3_std_dev +// static const float blur4_std_dev +// static const float blur5_std_dev +// static const float blur6_std_dev +// static const float blur7_std_dev +// static const float blur8_std_dev +// static const float blur9_std_dev +// static const float blur10_std_dev +// static const float blur11_std_dev +// static const float blur12_std_dev +// static const float blur17_std_dev +// static const float blur25_std_dev +// static const float blur31_std_dev +// static const float blur43_std_dev +// 3.) The including file (or an earlier included file) may +// optionally #define OVERRIDE_ERROR_BLURRING and override: +// static const float error_blurring +// This tuning value helps mitigate weighting errors from one- +// pass shared-sample blurs sharing bilinear samples between +// fragments. Values closer to 0.0 have "correct" blurriness +// but allow more artifacts, and values closer to 1.0 blur away +// artifacts by sampling closer to halfway between texels. +// UPDATE 6/21/14: The above static constants may now be overridden +// by non-static uniform constants. This permits exposing blur +// standard deviations as runtime GUI shader parameters. However, +// using them keeps weights from being statically computed, and the +// speed hit depends on the blur: On my machine, uniforms kill over +// 53% of the framerate with tex2Dblur12x12shared, but they only +// drop the framerate by about 18% with tex2Dblur11fast. +// Quality and Performance Comparisons: +// For the purposes of the following discussion, "no sRGB" means +// GAMMA_ENCODE_EVERY_FBO is #defined, and "sRGB" means it isn't. +// 1.) tex2DblurNfast is always faster than tex2DblurNresize. +// 2.) tex2DblurNresize functions are the only ones that can arbitrarily resize +// well, because they're the only ones that don't exploit bilinear samples. +// This also means they're the only functions which can be truly gamma- +// correct without linear (or sRGB FBO) input, but only at 1x scale. +// 3.) One-pass shared sample blurs only have a speed advantage without sRGB. +// They also have some inaccuracies due to their shared-[bilinear-]sample +// design, which grow increasingly bothersome for smaller blurs and higher- +// frequency source images (relative to their resolution). I had high +// hopes for them, but their most realistic use case is limited to quickly +// reblurring an already blurred input at full resolution. Otherwise: +// a.) If you're blurring a low-resolution source, you want a better blur. +// b.) If you're blurring a lower mipmap, you want a better blur. +// c.) If you're blurring a high-resolution, high-frequency source, you +// want a better blur. +// 4.) The one-pass blurs without shared samples grow slower for larger blurs, +// but they're competitive with separable blurs at 5x5 and smaller, and +// even tex2Dblur7x7 isn't bad if you're wanting to conserve passes. +// Here are some framerates from a GeForce 8800GTS. The first pass resizes to +// viewport size (4x in this test) and linearizes for sRGB codepaths, and the +// remaining passes perform 6 full blurs. Mipmapped tests are performed at the +// same scale, so they just measure the cost of mipmapping each FBO (only every +// other FBO is mipmapped for separable blurs, to mimic realistic usage). +// Mipmap Neither sRGB+Mipmap sRGB Function +// 76.0 92.3 131.3 193.7 tex2Dblur3fast +// 63.2 74.4 122.4 175.5 tex2Dblur3resize +// 93.7 121.2 159.3 263.2 tex2Dblur3x3 +// 59.7 68.7 115.4 162.1 tex2Dblur3x3resize +// 63.2 74.4 122.4 175.5 tex2Dblur5fast +// 49.3 54.8 100.0 132.7 tex2Dblur5resize +// 59.7 68.7 115.4 162.1 tex2Dblur5x5 +// 64.9 77.2 99.1 137.2 tex2Dblur6x6shared +// 55.8 63.7 110.4 151.8 tex2Dblur7fast +// 39.8 43.9 83.9 105.8 tex2Dblur7resize +// 40.0 44.2 83.2 104.9 tex2Dblur7x7 +// 56.4 65.5 71.9 87.9 tex2Dblur8x8shared +// 49.3 55.1 99.9 132.5 tex2Dblur9fast +// 33.3 36.2 72.4 88.0 tex2Dblur9resize +// 27.8 29.7 61.3 72.2 tex2Dblur9x9 +// 37.2 41.1 52.6 60.2 tex2Dblur10x10shared +// 44.4 49.5 91.3 117.8 tex2Dblur11fast +// 28.8 30.8 63.6 75.4 tex2Dblur11resize +// 33.6 36.5 40.9 45.5 tex2Dblur12x12shared +// TODO: Fill in benchmarks for new untested blurs. +// tex2Dblur17fast +// tex2Dblur25fast +// tex2Dblur31fast +// tex2Dblur43fast +// tex2Dblur3x3resize + +///////////////////////////// SETTINGS MANAGEMENT //////////////////////////// + +// Set static standard deviations, but allow users to override them with their +// own constants (even non-static uniforms if they're okay with the speed hit): +#ifndef OVERRIDE_BLUR_STD_DEVS + // blurN_std_dev values are specified in terms of dxdy strides. + #ifdef USE_BINOMIAL_BLUR_STD_DEVS + // By request, we can define standard deviations corresponding to a + // binomial distribution with p = 0.5 (related to Pascal's triangle). + // This distribution works such that blurring multiple times should + // have the same result as a single larger blur. These values are + // larger than default for blurs up to 6x and smaller thereafter. + const float blur3_std_dev = 0.84931640625; + const float blur4_std_dev = 0.84931640625; + const float blur5_std_dev = 1.0595703125; + const float blur6_std_dev = 1.06591796875; + const float blur7_std_dev = 1.17041015625; + const float blur8_std_dev = 1.1720703125; + const float blur9_std_dev = 1.2259765625; + const float blur10_std_dev = 1.21982421875; + const float blur11_std_dev = 1.25361328125; + const float blur12_std_dev = 1.2423828125; + const float blur17_std_dev = 1.27783203125; + const float blur25_std_dev = 1.2810546875; + const float blur31_std_dev = 1.28125; + const float blur43_std_dev = 1.28125; + #else + // The defaults are the largest values that keep the largest unused + // blur term on each side <= 1.0/256.0. (We could get away with more + // or be more conservative, but this compromise is pretty reasonable.) + const float blur3_std_dev = 0.62666015625; + const float blur4_std_dev = 0.66171875; + const float blur5_std_dev = 0.9845703125; + const float blur6_std_dev = 1.02626953125; + const float blur7_std_dev = 1.36103515625; + const float blur8_std_dev = 1.4080078125; + const float blur9_std_dev = 1.7533203125; + const float blur10_std_dev = 1.80478515625; + const float blur11_std_dev = 2.15986328125; + const float blur12_std_dev = 2.215234375; + const float blur17_std_dev = 3.45535583496; + const float blur25_std_dev = 5.3409576416; + const float blur31_std_dev = 6.86488037109; + const float blur43_std_dev = 10.1852050781; + #endif // USE_BINOMIAL_BLUR_STD_DEVS +#endif // OVERRIDE_BLUR_STD_DEVS + +#ifndef OVERRIDE_ERROR_BLURRING + // error_blurring should be in [0.0, 1.0]. Higher values reduce ringing + // in shared-sample blurs but increase blurring and feature shifting. + const float error_blurring = 0.5; +#endif + +// Make a length squared helper macro (for usage with static constants): +#define LENGTH_SQ(vec) (dot(vec, vec)) + +/////////////////////////////////// HELPERS ////////////////////////////////// + +vec4 uv2_to_uv4(vec2 tex_uv) +{ + // Make a vec2 uv offset safe for adding to vec4 tex2Dlod coords: + return vec4(tex_uv, 0.0, 0.0); +} + +// Make a length squared helper macro (for usage with static constants): +#define LENGTH_SQ(vec) (dot(vec, vec)) + +float get_fast_gaussian_weight_sum_inv(const float sigma) +{ + // We can use the Gaussian integral to calculate the asymptotic weight for + // the center pixel. Since the unnormalized center pixel weight is 1.0, + // the normalized weight is the same as the weight sum inverse. Given a + // large enough blur (9+), the asymptotic weight sum is close and faster: + // center_weight = 0.5 * + // (erf(0.5/(sigma*sqrt(2.0))) - erf(-0.5/(sigma*sqrt(2.0)))) + // erf(-x) == -erf(x), so we get 0.5 * (2.0 * erf(blah blah)): + // However, we can get even faster results with curve-fitting. These are + // also closer than the asymptotic results, because they were constructed + // from 64 blurs sizes from [3, 131) and 255 equally-spaced sigmas from + // (0, blurN_std_dev), so the results for smaller sigmas are biased toward + // smaller blurs. The max error is 0.0031793913. + // Relative FPS: 134.3 with erf, 135.8 with curve-fitting. + //static const float temp = 0.5/sqrt(2.0); + //return erf(temp/sigma); + return min(exp(exp(0.348348412457428/ + (sigma - 0.0860587260734721))), 0.399334576340352/sigma); +} + +//////////////////// ARBITRARILY RESIZABLE ONE-PASS BLURS //////////////////// + +vec3 tex2Dblur3x3resize(const sampler2D tex, const vec2 tex_uv, + const vec2 dxdy, const float sigma) +{ + // Requires: Global requirements must be met (see file description). + // Returns: A 3x3 Gaussian blurred mipmapped texture lookup of the + // resized input. + // Description: + // This is the only arbitrarily resizable one-pass blur; tex2Dblur5x5resize + // would perform like tex2Dblur9x9, MUCH slower than tex2Dblur5resize. + const float denom_inv = 0.5/(sigma*sigma); + // Load each sample. We need all 3x3 samples. Quad-pixel communication + // won't help either: This should perform like tex2Dblur5x5, but sharing a + // 4x4 sample field would perform more like tex2Dblur8x8shared (worse). + const vec2 sample4_uv = tex_uv; + const vec2 dx = vec2(dxdy.x, 0.0); + const vec2 dy = vec2(0.0, dxdy.y); + const vec2 sample1_uv = sample4_uv - dy; + const vec2 sample7_uv = sample4_uv + dy; + const vec3 sample0 = tex2D_linearize(tex, sample1_uv - dx).rgb; + const vec3 sample1 = tex2D_linearize(tex, sample1_uv).rgb; + const vec3 sample2 = tex2D_linearize(tex, sample1_uv + dx).rgb; + const vec3 sample3 = tex2D_linearize(tex, sample4_uv - dx).rgb; + const vec3 sample4 = tex2D_linearize(tex, sample4_uv).rgb; + const vec3 sample5 = tex2D_linearize(tex, sample4_uv + dx).rgb; + const vec3 sample6 = tex2D_linearize(tex, sample7_uv - dx).rgb; + const vec3 sample7 = tex2D_linearize(tex, sample7_uv).rgb; + const vec3 sample8 = tex2D_linearize(tex, sample7_uv + dx).rgb; + // Statically compute Gaussian sample weights: + const float w4 = 1.0; + const float w1_3_5_7 = exp(-LENGTH_SQ(vec2(1.0, 0.0)) * denom_inv); + const float w0_2_6_8 = exp(-LENGTH_SQ(vec2(1.0, 1.0)) * denom_inv); + const float weight_sum_inv = 1.0/(w4 + 4.0 * (w1_3_5_7 + w0_2_6_8)); + // Weight and sum the samples: + const vec3 sum = w4 * sample4 + + w1_3_5_7 * (sample1 + sample3 + sample5 + sample7) + + w0_2_6_8 * (sample0 + sample2 + sample6 + sample8); + return sum * weight_sum_inv; +} + +// Resizable one-pass blurs: +vec3 tex2Dblur3x3resize(const sampler2D texture, const vec2 tex_uv, + const vec2 dxdy) +{ + return tex2Dblur3x3resize(texture, tex_uv, dxdy, blur3_std_dev); +} \ No newline at end of file diff --git a/crt/shaders/crt-royale/src/crt-royale-bloom-approx.slang b/crt/shaders/crt-royale/src/crt-royale-bloom-approx.slang new file mode 100644 index 0000000..77aa1c1 --- /dev/null +++ b/crt/shaders/crt-royale/src/crt-royale-bloom-approx.slang @@ -0,0 +1,349 @@ +#version 450 + +layout(push_constant) uniform Push +{ + vec4 SourceSize; + vec4 OriginalSize; + vec4 OutputSize; + uint FrameCount; + vec4 ORIG_LINEARIZEDSize; +} registers; + +#include "params.inc" + +///////////////////////////// GPL LICENSE NOTICE ///////////////////////////// + +// crt-royale: A full-featured CRT shader, with cheese. +// Copyright (C) 2014 TroggleMonkey +// +// This program is free software; you can redistribute it and/or modify it +// under the terms of the GNU General Public License as published by the Free +// Software Foundation; either version 2 of the License, or any later version. +// +// This program is distributed in the hope that it will be useful, but WITHOUT +// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or +// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for +// more details. +// +// You should have received a copy of the GNU General Public License along with +// this program; if not, write to the Free Software Foundation, Inc., 59 Temple +// Place, Suite 330, Boston, MA 02111-1307 USA + + +////////////////////////////////// INCLUDES ////////////////////////////////// + +#include "includes.h" + +/////////////////////////////////// HELPERS ////////////////////////////////// + +/////////////////////////////////// HELPERS ////////////////////////////////// + +vec3 tex2Dresize_gaussian4x4(const sampler2D tex, const vec2 tex_uv, + const vec2 dxdy, const vec2 texture_size, const vec2 texture_size_inv, + const vec2 tex_uv_to_pixel_scale, const float sigma) +{ + // Requires: 1.) All requirements of gamma-management.h must be satisfied! + // 2.) filter_linearN must == "true" in your .cgp preset. + // 3.) mipmap_inputN must == "true" in your .cgp preset if + // IN.output_size << SRC.video_size. + // 4.) dxdy should contain the uv pixel spacing: + // dxdy = max(vec2(1.0), + // SRC.video_size/IN.output_size)/SRC.texture_size; + // 5.) texture_size == SRC.texture_size + // 6.) texture_size_inv == vec2(1.0)/SRC.texture_size + // 7.) tex_uv_to_pixel_scale == IN.output_size * + // SRC.texture_size / SRC.video_size; + // 8.) sigma is the desired Gaussian standard deviation, in + // terms of output pixels. It should be < ~0.66171875 to + // ensure the first unused sample (outside the 4x4 box) has + // a weight < 1.0/256.0. + // Returns: A true 4x4 Gaussian resize of the input. + // Description: + // Given correct inputs, this Gaussian resizer samples 4 pixel locations + // along each downsized dimension and/or 4 texel locations along each + // upsized dimension. It computes dynamic weights based on the pixel-space + // distance of each sample from the destination pixel. It is arbitrarily + // resizable and higher quality than tex2Dblur3x3_resize, but it's slower. + // TODO: Move this to a more suitable file once there are others like it. + const float denom_inv = 0.5/(sigma*sigma); + // We're taking 4x4 samples, and we're snapping to texels for upsizing. + // Find texture coords for sample 5 (second row, second column): + const vec2 curr_texel = tex_uv * texture_size; + const vec2 prev_texel = + floor(curr_texel - vec2(under_half)) + vec2(0.5); + const vec2 prev_texel_uv = prev_texel * texture_size_inv; + const bvec2 snap = lessThanEqual(dxdy , texture_size_inv); + const vec2 sample5_downsize_uv = tex_uv - 0.5 * dxdy; + const vec2 sample5_uv = mix(sample5_downsize_uv, prev_texel_uv, snap); + // Compute texture coords for other samples: + const vec2 dx = vec2(dxdy.x, 0.0); + const vec2 sample0_uv = sample5_uv - dxdy; + const vec2 sample10_uv = sample5_uv + dxdy; + const vec2 sample15_uv = sample5_uv + 2.0 * dxdy; + const vec2 sample1_uv = sample0_uv + dx; + const vec2 sample2_uv = sample0_uv + 2.0 * dx; + const vec2 sample3_uv = sample0_uv + 3.0 * dx; + const vec2 sample4_uv = sample5_uv - dx; + const vec2 sample6_uv = sample5_uv + dx; + const vec2 sample7_uv = sample5_uv + 2.0 * dx; + const vec2 sample8_uv = sample10_uv - 2.0 * dx; + const vec2 sample9_uv = sample10_uv - dx; + const vec2 sample11_uv = sample10_uv + dx; + const vec2 sample12_uv = sample15_uv - 3.0 * dx; + const vec2 sample13_uv = sample15_uv - 2.0 * dx; + const vec2 sample14_uv = sample15_uv - dx; + // Load each sample: + const vec3 sample0 = tex2D_linearize(tex, sample0_uv).rgb; + const vec3 sample1 = tex2D_linearize(tex, sample1_uv).rgb; + const vec3 sample2 = tex2D_linearize(tex, sample2_uv).rgb; + const vec3 sample3 = tex2D_linearize(tex, sample3_uv).rgb; + const vec3 sample4 = tex2D_linearize(tex, sample4_uv).rgb; + const vec3 sample5 = tex2D_linearize(tex, sample5_uv).rgb; + const vec3 sample6 = tex2D_linearize(tex, sample6_uv).rgb; + const vec3 sample7 = tex2D_linearize(tex, sample7_uv).rgb; + const vec3 sample8 = tex2D_linearize(tex, sample8_uv).rgb; + const vec3 sample9 = tex2D_linearize(tex, sample9_uv).rgb; + const vec3 sample10 = tex2D_linearize(tex, sample10_uv).rgb; + const vec3 sample11 = tex2D_linearize(tex, sample11_uv).rgb; + const vec3 sample12 = tex2D_linearize(tex, sample12_uv).rgb; + const vec3 sample13 = tex2D_linearize(tex, sample13_uv).rgb; + const vec3 sample14 = tex2D_linearize(tex, sample14_uv).rgb; + const vec3 sample15 = tex2D_linearize(tex, sample15_uv).rgb; + // Compute destination pixel offsets for each sample: + const vec2 dest_pixel = tex_uv * tex_uv_to_pixel_scale; + const vec2 sample0_offset = sample0_uv * tex_uv_to_pixel_scale - dest_pixel; + const vec2 sample1_offset = sample1_uv * tex_uv_to_pixel_scale - dest_pixel; + const vec2 sample2_offset = sample2_uv * tex_uv_to_pixel_scale - dest_pixel; + const vec2 sample3_offset = sample3_uv * tex_uv_to_pixel_scale - dest_pixel; + const vec2 sample4_offset = sample4_uv * tex_uv_to_pixel_scale - dest_pixel; + const vec2 sample5_offset = sample5_uv * tex_uv_to_pixel_scale - dest_pixel; + const vec2 sample6_offset = sample6_uv * tex_uv_to_pixel_scale - dest_pixel; + const vec2 sample7_offset = sample7_uv * tex_uv_to_pixel_scale - dest_pixel; + const vec2 sample8_offset = sample8_uv * tex_uv_to_pixel_scale - dest_pixel; + const vec2 sample9_offset = sample9_uv * tex_uv_to_pixel_scale - dest_pixel; + const vec2 sample10_offset = sample10_uv * tex_uv_to_pixel_scale - dest_pixel; + const vec2 sample11_offset = sample11_uv * tex_uv_to_pixel_scale - dest_pixel; + const vec2 sample12_offset = sample12_uv * tex_uv_to_pixel_scale - dest_pixel; + const vec2 sample13_offset = sample13_uv * tex_uv_to_pixel_scale - dest_pixel; + const vec2 sample14_offset = sample14_uv * tex_uv_to_pixel_scale - dest_pixel; + const vec2 sample15_offset = sample15_uv * tex_uv_to_pixel_scale - dest_pixel; + // Compute Gaussian sample weights: + const float w0 = exp(-LENGTH_SQ(sample0_offset) * denom_inv); + const float w1 = exp(-LENGTH_SQ(sample1_offset) * denom_inv); + const float w2 = exp(-LENGTH_SQ(sample2_offset) * denom_inv); + const float w3 = exp(-LENGTH_SQ(sample3_offset) * denom_inv); + const float w4 = exp(-LENGTH_SQ(sample4_offset) * denom_inv); + const float w5 = exp(-LENGTH_SQ(sample5_offset) * denom_inv); + const float w6 = exp(-LENGTH_SQ(sample6_offset) * denom_inv); + const float w7 = exp(-LENGTH_SQ(sample7_offset) * denom_inv); + const float w8 = exp(-LENGTH_SQ(sample8_offset) * denom_inv); + const float w9 = exp(-LENGTH_SQ(sample9_offset) * denom_inv); + const float w10 = exp(-LENGTH_SQ(sample10_offset) * denom_inv); + const float w11 = exp(-LENGTH_SQ(sample11_offset) * denom_inv); + const float w12 = exp(-LENGTH_SQ(sample12_offset) * denom_inv); + const float w13 = exp(-LENGTH_SQ(sample13_offset) * denom_inv); + const float w14 = exp(-LENGTH_SQ(sample14_offset) * denom_inv); + const float w15 = exp(-LENGTH_SQ(sample15_offset) * denom_inv); + const float weight_sum_inv = 1.0/( + w0 + w1 + w2 + w3 + w4 + w5 + w6 + w7 + + w8 +w9 + w10 + w11 + w12 + w13 + w14 + w15); + // Weight and sum the samples: + const vec3 sum = w0 * sample0 + w1 * sample1 + w2 * sample2 + w3 * sample3 + + w4 * sample4 + w5 * sample5 + w6 * sample6 + w7 * sample7 + + w8 * sample8 + w9 * sample9 + w10 * sample10 + w11 * sample11 + + w12 * sample12 + w13 * sample13 + w14 * sample14 + w15 * sample15; + return sum * weight_sum_inv; +} + +#pragma stage vertex +layout(location = 0) in vec4 Position; +layout(location = 1) in vec2 TexCoord; +layout(location = 0) out vec2 tex_uv; +layout(location = 1) out float estimated_viewport_size_x; +layout(location = 2) out vec2 blur_dxdy; +layout(location = 3) out vec2 uv_scanline_step; +layout(location = 4) out vec2 texture_size_inv; +layout(location = 5) out vec2 tex_uv_to_pixel_scale; + +void main() +{ + // This vertex shader copies blurs/vertex-shader-blur-one-pass-resize.h, + // except we're using a different source image. + gl_Position = params.MVP * Position; + const vec2 video_uv = TexCoord; + tex_uv = video_uv; + // The last pass (vertical scanlines) had a viewport y scale, so we can + // use it to calculate a better runtime sigma: + estimated_viewport_size_x = registers.SourceSize.y * params.geom_aspect_ratio_x / params.geom_aspect_ratio_y; + + // Get the uv sample distance between output pixels. We're using a resize + // blur, so arbitrary upsizing will be acceptable if filter_linearN = + // "true," and arbitrary downsizing will be acceptable if mipmap_inputN = + // "true" too. The blur will be much more accurate if a true 4x4 Gaussian + // resize is used instead of tex2Dblur3x3_resize (which samples between + // texels even for upsizing). + const vec2 dxdy_min_scale = registers.ORIG_LINEARIZEDSize.xy / registers.OutputSize.xy; + texture_size_inv = vec2(1.0) * registers.ORIG_LINEARIZEDSize.zw; + if(bloom_approx_filter > 1.5) // 4x4 true Gaussian resize + { + // For upsizing, we'll snap to texels and sample the nearest 4. + const vec2 dxdy_scale = max(dxdy_min_scale, vec2(1.0)); + blur_dxdy = dxdy_scale * texture_size_inv; + } + else + { + const vec2 dxdy_scale = dxdy_min_scale; + blur_dxdy = dxdy_scale * texture_size_inv; + } + + tex_uv_to_pixel_scale = registers.OutputSize.xy; +// texture_size_inv = texture_size_inv; <- commented out because it's pointless in slang + + // Detecting interlacing again here lets us apply convergence offsets in + // this pass. il_step_multiple contains the (texel, scanline) step + // multiple: 1 for progressive, 2 for interlaced. + const vec2 orig_video_size = registers.ORIG_LINEARIZEDSize.xy; + float interlace_check = 0.0; + if (is_interlaced(orig_video_size.y) == true) interlace_check = 1.0; + const float y_step = 1.0 + interlace_check; + const vec2 il_step_multiple = vec2(1.0, y_step); + // Get the uv distance between (texels, same-field scanlines): + uv_scanline_step = il_step_multiple * registers.ORIG_LINEARIZEDSize.zw; +} + +#pragma stage fragment +layout(location = 0) in vec2 tex_uv; +layout(location = 1) in float estimated_viewport_size_x; +layout(location = 2) in vec2 blur_dxdy; +layout(location = 3) in vec2 uv_scanline_step; +layout(location = 4) in vec2 texture_size_inv; +layout(location = 5) in vec2 tex_uv_to_pixel_scale; +layout(location = 0) out vec4 FragColor; +layout(set = 0, binding = 2) uniform sampler2D Source; +layout(set = 0, binding = 3) uniform sampler2D ORIG_LINEARIZED; + +void main() +{ + // Would a viewport-relative size work better for this pass? (No.) + // PROS: + // 1.) Instead of writing an absolute size to user-cgp-constants.h, we'd + // write a viewport scale. That number could be used to directly scale + // the viewport-resolution bloom sigma and/or triad size to a smaller + // scale. This way, we could calculate an optimal dynamic sigma no + // matter how the dot pitch is specified. + // CONS: + // 1.) Texel smearing would be much worse at small viewport sizes, but + // performance would be much worse at large viewport sizes, so there + // would be no easy way to calculate a decent scale. + // 2.) Worse, we could no longer get away with using a constant-size blur! + // Instead, we'd have to face all the same difficulties as the real + // phosphor bloom, which requires static #ifdefs to decide the blur + // size based on the expected triad size...a dynamic value. + // 3.) Like the phosphor bloom, we'd have less control over making the blur + // size correct for an optical blur. That said, we likely overblur (to + // maintain brightness) more than the eye would do by itself: 20/20 + // human vision distinguishes ~1 arc minute, or 1/60 of a degree. The + // highest viewing angle recommendation I know of is THX's 40.04 degree + // recommendation, at which 20/20 vision can distinguish about 2402.4 + // lines. Assuming the "TV lines" definition, that means 1201.2 + // distinct light lines and 1201.2 distinct dark lines can be told + // apart, i.e. 1201.2 pairs of lines. This would correspond to 1201.2 + // pairs of alternating lit/unlit phosphors, so 2402.4 phosphors total + // (if they're alternately lit). That's a max of 800.8 triads. Using + // a more popular 30 degree viewing angle recommendation, 20/20 vision + // can distinguish 1800 lines, or 600 triads of alternately lit + // phosphors. In contrast, we currently blur phosphors all the way + // down to 341.3 triads to ensure full brightness. + // 4.) Realistically speaking, we're usually just going to use bilinear + // filtering in this pass anyway, but it only works well to limit + // bandwidth if it's done at a small constant scale. + + // Get the constants we need to sample: + const vec2 texture_size = registers.ORIG_LINEARIZEDSize.xy; + vec2 tex_uv_r, tex_uv_g, tex_uv_b; + + if(beam_misconvergence) + { + const vec2 convergence_offsets_r = get_convergence_offsets_r_vector(); + const vec2 convergence_offsets_g = get_convergence_offsets_g_vector(); + const vec2 convergence_offsets_b = get_convergence_offsets_b_vector(); + tex_uv_r = tex_uv - vec2(params.convergence_offset_x_r, params.convergence_offset_y_r) * uv_scanline_step; + tex_uv_g = tex_uv - vec2(params.convergence_offset_x_g, params.convergence_offset_y_g) * uv_scanline_step; + tex_uv_b = tex_uv - vec2(params.convergence_offset_x_b, params.convergence_offset_y_b) * uv_scanline_step; + } + // Get the blur sigma: + const float bloom_approx_sigma = get_bloom_approx_sigma(registers.OutputSize.x, estimated_viewport_size_x); + + // Sample the resized and blurred texture, and apply convergence offsets if + // necessary. Applying convergence offsets here triples our samples from + // 16/9/1 to 48/27/3, but faster and easier than sampling BLOOM_APPROX and + // HALATION_BLUR 3 times at full resolution every time they're used. + vec3 color_r, color_g, color_b, color; + if(bloom_approx_filter > 1.5) + { + // Use a 4x4 Gaussian resize. This is slower but technically correct. + if(beam_misconvergence) + { + color_r = tex2Dresize_gaussian4x4(ORIG_LINEARIZED, tex_uv_r, + blur_dxdy, texture_size, texture_size_inv, + tex_uv_to_pixel_scale, bloom_approx_sigma); + color_g = tex2Dresize_gaussian4x4(ORIG_LINEARIZED, tex_uv_g, + blur_dxdy, texture_size, texture_size_inv, + tex_uv_to_pixel_scale, bloom_approx_sigma); + color_b = tex2Dresize_gaussian4x4(ORIG_LINEARIZED, tex_uv_b, + blur_dxdy, texture_size, texture_size_inv, + tex_uv_to_pixel_scale, bloom_approx_sigma); + } + else + { + color = tex2Dresize_gaussian4x4(ORIG_LINEARIZED, tex_uv, + blur_dxdy, texture_size, texture_size_inv, + tex_uv_to_pixel_scale, bloom_approx_sigma); + } + } + else if(bloom_approx_filter > 0.5) + { + // Use a 3x3 resize blur. This is the softest option, because we're + // blurring already blurry bilinear samples. It doesn't play quite as + // nicely with convergence offsets, but it has its charms. + if(beam_misconvergence) + { + color_r = tex2Dblur3x3resize(ORIG_LINEARIZED, tex_uv_r, + blur_dxdy, bloom_approx_sigma); + color_g = tex2Dblur3x3resize(ORIG_LINEARIZED, tex_uv_g, + blur_dxdy, bloom_approx_sigma); + color_b = tex2Dblur3x3resize(ORIG_LINEARIZED, tex_uv_b, + blur_dxdy, bloom_approx_sigma); + } + else + { + color = tex2Dblur3x3resize(ORIG_LINEARIZED, tex_uv, blur_dxdy); + } + } + else + { + // Use bilinear sampling. This approximates a 4x4 Gaussian resize MUCH + // better than tex2Dblur3x3_resize for the very small sigmas we're + // likely to use at small output resolutions. (This estimate becomes + // too sharp above ~400x300, but the blurs break down above that + // resolution too, unless min_allowed_viewport_triads is high enough to + // keep bloom_approx_scale_x/min_allowed_viewport_triads < ~1.1658025.) + if(beam_misconvergence) + { + color_r = tex2D_linearize(ORIG_LINEARIZED, tex_uv_r).rgb; + color_g = tex2D_linearize(ORIG_LINEARIZED, tex_uv_g).rgb; + color_b = tex2D_linearize(ORIG_LINEARIZED, tex_uv_b).rgb; + } + else + { + color = tex2D_linearize(ORIG_LINEARIZED, tex_uv).rgb; + } + } + // Pack the colors from the red/green/blue beams into a single vector: + if(beam_misconvergence) + { + color = vec3(color_r.r, color_g.g, color_b.b); + } + // Encode and output the blurred image: + FragColor = vec4(color, 1.0); +} \ No newline at end of file diff --git a/crt/shaders/crt-royale/src/crt-royale-first-pass-linearize-crt-gamma-bob-fields.slang b/crt/shaders/crt-royale/src/crt-royale-first-pass-linearize-crt-gamma-bob-fields.slang index 66fe0ae..c9b11aa 100644 --- a/crt/shaders/crt-royale/src/crt-royale-first-pass-linearize-crt-gamma-bob-fields.slang +++ b/crt/shaders/crt-royale/src/crt-royale-first-pass-linearize-crt-gamma-bob-fields.slang @@ -6,56 +6,6 @@ layout(push_constant) uniform Push uint FrameCount; } registers; -layout(std140, set = 0, binding = 0) uniform UBO -{ - mat4 MVP; - float crt_gamma; - float lcd_gamma; - float levels_contrast; - float halation_weight; - float diffusion_weight; - float bloom_underestimate_levels; - float bloom_excess; - float beam_min_sigma; - float beam_max_sigma; - float beam_spot_power; - float beam_min_shape; - float beam_max_shape; - float beam_shape_power; - float beam_horiz_filter; - float beam_horiz_sigma; - float beam_horiz_linear_rgb_weight; - float convergence_offset_x_r; - float convergence_offset_x_g; - float convergence_offset_x_b; - float convergence_offset_y_r; - float convergence_offset_y_g; - float convergence_offset_y_b; - float mask_type; - float mask_sample_mode_desired; - float mask_specify_num_triads; - float mask_triad_size_desired; - float mask_num_triads_desired; - float aa_subpixel_r_offset_x_runtime; - float aa_subpixel_r_offset_y_runtime; - float aa_cubic_c; - float aa_gauss_sigma; - float geom_mode_runtime; - float geom_radius; - float geom_view_dist; - float geom_tilt_angle_x; - float geom_tilt_angle_y; - float geom_aspect_ratio_x; - float geom_aspect_ratio_y; - float geom_overscan_x; - float geom_overscan_y; - float border_size; - float border_darkness; - float border_compress; - float interlace_bff; - float interlace_1080i; -} params; - ///////////////////////////// GPL LICENSE NOTICE ///////////////////////////// // crt-royale: A full-featured CRT shader, with cheese. @@ -88,211 +38,7 @@ layout(std140, set = 0, binding = 0) uniform UBO ////////////////////////////////// INCLUDES ////////////////////////////////// -#include "../user-settings.h" -#include "bind-shader-params.h" -//#include "../../../../include/gamma-management.h" -//#include "scanline-functions.h" - -// from scanline-functions.h // -bool is_interlaced(float num_lines) -{ - // Detect interlacing based on the number of lines in the source. - if(interlace_detect) - { - // NTSC: 525 lines, 262.5/field; 486 active (2 half-lines), 243/field - // NTSC Emulators: Typically 224 or 240 lines - // PAL: 625 lines, 312.5/field; 576 active (typical), 288/field - // PAL Emulators: ? - // ATSC: 720p, 1080i, 1080p - // Where do we place our cutoffs? Assumptions: - // 1.) We only need to care about active lines. - // 2.) Anything > 288 and <= 576 lines is probably interlaced. - // 3.) Anything > 576 lines is probably not interlaced... - // 4.) ...except 1080 lines, which is a crapshoot (user decision). - // 5.) Just in case the main program uses calculated video sizes, - // we should nudge the float thresholds a bit. - bool sd_interlace; - if (num_lines > 288.5 && num_lines < 576.5) - {sd_interlace = true;} - else - {sd_interlace = false;} - bool hd_interlace; - if (num_lines > 1079.5 && num_lines < 1080.5) - {hd_interlace = true;} - else - {hd_interlace = false;} - return (sd_interlace || hd_interlace); - } - else - { - return false; - } -} -// end scanline-functions.h // - -// from gamma-management.h // -/////////////////////////////// BASE CONSTANTS /////////////////////////////// - -// Set standard gamma constants, but allow users to override them: -#ifndef OVERRIDE_STANDARD_GAMMA - // Standard encoding gammas: - const float ntsc_gamma = 2.2; // Best to use NTSC for PAL too? - const float pal_gamma = 2.8; // Never actually 2.8 in practice - // Typical device decoding gammas (only use for emulating devices): - // CRT/LCD reference gammas are higher than NTSC and Rec.709 video standard - // gammas: The standards purposely undercorrected for an analog CRT's - // assumed 2.5 reference display gamma to maintain contrast in assumed - // [dark] viewing conditions: http://www.poynton.com/PDFs/GammaFAQ.pdf - // These unstated assumptions about display gamma and perceptual rendering - // intent caused a lot of confusion, and more modern CRT's seemed to target - // NTSC 2.2 gamma with circuitry. LCD displays seem to have followed suit - // (they struggle near black with 2.5 gamma anyway), especially PC/laptop - // displays designed to view sRGB in bright environments. (Standards are - // also in flux again with BT.1886, but it's underspecified for displays.) - const float crt_reference_gamma_high = 2.5; // In (2.35, 2.55) - const float crt_reference_gamma_low = 2.35; // In (2.35, 2.55) - const float lcd_reference_gamma = 2.5; // To match CRT - const float crt_office_gamma = 2.2; // Circuitry-adjusted for NTSC - const float lcd_office_gamma = 2.2; // Approximates sRGB -#endif // OVERRIDE_STANDARD_GAMMA - -// Assuming alpha == 1.0 might make it easier for users to avoid some bugs, -// but only if they're aware of it. -#ifndef OVERRIDE_ALPHA_ASSUMPTIONS - const bool assume_opaque_alpha = false; -#endif - - -/////////////////////// DERIVED CONSTANTS AS FUNCTIONS /////////////////////// - -// gamma-management.h should be compatible with overriding gamma values with -// runtime user parameters, but we can only define other global constants in -// terms of static constants, not uniform user parameters. To get around this -// limitation, we need to define derived constants using functions. - -// Set device gamma constants, but allow users to override them: -#ifdef OVERRIDE_DEVICE_GAMMA - // The user promises to globally define the appropriate constants: - float get_crt_gamma() { return crt_gamma; } - float get_gba_gamma() { return gba_gamma; } - float get_lcd_gamma() { return lcd_gamma; } -#else - float get_crt_gamma() { return crt_reference_gamma_high; } - float get_gba_gamma() { return 3.5; } // Game Boy Advance; in (3.0, 4.0) - float get_lcd_gamma() { return lcd_office_gamma; } -#endif // OVERRIDE_DEVICE_GAMMA - -// Set decoding/encoding gammas for the first/lass passes, but allow overrides: -#ifdef OVERRIDE_FINAL_GAMMA - // The user promises to globally define the appropriate constants: - float get_intermediate_gamma() { return intermediate_gamma; } - float get_input_gamma() { return input_gamma; } - float get_output_gamma() { return output_gamma; } -#else - // If we gamma-correct every pass, always use ntsc_gamma between passes to - // ensure middle passes don't need to care if anything is being simulated: - float get_intermediate_gamma() { return ntsc_gamma; } - #ifdef SIMULATE_CRT_ON_LCD - float get_input_gamma() { return get_crt_gamma(); } - float get_output_gamma() { return get_lcd_gamma(); } - #else - #ifdef SIMULATE_GBA_ON_LCD - float get_input_gamma() { return get_gba_gamma(); } - float get_output_gamma() { return get_lcd_gamma(); } - #else - #ifdef SIMULATE_LCD_ON_CRT - float get_input_gamma() { return get_lcd_gamma(); } - float get_output_gamma() { return get_crt_gamma(); } - #else - #ifdef SIMULATE_GBA_ON_CRT - float get_input_gamma() { return get_gba_gamma(); } - float get_output_gamma() { return get_crt_gamma(); } - #else // Don't simulate anything: - float get_input_gamma() { return ntsc_gamma; } - float get_output_gamma() { return ntsc_gamma; } - #endif // SIMULATE_GBA_ON_CRT - #endif // SIMULATE_LCD_ON_CRT - #endif // SIMULATE_GBA_ON_LCD - #endif // SIMULATE_CRT_ON_LCD -#endif // OVERRIDE_FINAL_GAMMA - -#ifndef GAMMA_ENCODE_EVERY_FBO - #ifdef FIRST_PASS - const bool linearize_input = true; - float get_pass_input_gamma() { return get_input_gamma(); } - #else - const bool linearize_input = false; - float get_pass_input_gamma() { return 1.0; } - #endif - #ifdef LAST_PASS - const bool gamma_encode_output = true; - float get_pass_output_gamma() { return get_output_gamma(); } - #else - const bool gamma_encode_output = false; - float get_pass_output_gamma() { return 1.0; } - #endif -#else - const bool linearize_input = true; - const bool gamma_encode_output = true; - #ifdef FIRST_PASS - float get_pass_input_gamma() { return get_input_gamma(); } - #else - float get_pass_input_gamma() { return get_intermediate_gamma(); } - #endif - #ifdef LAST_PASS - float get_pass_output_gamma() { return get_output_gamma(); } - #else - float get_pass_output_gamma() { return get_intermediate_gamma(); } - #endif -#endif - -vec4 decode_input(const vec4 color) -{ - if(linearize_input) - { - if(assume_opaque_alpha) - { - return vec4(pow(color.rgb, vec3(get_pass_input_gamma())), 1.0); - } - else - { - return vec4(pow(color.rgb, vec3(get_pass_input_gamma())), color.a); - } - } - else - { - return color; - } -} - -vec4 encode_output(const vec4 color) -{ - if(gamma_encode_output) - { - if(assume_opaque_alpha) - { - return vec4(pow(color.rgb, vec3(1.0/get_pass_output_gamma())), 1.0); - } - else - { - return vec4(pow(color.rgb, vec3(1.0/get_pass_output_gamma())), color.a); - } - } - else - { - return color; - } -} - -#define tex2D_linearize(C, D) decode_input(vec4(texture(C, D))) -//vec4 tex2D_linearize(const sampler2D tex, const vec2 tex_coords) -//{ return decode_input(vec4(texture(tex, tex_coords))); } - -//#define tex2D_linearize(C, D, E) decode_input(vec4(texture(C, D, E))) -//vec4 tex2D_linearize(const sampler2D tex, const vec2 tex_coords, const int texel_off) -//{ return decode_input(vec4(texture(tex, tex_coords, texel_off))); } - -// end gamma-management.h // +#include "includes.h" #pragma stage vertex layout(location = 0) in vec4 Position; diff --git a/crt/shaders/crt-royale/src/crt-royale-scanlines-vertical-interlacing.slang b/crt/shaders/crt-royale/src/crt-royale-scanlines-vertical-interlacing.slang new file mode 100644 index 0000000..d541118 --- /dev/null +++ b/crt/shaders/crt-royale/src/crt-royale-scanlines-vertical-interlacing.slang @@ -0,0 +1,237 @@ +#version 450 + +layout(push_constant) uniform Push +{ + vec4 SourceSize; + vec4 OriginalSize; + vec4 OutputSize; + uint FrameCount; +} registers; + +#include "params.inc" + +///////////////////////////// GPL LICENSE NOTICE ///////////////////////////// + +// crt-royale: A full-featured CRT shader, with cheese. +// Copyright (C) 2014 TroggleMonkey +// +// This program is free software; you can redistribute it and/or modify it +// under the terms of the GNU General Public License as published by the Free +// Software Foundation; either version 2 of the License, or any later version. +// +// This program is distributed in the hope that it will be useful, but WITHOUT +// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or +// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for +// more details. +// +// You should have received a copy of the GNU General Public License along with +// this program; if not, write to the Free Software Foundation, Inc., 59 Temple +// Place, Suite 330, Boston, MA 02111-1307 USA + + +////////////////////////////////// INCLUDES ////////////////////////////////// + +#include "includes.h" + +#pragma stage vertex +layout(location = 0) in vec4 Position; +layout(location = 1) in vec2 TexCoord; +layout(location = 0) out vec2 tex_uv; +layout(location = 1) out vec2 uv_step; +layout(location = 2) out vec2 il_step_multiple; +layout(location = 3) out float pixel_height_in_scanlines; + +void main() +{ + gl_Position = params.MVP * Position; + tex_uv = TexCoord; + + // Detect interlacing: il_step_multiple indicates the step multiple between + // lines: 1 is for progressive sources, and 2 is for interlaced sources. + const vec2 video_size = registers.SourceSize.xy; + float interlace_check = is_interlaced(video_size.y) ? 1.0 : 0.0; + const float y_step = 1.0 + interlace_check; + il_step_multiple = vec2(1.0, y_step); + // Get the uv tex coords step between one texel (x) and scanline (y): + uv_step = il_step_multiple * registers.SourceSize.zw; + + // If shader parameters are used, {min, max}_{sigma, shape} are runtime + // values. Compute {sigma, shape}_range outside of scanline_contrib() so + // they aren't computed once per scanline (6 times per fragment and up to + // 18 times per vertex): + const float sigma_range = max(params.beam_max_sigma, params.beam_min_sigma) - + params.beam_min_sigma; + const float shape_range = max(params.beam_max_shape, params.beam_min_shape) - + params.beam_min_shape; + + // We need the pixel height in scanlines for antialiased/integral sampling: + pixel_height_in_scanlines = (video_size.y * registers.OutputSize.w) / + il_step_multiple.y; +} + +#pragma stage fragment +layout(location = 0) in vec2 tex_uv; +layout(location = 1) in vec2 uv_step; +layout(location = 2) in vec2 il_step_multiple; +layout(location = 3) in float pixel_height_in_scanlines; +layout(location = 0) out vec4 FragColor; +layout(set = 0, binding = 2) uniform sampler2D Source; + +void main() +{ + // This pass: Sample multiple (misconverged?) scanlines to the final + // vertical resolution. Temporarily auto-dim the output to avoid clipping. + + // Read some attributes into local variables: + const vec2 texture_size = registers.SourceSize.xy; + const vec2 texture_size_inv = registers.SourceSize.zw; + const float frame_count = vec2(registers.FrameCount, registers.FrameCount).x; + const float ph = pixel_height_in_scanlines; + + // Get the uv coords of the previous scanline (in this field), and the + // scanline's distance from this sample, in scanlines. + float dist; + const vec2 scanline_uv = get_last_scanline_uv(tex_uv, texture_size, + texture_size_inv, il_step_multiple, frame_count, dist); + // Consider 2, 3, 4, or 6 scanlines numbered 0-5: The previous and next + // scanlines are numbered 2 and 3. Get scanline colors colors (ignore + // horizontal sampling, since since registers.OutputSize.x = video_size.x). + // NOTE: Anisotropic filtering creates interlacing artifacts, which is why + // ORIG_LINEARIZED bobbed any interlaced input before this pass. + const vec2 v_step = vec2(0.0, uv_step.y); + const vec3 scanline2_color = tex2D_linearize(Source, scanline_uv).rgb; + const vec3 scanline3_color = + tex2D_linearize(Source, scanline_uv + v_step).rgb; + vec3 scanline0_color, scanline1_color, scanline4_color, scanline5_color, + scanline_outside_color; + float dist_round; + // Use scanlines 0, 1, 4, and 5 for a total of 6 scanlines: + if(beam_num_scanlines > 5.5) + { + scanline1_color = + tex2D_linearize(Source, scanline_uv - v_step).rgb; + scanline4_color = + tex2D_linearize(Source, scanline_uv + 2.0 * v_step).rgb; + scanline0_color = + tex2D_linearize(Source, scanline_uv - 2.0 * v_step).rgb; + scanline5_color = + tex2D_linearize(Source, scanline_uv + 3.0 * v_step).rgb; + } + // Use scanlines 1, 4, and either 0 or 5 for a total of 5 scanlines: + else if(beam_num_scanlines > 4.5) + { + scanline1_color = + tex2D_linearize(Source, scanline_uv - v_step).rgb; + scanline4_color = + tex2D_linearize(Source, scanline_uv + 2.0 * v_step).rgb; + // dist is in [0, 1] + dist_round = round(dist); + const vec2 sample_0_or_5_uv_off = + mix(-2.0 * v_step, 3.0 * v_step, dist_round); + // Call this "scanline_outside_color" to cope with the conditional + // scanline number: + scanline_outside_color = tex2D_linearize( + Source, scanline_uv + sample_0_or_5_uv_off).rgb; + } + // Use scanlines 1 and 4 for a total of 4 scanlines: + else if(beam_num_scanlines > 3.5) + { + scanline1_color = + tex2D_linearize(Source, scanline_uv - v_step).rgb; + scanline4_color = + tex2D_linearize(Source, scanline_uv + 2.0 * v_step).rgb; + } + // Use scanline 1 or 4 for a total of 3 scanlines: + else if(beam_num_scanlines > 2.5) + { + // dist is in [0, 1] + dist_round = round(dist); + const vec2 sample_1or4_uv_off = + mix(-v_step, 2.0 * v_step, dist_round); + scanline_outside_color = tex2D_linearize( + Source, scanline_uv + sample_1or4_uv_off).rgb; + } + + // Compute scanline contributions, accounting for vertical convergence. + // Vertical convergence offsets are in units of current-field scanlines. + // dist2 means "positive sample distance from scanline 2, in scanlines:" + vec3 dist2 = vec3(dist); + if(beam_misconvergence) + { + const vec3 convergence_offsets_vert_rgb = + get_convergence_offsets_y_vector(); + dist2 = vec3(dist) - convergence_offsets_vert_rgb; + } + // Calculate {sigma, shape}_range outside of scanline_contrib so it's only + // done once per pixel (not 6 times) with runtime params. Don't reuse the + // vertex shader calculations, so static versions can be constant-folded. + const float sigma_range = max(params.beam_max_sigma, params.beam_min_sigma) - + params.beam_min_sigma; + const float shape_range = max(params.beam_max_shape, params.beam_min_shape) - + params.beam_min_shape; + // Calculate and sum final scanline contributions, starting with lines 2/3. + // There is no normalization step, because we're not interpolating a + // continuous signal. Instead, each scanline is an additive light source. + const vec3 scanline2_contrib = scanline_contrib(dist2, + scanline2_color, ph, sigma_range, shape_range); + const vec3 scanline3_contrib = scanline_contrib(abs(vec3(1.0) - dist2), + scanline3_color, ph, sigma_range, shape_range); + vec3 scanline_intensity = scanline2_contrib + scanline3_contrib; + + if(beam_num_scanlines > 5.5) + { + vec3 scanline0_contrib = + scanline_contrib(dist2 + vec3(2.0), scanline0_color, + ph, sigma_range, shape_range); + vec3 scanline1_contrib = + scanline_contrib(dist2 + vec3(1.0), scanline1_color, + ph, sigma_range, shape_range); + vec3 scanline4_contrib = + scanline_contrib(abs(vec3(2.0) - dist2), scanline4_color, + ph, sigma_range, shape_range); + vec3 scanline5_contrib = + scanline_contrib(abs(vec3(3.0) - dist2), scanline5_color, + ph, sigma_range, shape_range); + scanline_intensity += scanline0_contrib + scanline1_contrib + + scanline4_contrib + scanline5_contrib; + } + else if(beam_num_scanlines > 4.5) + { + vec3 scanline1_contrib = + scanline_contrib(dist2 + vec3(1.0), scanline1_color, + ph, sigma_range, shape_range); + vec3 scanline4_contrib = + scanline_contrib(abs(vec3(2.0) - dist2), scanline4_color, + ph, sigma_range, shape_range); + vec3 dist0or5 = mix( + dist2 + vec3(2.0), vec3(3.0) - dist2, dist_round); + vec3 scanline0or5_contrib = scanline_contrib( + dist0or5, scanline_outside_color, ph, sigma_range, shape_range); + scanline_intensity += scanline1_contrib + scanline4_contrib + + scanline0or5_contrib; + } + else if(beam_num_scanlines > 3.5) + { + vec3 scanline1_contrib = + scanline_contrib(dist2 + vec3(1.0), scanline1_color, + ph, sigma_range, shape_range); + vec3 scanline4_contrib = + scanline_contrib(abs(vec3(2.0) - dist2), scanline4_color, + ph, sigma_range, shape_range); + scanline_intensity += scanline1_contrib + scanline4_contrib; + } + else if(beam_num_scanlines > 2.5) + { + vec3 dist1or4 = mix( + dist2 + vec3(1.0), vec3(2.0) - dist2, dist_round); + vec3 scanline1or4_contrib = scanline_contrib( + dist1or4, scanline_outside_color, ph, sigma_range, shape_range); + scanline_intensity += scanline1or4_contrib; + } + + // Auto-dim the image to avoid clipping, encode if necessary, and output. + // My original idea was to compute a minimal auto-dim factor and put it in + // the alpha channel, but it wasn't working, at least not reliably. This + // is faster anyway, levels_autodim_temp = 0.5 isn't causing banding. + FragColor = vec4(encode_output(vec4(scanline_intensity * levels_autodim_temp, 1.0))); +} \ No newline at end of file diff --git a/crt/shaders/crt-royale/src/gamma-management-old.h b/crt/shaders/crt-royale/src/gamma-management-old.h new file mode 100644 index 0000000..18963c7 --- /dev/null +++ b/crt/shaders/crt-royale/src/gamma-management-old.h @@ -0,0 +1,547 @@ +#ifndef GAMMA_MANAGEMENT_H +#define GAMMA_MANAGEMENT_H + +///////////////////////////////// MIT LICENSE //////////////////////////////// + +// Copyright (C) 2014 TroggleMonkey +// +// Permission is hereby granted, free of charge, to any person obtaining a copy +// of this software and associated documentation files (the "Software"), to +// deal in the Software without restriction, including without limitation the +// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or +// sell copies of the Software, and to permit persons to whom the Software is +// furnished to do so, subject to the following conditions: +// +// The above copyright notice and this permission notice shall be included in +// all copies or substantial portions of the Software. +// +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING +// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS +// IN THE SOFTWARE. + +///////////////////////////////// DESCRIPTION //////////////////////////////// + +// This file provides gamma-aware tex*D*() and encode_output() functions. +// Requires: Before #include-ing this file, the including file must #define +// the following macros when applicable and follow their rules: +// 1.) #define FIRST_PASS if this is the first pass. +// 2.) #define LAST_PASS if this is the last pass. +// 3.) If sRGB is available, set srgb_framebufferN = "true" for +// every pass except the last in your .cgp preset. +// 4.) If sRGB isn't available but you want gamma-correctness with +// no banding, #define GAMMA_ENCODE_EVERY_FBO each pass. +// 5.) #define SIMULATE_CRT_ON_LCD if desired (precedence over 5-7) +// 6.) #define SIMULATE_GBA_ON_LCD if desired (precedence over 6-7) +// 7.) #define SIMULATE_LCD_ON_CRT if desired (precedence over 7) +// 8.) #define SIMULATE_GBA_ON_CRT if desired (precedence over -) +// If an option in [5, 8] is #defined in the first or last pass, it +// should be #defined for both. It shouldn't make a difference +// whether it's #defined for intermediate passes or not. +// Optional: The including file (or an earlier included file) may optionally +// #define a number of macros indicating it will override certain +// macros and associated constants are as follows: +// static constants with either static or uniform constants. The +// 1.) OVERRIDE_STANDARD_GAMMA: The user must first define: +// static const float ntsc_gamma +// static const float pal_gamma +// static const float crt_reference_gamma_high +// static const float crt_reference_gamma_low +// static const float lcd_reference_gamma +// static const float crt_office_gamma +// static const float lcd_office_gamma +// 2.) OVERRIDE_DEVICE_GAMMA: The user must first define: +// static const float crt_gamma +// static const float gba_gamma +// static const float lcd_gamma +// 3.) OVERRIDE_FINAL_GAMMA: The user must first define: +// static const float input_gamma +// static const float intermediate_gamma +// static const float output_gamma +// (intermediate_gamma is for GAMMA_ENCODE_EVERY_FBO.) +// 4.) OVERRIDE_ALPHA_ASSUMPTIONS: The user must first define: +// static const bool assume_opaque_alpha +// The gamma constant overrides must be used in every pass or none, +// and OVERRIDE_FINAL_GAMMA bypasses all of the SIMULATE* macros. +// OVERRIDE_ALPHA_ASSUMPTIONS may be set on a per-pass basis. +// Usage: After setting macros appropriately, ignore gamma correction and +// replace all tex*D*() calls with equivalent gamma-aware +// tex*D*_linearize calls, except: +// 1.) When you read an LUT, use regular tex*D or a gamma-specified +// function, depending on its gamma encoding: +// tex*D*_linearize_gamma (takes a runtime gamma parameter) +// 2.) If you must read pass0's original input in a later pass, use +// tex2D_linearize_ntsc_gamma. If you want to read pass0's +// input with gamma-corrected bilinear filtering, consider +// creating a first linearizing pass and reading from the input +// of pass1 later. +// Then, return encode_output(color) from every fragment shader. +// Finally, use the global gamma_aware_bilinear boolean if you want +// to statically branch based on whether bilinear filtering is +// gamma-correct or not (e.g. for placing Gaussian blur samples). +// +// Detailed Policy: +// tex*D*_linearize() functions enforce a consistent gamma-management policy +// based on the FIRST_PASS and GAMMA_ENCODE_EVERY_FBO settings. They assume +// their input texture has the same encoding characteristics as the input for +// the current pass (which doesn't apply to the exceptions listed above). +// Similarly, encode_output() enforces a policy based on the LAST_PASS and +// GAMMA_ENCODE_EVERY_FBO settings. Together, they result in one of the +// following two pipelines. +// Typical pipeline with intermediate sRGB framebuffers: +// linear_color = pow(pass0_encoded_color, input_gamma); +// intermediate_output = linear_color; // Automatic sRGB encoding +// linear_color = intermediate_output; // Automatic sRGB decoding +// final_output = pow(intermediate_output, 1.0/output_gamma); +// Typical pipeline without intermediate sRGB framebuffers: +// linear_color = pow(pass0_encoded_color, input_gamma); +// intermediate_output = pow(linear_color, 1.0/intermediate_gamma); +// linear_color = pow(intermediate_output, intermediate_gamma); +// final_output = pow(intermediate_output, 1.0/output_gamma); +// Using GAMMA_ENCODE_EVERY_FBO is much slower, but it's provided as a way to +// easily get gamma-correctness without banding on devices where sRGB isn't +// supported. +// +// Use This Header to Maximize Code Reuse: +// The purpose of this header is to provide a consistent interface for texture +// reads and output gamma-encoding that localizes and abstracts away all the +// annoying details. This greatly reduces the amount of code in each shader +// pass that depends on the pass number in the .cgp preset or whether sRGB +// FBO's are being used: You can trivially change the gamma behavior of your +// whole pass by commenting or uncommenting 1-3 #defines. To reuse the same +// code in your first, Nth, and last passes, you can even put it all in another +// header file and #include it from skeleton .cg files that #define the +// appropriate pass-specific settings. +// +// Rationale for Using Three Macros: +// This file uses GAMMA_ENCODE_EVERY_FBO instead of an opposite macro like +// SRGB_PIPELINE to ensure sRGB is assumed by default, which hopefully imposes +// a lower maintenance burden on each pass. At first glance it seems we could +// accomplish everything with two macros: GAMMA_CORRECT_IN / GAMMA_CORRECT_OUT. +// This works for simple use cases where input_gamma == output_gamma, but it +// breaks down for more complex scenarios like CRT simulation, where the pass +// number determines the gamma encoding of the input and output. + + +/////////////////////////////// BASE CONSTANTS /////////////////////////////// + +// Set standard gamma constants, but allow users to override them: +#ifndef OVERRIDE_STANDARD_GAMMA + // Standard encoding gammas: + const float ntsc_gamma = 2.2; // Best to use NTSC for PAL too? + const float pal_gamma = 2.8; // Never actually 2.8 in practice + // Typical device decoding gammas (only use for emulating devices): + // CRT/LCD reference gammas are higher than NTSC and Rec.709 video standard + // gammas: The standards purposely undercorrected for an analog CRT's + // assumed 2.5 reference display gamma to maintain contrast in assumed + // [dark] viewing conditions: http://www.poynton.com/PDFs/GammaFAQ.pdf + // These unstated assumptions about display gamma and perceptual rendering + // intent caused a lot of confusion, and more modern CRT's seemed to target + // NTSC 2.2 gamma with circuitry. LCD displays seem to have followed suit + // (they struggle near black with 2.5 gamma anyway), especially PC/laptop + // displays designed to view sRGB in bright environments. (Standards are + // also in flux again with BT.1886, but it's underspecified for displays.) + const float crt_reference_gamma_high = 2.5; // In (2.35, 2.55) + const float crt_reference_gamma_low = 2.35; // In (2.35, 2.55) + const float lcd_reference_gamma = 2.5; // To match CRT + const float crt_office_gamma = 2.2; // Circuitry-adjusted for NTSC + const float lcd_office_gamma = 2.2; // Approximates sRGB +#endif // OVERRIDE_STANDARD_GAMMA + +// Assuming alpha == 1.0 might make it easier for users to avoid some bugs, +// but only if they're aware of it. +#ifndef OVERRIDE_ALPHA_ASSUMPTIONS + const bool assume_opaque_alpha = false; +#endif + + +/////////////////////// DERIVED CONSTANTS AS FUNCTIONS /////////////////////// + +// gamma-management.h should be compatible with overriding gamma values with +// runtime user parameters, but we can only define other global constants in +// terms of static constants, not uniform user parameters. To get around this +// limitation, we need to define derived constants using functions. + +// Set device gamma constants, but allow users to override them: +#ifdef OVERRIDE_DEVICE_GAMMA + // The user promises to globally define the appropriate constants: + float get_crt_gamma() { return crt_gamma; } + float get_gba_gamma() { return gba_gamma; } + float get_lcd_gamma() { return lcd_gamma; } +#else + float get_crt_gamma() { return crt_reference_gamma_high; } + float get_gba_gamma() { return 3.5; } // Game Boy Advance; in (3.0, 4.0) + float get_lcd_gamma() { return lcd_office_gamma; } +#endif // OVERRIDE_DEVICE_GAMMA + +// Set decoding/encoding gammas for the first/lass passes, but allow overrides: +#ifdef OVERRIDE_FINAL_GAMMA + // The user promises to globally define the appropriate constants: + float get_intermediate_gamma() { return intermediate_gamma; } + float get_input_gamma() { return input_gamma; } + float get_output_gamma() { return output_gamma; } +#else + // If we gamma-correct every pass, always use ntsc_gamma between passes to + // ensure middle passes don't need to care if anything is being simulated: + float get_intermediate_gamma() { return ntsc_gamma; } + #ifdef SIMULATE_CRT_ON_LCD + float get_input_gamma() { return get_crt_gamma(); } + float get_output_gamma() { return get_lcd_gamma(); } + #else + #ifdef SIMULATE_GBA_ON_LCD + float get_input_gamma() { return get_gba_gamma(); } + float get_output_gamma() { return get_lcd_gamma(); } + #else + #ifdef SIMULATE_LCD_ON_CRT + float get_input_gamma() { return get_lcd_gamma(); } + float get_output_gamma() { return get_crt_gamma(); } + #else + #ifdef SIMULATE_GBA_ON_CRT + float get_input_gamma() { return get_gba_gamma(); } + float get_output_gamma() { return get_crt_gamma(); } + #else // Don't simulate anything: + float get_input_gamma() { return ntsc_gamma; } + float get_output_gamma() { return ntsc_gamma; } + #endif // SIMULATE_GBA_ON_CRT + #endif // SIMULATE_LCD_ON_CRT + #endif // SIMULATE_GBA_ON_LCD + #endif // SIMULATE_CRT_ON_LCD +#endif // OVERRIDE_FINAL_GAMMA + +// Set decoding/encoding gammas for the current pass. Use static constants for +// linearize_input and gamma_encode_output, because they aren't derived, and +// they let the compiler do dead-code elimination. +#ifndef GAMMA_ENCODE_EVERY_FBO + #ifdef FIRST_PASS + const bool linearize_input = true; + float get_pass_input_gamma() { return get_input_gamma(); } + #else + const bool linearize_input = false; + float get_pass_input_gamma() { return 1.0; } + #endif + #ifdef LAST_PASS + const bool gamma_encode_output = true; + float get_pass_output_gamma() { return get_output_gamma(); } + #else + const bool gamma_encode_output = false; + float get_pass_output_gamma() { return 1.0; } + #endif +#else + const bool linearize_input = true; + const bool gamma_encode_output = true; + #ifdef FIRST_PASS + float get_pass_input_gamma() { return get_input_gamma(); } + #else + float get_pass_input_gamma() { return get_intermediate_gamma(); } + #endif + #ifdef LAST_PASS + float get_pass_output_gamma() { return get_output_gamma(); } + #else + float get_pass_output_gamma() { return get_intermediate_gamma(); } + #endif +#endif + +// Users might want to know if bilinear filtering will be gamma-correct: +const bool gamma_aware_bilinear = !linearize_input; + + +////////////////////// COLOR ENCODING/DECODING FUNCTIONS ///////////////////// + +vec4 encode_output(const vec4 color) +{ + if(gamma_encode_output) + { + if(assume_opaque_alpha) + { + return vec4(pow(color.rgb, vec3(1.0/get_pass_output_gamma())), 1.0); + } + else + { + return vec4(pow(color.rgb, vec3(1.0/get_pass_output_gamma())), color.a); + } + } + else + { + return color; + } +} + +vec4 decode_input(const vec4 color) +{ + if(linearize_input) + { + if(assume_opaque_alpha) + { + return vec4(pow(color.rgb, vec3(get_pass_input_gamma())), 1.0); + } + else + { + return vec4(pow(color.rgb, vec3(get_pass_input_gamma())), color.a); + } + } + else + { + return color; + } +} + +vec4 decode_gamma_input(const vec4 color, const vec3 gamma) +{ + if(assume_opaque_alpha) + { + return vec4(pow(color.rgb, vec3(gamma)), 1.0); + } + else + { + return vec4(pow(color.rgb, vec3(gamma)), color.a); + } +} + + +/////////////////////////// TEXTURE LOOKUP WRAPPERS ////////////////////////// + +// "SMART" LINEARIZING TEXTURE LOOKUP FUNCTIONS: +// Provide a wide array of linearizing texture lookup wrapper functions. The +// Cg shader spec Retroarch uses only allows for 2D textures, but 1D and 3D +// lookups are provided for completeness in case that changes someday. Nobody +// is likely to use the *fetch and *proj functions, but they're included just +// in case. The only tex*D texture sampling functions omitted are: +// - tex*Dcmpbias +// - tex*Dcmplod +// - tex*DARRAY* +// - tex*DMS* +// - Variants returning integers +// Standard line length restrictions are ignored below for vertical brevity. + +/* +// tex1D: +vec4 tex1D_linearize(const sampler1D texture, const float tex_coords) +{ return decode_input(tex1D(texture, tex_coords)); } + +vec4 tex1D_linearize(const sampler1D texture, const vec2 tex_coords) +{ return decode_input(tex1D(texture, tex_coords)); } + +vec4 tex1D_linearize(const sampler1D texture, const float tex_coords, const int texel_off) +{ return decode_input(tex1D(texture, tex_coords, texel_off)); } + +vec4 tex1D_linearize(const sampler1D texture, const vec2 tex_coords, const int texel_off) +{ return decode_input(tex1D(texture, tex_coords, texel_off)); } + +vec4 tex1D_linearize(const sampler1D texture, const float tex_coords, const float dx, const float dy) +{ return decode_input(tex1D(texture, tex_coords, dx, dy)); } + +vec4 tex1D_linearize(const sampler1D texture, const vec2 tex_coords, const float dx, const float dy) +{ return decode_input(tex1D(texture, tex_coords, dx, dy)); } + +vec4 tex1D_linearize(const sampler1D texture, const float tex_coords, const float dx, const float dy, const int texel_off) +{ return decode_input(tex1D(texture, tex_coords, dx, dy, texel_off)); } + +vec4 tex1D_linearize(const sampler1D texture, const vec2 tex_coords, const float dx, const float dy, const int texel_off) +{ return decode_input(tex1D(texture, tex_coords, dx, dy, texel_off)); } + +// tex1Dbias: +vec4 tex1Dbias_linearize(const sampler1D texture, const vec4 tex_coords) +{ return decode_input(tex1Dbias(texture, tex_coords)); } + +vec4 tex1Dbias_linearize(const sampler1D texture, const vec4 tex_coords, const int texel_off) +{ return decode_input(tex1Dbias(texture, tex_coords, texel_off)); } + +// tex1Dfetch: +vec4 tex1Dfetch_linearize(const sampler1D texture, const int4 tex_coords) +{ return decode_input(tex1Dfetch(texture, tex_coords)); } + +vec4 tex1Dfetch_linearize(const sampler1D texture, const int4 tex_coords, const int texel_off) +{ return decode_input(tex1Dfetch(texture, tex_coords, texel_off)); } + +// tex1Dlod: +vec4 tex1Dlod_linearize(const sampler1D texture, const vec4 tex_coords) +{ return decode_input(tex1Dlod(texture, tex_coords)); } + +vec4 tex1Dlod_linearize(const sampler1D texture, const vec4 tex_coords, const int texel_off) +{ return decode_input(tex1Dlod(texture, tex_coords, texel_off)); } + +// tex1Dproj: +vec4 tex1Dproj_linearize(const sampler1D texture, const vec2 tex_coords) +{ return decode_input(tex1Dproj(texture, tex_coords)); } + +vec4 tex1Dproj_linearize(const sampler1D texture, const vec3 tex_coords) +{ return decode_input(tex1Dproj(texture, tex_coords)); } + +vec4 tex1Dproj_linearize(const sampler1D texture, const vec2 tex_coords, const int texel_off) +{ return decode_input(tex1Dproj(texture, tex_coords, texel_off)); } + +vec4 tex1Dproj_linearize(const sampler1D texture, const vec3 tex_coords, const int texel_off) +{ return decode_input(tex1Dproj(texture, tex_coords, texel_off)); } +*/ + +// tex2D: +vec4 tex2D_linearize(const sampler2D tex, const vec2 tex_coords) +{ return decode_input(vec4(texture(tex, tex_coords))); } + +vec4 tex2D_linearize(const sampler2D tex, const vec3 tex_coords) +{ return decode_input(vec4(texture(tex, tex_coords))); } + +vec4 tex2D_linearize(const sampler2D tex, const vec2 tex_coords, const int texel_off) +{ return decode_input(vec4(texture(tex, tex_coords, texel_off))); } + +vec4 tex2D_linearize(const sampler2D tex, const vec3 tex_coords, const int texel_off) +{ return decode_input(vec4(texture(tex, tex_coords, texel_off))); } + +vec4 tex2D_linearize(const sampler2D tex, const vec2 tex_coords, const vec2 dx, const vec2 dy) +{ return decode_input(vec4(texture(tex, tex_coords, dx, dy))); } + +vec4 tex2D_linearize(const sampler2D tex, const vec3 tex_coords, const vec2 dx, const vec2 dy) +{ return decode_input(vec4(texture(tex, tex_coords, dx, dy))); } + +vec4 tex2D_linearize(const sampler2D tex, const vec2 tex_coords, const vec2 dx, const vec2 dy, const int texel_off) +{ return decode_input(vec4(texture(tex, tex_coords, dx, dy, texel_off))); } + +vec4 tex2D_linearize(const sampler2D tex, const vec3 tex_coords, const vec2 dx, const vec2 dy, const int texel_off) +{ return decode_input(vec4(texture(tex, tex_coords, dx, dy, texel_off))); } + +// tex2Dbias: +vec4 tex2Dbias_linearize(const sampler2D tex, const vec4 tex_coords) +{ return decode_input(vec4(tex2Dbias(tex, tex_coords))); } + +vec4 tex2Dbias_linearize(const sampler2D tex, const vec4 tex_coords, const int texel_off) +{ return decode_input(vec4(tex2Dbias(tex, tex_coords, texel_off))); } + +// tex2Dfetch: +vec4 tex2Dfetch_linearize(const sampler2D tex, const ivec4 tex_coords) +{ return decode_input(vec4(texture2Dfetch(tex, tex_coords))); } + +vec4 tex2Dfetch_linearize(const sampler2D tex, const ivec4 tex_coords, const int texel_off) +{ return decode_input(vec4(texture2Dfetch(tex, tex_coords, texel_off))); } + +// tex2Dlod: +vec4 tex2Dlod_linearize(const sampler2D tex, const vec4 tex_coords) +{ return decode_input(vec4(texture2Dlod(tex, tex_coords))); } + +vec4 tex2Dlod_linearize(const sampler2D tex, const vec4 tex_coords, const int texel_off) +{ return decode_input(vec4(texture2Dlod(tex, tex_coords, texel_off))); } + +// tex2Dproj: +vec4 tex2Dproj_linearize(const sampler2D tex, const vec3 tex_coords) +{ return decode_input(vec4(tex2Dproj(tex, tex_coords))); } + +vec4 tex2Dproj_linearize(const sampler2D tex, const vec4 tex_coords) +{ return decode_input(vec4(tex2Dproj(tex, tex_coords))); } + +vec4 tex2Dproj_linearize(const sampler2D tex, const vec3 tex_coords, const int texel_off) +{ return decode_input(vec4(tex2Dproj(tex, tex_coords, texel_off))); } + +vec4 tex2Dproj_linearize(const sampler2D tex, const vec4 tex_coords, const int texel_off) +{ return decode_input(vec4(tex2Dproj(tex, tex_coords, texel_off))); } + +/* +// tex3D: +vec4 tex3D_linearize(const sampler3D texture, const vec3 tex_coords) +{ return decode_input(tex3D(texture, tex_coords)); } + +vec4 tex3D_linearize(const sampler3D texture, const vec3 tex_coords, const int texel_off) +{ return decode_input(tex3D(texture, tex_coords, texel_off)); } + +vec4 tex3D_linearize(const sampler3D texture, const vec3 tex_coords, const vec3 dx, const vec3 dy) +{ return decode_input(tex3D(texture, tex_coords, dx, dy)); } + +vec4 tex3D_linearize(const sampler3D texture, const vec3 tex_coords, const vec3 dx, const vec3 dy, const int texel_off) +{ return decode_input(tex3D(texture, tex_coords, dx, dy, texel_off)); } + +// tex3Dbias: +vec4 tex3Dbias_linearize(const sampler3D texture, const vec4 tex_coords) +{ return decode_input(tex3Dbias(texture, tex_coords)); } + +vec4 tex3Dbias_linearize(const sampler3D texture, const vec4 tex_coords, const int texel_off) +{ return decode_input(tex3Dbias(texture, tex_coords, texel_off)); } + +// tex3Dfetch: +vec4 tex3Dfetch_linearize(const sampler3D texture, const int4 tex_coords) +{ return decode_input(tex3Dfetch(texture, tex_coords)); } + +vec4 tex3Dfetch_linearize(const sampler3D texture, const int4 tex_coords, const int texel_off) +{ return decode_input(tex3Dfetch(texture, tex_coords, texel_off)); } + +// tex3Dlod: +vec4 tex3Dlod_linearize(const sampler3D texture, const vec4 tex_coords) +{ return decode_input(tex3Dlod(texture, tex_coords)); } + +vec4 tex3Dlod_linearize(const sampler3D texture, const vec4 tex_coords, const int texel_off) +{ return decode_input(tex3Dlod(texture, tex_coords, texel_off)); } + +// tex3Dproj: +vec4 tex3Dproj_linearize(const sampler3D texture, const vec4 tex_coords) +{ return decode_input(tex3Dproj(texture, tex_coords)); } + +vec4 tex3Dproj_linearize(const sampler3D texture, const vec4 tex_coords, const int texel_off) +{ return decode_input(tex3Dproj(texture, tex_coords, texel_off)); } +*/ + + +// NONSTANDARD "SMART" LINEARIZING TEXTURE LOOKUP FUNCTIONS: +// This narrow selection of nonstandard tex2D* functions can be useful: + +// tex2Dlod0: Automatically fill in the tex2D LOD parameter for mip level 0. +vec4 tex2Dlod0_linearize(const sampler2D texture, const vec2 tex_coords) +{ return decode_input(vec4(texture2Dlod(texture, vec4(tex_coords, 0.0, 0.0)))); } + +vec4 tex2Dlod0_linearize(const sampler2D texture, const vec2 tex_coords, const int texel_off) +{ return decode_input(vec4(texture2Dlod(texture, vec4(tex_coords, 0.0, 0.0), texel_off))); } + + +// MANUALLY LINEARIZING TEXTURE LOOKUP FUNCTIONS: +// Provide a narrower selection of tex2D* wrapper functions that decode an +// input sample with a specified gamma value. These are useful for reading +// LUT's and for reading the input of pass0 in a later pass. + +// tex2D: +vec4 tex2D_linearize_gamma(const sampler2D tex, const vec2 tex_coords, const vec3 gamma) +{ return decode_gamma_input(vec4(texture(tex, tex_coords), vec3(gamma))); } + +vec4 tex2D_linearize_gamma(const sampler2D tex, const vec3 tex_coords, const vec3 gamma) +{ return decode_gamma_input(vec4(texture(tex, tex_coords), vec3(gamma))); } + +vec4 tex2D_linearize_gamma(const sampler2D tex, const vec2 tex_coords, const int texel_off, const vec3 gamma) +{ return decode_gamma_input(vec4(texture(tex, tex_coords, texel_off), vec3(gamma))); } + +vec4 tex2D_linearize_gamma(const sampler2D tex, const vec3 tex_coords, const int texel_off, const vec3 gamma) +{ return decode_gamma_input(vec4(texture(tex, tex_coords, texel_off), vec3(gamma))); } + +vec4 tex2D_linearize_gamma(const sampler2D tex, const vec2 tex_coords, const vec2 dx, const vec2 dy, const vec3 gamma) +{ return decode_gamma_input(vec4(texture(tex, tex_coords, dx, dy), vec3(gamma))); } + +vec4 tex2D_linearize_gamma(const sampler2D tex, const vec3 tex_coords, const vec2 dx, const vec2 dy, const vec3 gamma) +{ return decode_gamma_input(vec4(texture(tex, tex_coords, dx, dy), vec3(gamma))); } + +vec4 tex2D_linearize_gamma(const sampler2D tex, const vec2 tex_coords, const vec2 dx, const vec2 dy, const int texel_off, const vec3 gamma) +{ return decode_gamma_input(vec4(texture(tex, tex_coords, dx, dy, texel_off), vec3(gamma))); } + +vec4 tex2D_linearize_gamma(const sampler2D tex, const vec3 tex_coords, const vec2 dx, const vec2 dy, const int texel_off, const vec3 gamma) +{ return decode_gamma_input(vec4(texture(tex, tex_coords, dx, dy, texel_off), vec3(gamma))); } + +// tex2Dbias: +vec4 tex2Dbias_linearize_gamma(const sampler2D tex, const vec4 tex_coords, const vec3 gamma) +{ return decode_gamma_input(vec4(tex2Dbias(tex, tex_coords), vec3(gamma))); } + +vec4 tex2Dbias_linearize_gamma(const sampler2D tex, const vec4 tex_coords, const int texel_off, const vec3 gamma) +{ return decode_gamma_input(vec4(tex2Dbias(tex, tex_coords, texel_off), vec3(gamma))); } + +// tex2Dfetch: +vec4 tex2Dfetch_linearize_gamma(const sampler2D tex, const int4 tex_coords, const vec3 gamma) +{ return decode_gamma_input(vec4(tex2Dfetch(tex, tex_coords), vec3(gamma))); } + +vec4 tex2Dfetch_linearize_gamma(const sampler2D tex, const int4 tex_coords, const int texel_off, const vec3 gamma) +{ return decode_gamma_input(vec4(tex2Dfetch(tex, tex_coords, texel_off), vec3(gamma))); } + +// tex2Dlod: +vec4 tex2Dlod_linearize_gamma(const sampler2D tex, const vec4 tex_coords, const vec3 gamma) +{ return decode_gamma_input(vec4(tex2Dlod(tex, tex_coords), vec3(gamma))); } + +vec4 tex2Dlod_linearize_gamma(const sampler2D tex, const vec4 tex_coords, const int texel_off, const vec3 gamma) +{ return decode_gamma_input(vec4(tex2Dlod(tex, tex_coords, texel_off), vec3(gamma))); } + + +#endif // GAMMA_MANAGEMENT_H + diff --git a/crt/shaders/crt-royale/src/gamma-management.h b/crt/shaders/crt-royale/src/gamma-management.h new file mode 100644 index 0000000..4236bb3 --- /dev/null +++ b/crt/shaders/crt-royale/src/gamma-management.h @@ -0,0 +1,160 @@ +/////////////////////////////// BASE CONSTANTS /////////////////////////////// + +// Set standard gamma constants, but allow users to override them: +#ifndef OVERRIDE_STANDARD_GAMMA + // Standard encoding gammas: + const float ntsc_gamma = 2.2; // Best to use NTSC for PAL too? + const float pal_gamma = 2.8; // Never actually 2.8 in practice + // Typical device decoding gammas (only use for emulating devices): + // CRT/LCD reference gammas are higher than NTSC and Rec.709 video standard + // gammas: The standards purposely undercorrected for an analog CRT's + // assumed 2.5 reference display gamma to maintain contrast in assumed + // [dark] viewing conditions: http://www.poynton.com/PDFs/GammaFAQ.pdf + // These unstated assumptions about display gamma and perceptual rendering + // intent caused a lot of confusion, and more modern CRT's seemed to target + // NTSC 2.2 gamma with circuitry. LCD displays seem to have followed suit + // (they struggle near black with 2.5 gamma anyway), especially PC/laptop + // displays designed to view sRGB in bright environments. (Standards are + // also in flux again with BT.1886, but it's underspecified for displays.) + const float crt_reference_gamma_high = 2.5; // In (2.35, 2.55) + const float crt_reference_gamma_low = 2.35; // In (2.35, 2.55) + const float lcd_reference_gamma = 2.5; // To match CRT + const float crt_office_gamma = 2.2; // Circuitry-adjusted for NTSC + const float lcd_office_gamma = 2.2; // Approximates sRGB +#endif // OVERRIDE_STANDARD_GAMMA + +// Assuming alpha == 1.0 might make it easier for users to avoid some bugs, +// but only if they're aware of it. +#ifndef OVERRIDE_ALPHA_ASSUMPTIONS + const bool assume_opaque_alpha = false; +#endif + + +/////////////////////// DERIVED CONSTANTS AS FUNCTIONS /////////////////////// + +// gamma-management.h should be compatible with overriding gamma values with +// runtime user parameters, but we can only define other global constants in +// terms of static constants, not uniform user parameters. To get around this +// limitation, we need to define derived constants using functions. + +// Set device gamma constants, but allow users to override them: +#ifdef OVERRIDE_DEVICE_GAMMA + // The user promises to globally define the appropriate constants: + float get_crt_gamma() { return crt_gamma; } + float get_gba_gamma() { return gba_gamma; } + float get_lcd_gamma() { return lcd_gamma; } +#else + float get_crt_gamma() { return crt_reference_gamma_high; } + float get_gba_gamma() { return 3.5; } // Game Boy Advance; in (3.0, 4.0) + float get_lcd_gamma() { return lcd_office_gamma; } +#endif // OVERRIDE_DEVICE_GAMMA + +// Set decoding/encoding gammas for the first/lass passes, but allow overrides: +#ifdef OVERRIDE_FINAL_GAMMA + // The user promises to globally define the appropriate constants: + float get_intermediate_gamma() { return intermediate_gamma; } + float get_input_gamma() { return input_gamma; } + float get_output_gamma() { return output_gamma; } +#else + // If we gamma-correct every pass, always use ntsc_gamma between passes to + // ensure middle passes don't need to care if anything is being simulated: + float get_intermediate_gamma() { return ntsc_gamma; } + #ifdef SIMULATE_CRT_ON_LCD + float get_input_gamma() { return get_crt_gamma(); } + float get_output_gamma() { return get_lcd_gamma(); } + #else + #ifdef SIMULATE_GBA_ON_LCD + float get_input_gamma() { return get_gba_gamma(); } + float get_output_gamma() { return get_lcd_gamma(); } + #else + #ifdef SIMULATE_LCD_ON_CRT + float get_input_gamma() { return get_lcd_gamma(); } + float get_output_gamma() { return get_crt_gamma(); } + #else + #ifdef SIMULATE_GBA_ON_CRT + float get_input_gamma() { return get_gba_gamma(); } + float get_output_gamma() { return get_crt_gamma(); } + #else // Don't simulate anything: + float get_input_gamma() { return ntsc_gamma; } + float get_output_gamma() { return ntsc_gamma; } + #endif // SIMULATE_GBA_ON_CRT + #endif // SIMULATE_LCD_ON_CRT + #endif // SIMULATE_GBA_ON_LCD + #endif // SIMULATE_CRT_ON_LCD +#endif // OVERRIDE_FINAL_GAMMA + +#ifndef GAMMA_ENCODE_EVERY_FBO + #ifdef FIRST_PASS + const bool linearize_input = true; + float get_pass_input_gamma() { return get_input_gamma(); } + #else + const bool linearize_input = false; + float get_pass_input_gamma() { return 1.0; } + #endif + #ifdef LAST_PASS + const bool gamma_encode_output = true; + float get_pass_output_gamma() { return get_output_gamma(); } + #else + const bool gamma_encode_output = false; + float get_pass_output_gamma() { return 1.0; } + #endif +#else + const bool linearize_input = true; + const bool gamma_encode_output = true; + #ifdef FIRST_PASS + float get_pass_input_gamma() { return get_input_gamma(); } + #else + float get_pass_input_gamma() { return get_intermediate_gamma(); } + #endif + #ifdef LAST_PASS + float get_pass_output_gamma() { return get_output_gamma(); } + #else + float get_pass_output_gamma() { return get_intermediate_gamma(); } + #endif +#endif + +vec4 decode_input(const vec4 color) +{ + if(linearize_input) + { + if(assume_opaque_alpha) + { + return vec4(pow(color.rgb, vec3(get_pass_input_gamma())), 1.0); + } + else + { + return vec4(pow(color.rgb, vec3(get_pass_input_gamma())), color.a); + } + } + else + { + return color; + } +} + +vec4 encode_output(const vec4 color) +{ + if(gamma_encode_output) + { + if(assume_opaque_alpha) + { + return vec4(pow(color.rgb, vec3(1.0/get_pass_output_gamma())), 1.0); + } + else + { + return vec4(pow(color.rgb, vec3(1.0/get_pass_output_gamma())), color.a); + } + } + else + { + return color; + } +} + +#define tex2D_linearize(C, D) decode_input(vec4(texture(C, D))) +//vec4 tex2D_linearize(const sampler2D tex, const vec2 tex_coords) +//{ return decode_input(vec4(texture(tex, tex_coords))); } + +//#define tex2D_linearize(C, D, E) decode_input(vec4(texture(C, D, E))) +//vec4 tex2D_linearize(const sampler2D tex, const vec2 tex_coords, const int texel_off) +//{ return decode_input(vec4(texture(tex, tex_coords, texel_off))); } \ No newline at end of file diff --git a/crt/shaders/crt-royale/src/includes.h b/crt/shaders/crt-royale/src/includes.h new file mode 100644 index 0000000..c30ade7 --- /dev/null +++ b/crt/shaders/crt-royale/src/includes.h @@ -0,0 +1,10 @@ +#define INCLUDES + +#include "../user-settings.h" +#include "derived-settings-and-constants.h" +#include "special-functions.h" //#include "../../../../include/special-functions.h" <-move includes into crt-royale's src directory until it's actually working +#include "bind-shader-params.h" +#include "gamma-management.h" //#include "../../../../include/gamma-management.h" <-move includes into crt-royale's src directory until it's actually working +#include "blur-functions.h" //#include "../../../../include/blur-functions.h" <-move includes into crt-royale's src directory until it's actually working +#include "scanline-functions.h" +#include "bloom-functions.h" \ No newline at end of file diff --git a/crt/shaders/crt-royale/src/quad-pixel-communication.h b/crt/shaders/crt-royale/src/quad-pixel-communication.h new file mode 100644 index 0000000..4c3f1cb --- /dev/null +++ b/crt/shaders/crt-royale/src/quad-pixel-communication.h @@ -0,0 +1,243 @@ +#ifndef QUAD_PIXEL_COMMUNICATION_H +#define QUAD_PIXEL_COMMUNICATION_H + +///////////////////////////////// MIT LICENSE //////////////////////////////// + +// Copyright (C) 2014 TroggleMonkey* +// +// Permission is hereby granted, free of charge, to any person obtaining a copy +// of this software and associated documentation files (the "Software"), to +// deal in the Software without restriction, including without limitation the +// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or +// sell copies of the Software, and to permit persons to whom the Software is +// furnished to do so, subject to the following conditions: +// +// The above copyright notice and this permission notice shall be included in +// all copies or substantial portions of the Software. +// +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING +// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS +// IN THE SOFTWARE. + +///////////////////////////////// DISCLAIMER ///////////////////////////////// + +// *This code was inspired by "Shader Amortization using Pixel Quad Message +// Passing" by Eric Penner, published in GPU Pro 2, Chapter VI.2. My intent +// is not to plagiarize his fundamentally similar code and assert my own +// copyright, but the algorithmic helper functions require so little code that +// implementations can't vary by much except bugfixes and conventions. I just +// wanted to license my own particular code here to avoid ambiguity and make it +// clear that as far as I'm concerned, people can do as they please with it. + +///////////////////////////////// DESCRIPTION //////////////////////////////// + +// Given screen pixel numbers, derive a "quad vector" describing a fragment's +// position in its 2x2 pixel quad. Given that vector, obtain the values of any +// variable at neighboring fragments. +// Requires: Using this file in general requires: +// 1.) ddx() and ddy() are present in the current Cg profile. +// 2.) The GPU driver is using fine/high-quality derivatives. +// Functions will give incorrect results if this is not true, +// so a test function is included. + + +///////////////////// QUAD-PIXEL COMMUNICATION PRIMITIVES //////////////////// + +vec4 get_quad_vector_naive(const vec4 output_pixel_num_wrt_uvxy) +{ + // Requires: Two measures of the current fragment's output pixel number + // in the range ([0, IN.output_size.x), [0, IN.output_size.y)): + // 1.) output_pixel_num_wrt_uvxy.xy increase with uv coords. + // 2.) output_pixel_num_wrt_uvxy.zw increase with screen xy. + // Returns: Two measures of the fragment's position in its 2x2 quad: + // 1.) The .xy components are its 2x2 placement with respect to + // uv direction (the origin (0, 0) is at the top-left): + // top-left = (-1.0, -1.0) top-right = ( 1.0, -1.0) + // bottom-left = (-1.0, 1.0) bottom-right = ( 1.0, 1.0) + // You need this to arrange/weight shared texture samples. + // 2.) The .zw components are its 2x2 placement with respect to + // screen xy direction (IN.position); the origin varies. + // quad_gather needs this measure to work correctly. + // Note: quad_vector.zw = quad_vector.xy * vec2( + // ddx(output_pixel_num_wrt_uvxy.x), + // ddy(output_pixel_num_wrt_uvxy.y)); + // Caveats: This function assumes the GPU driver always starts 2x2 pixel + // quads at even pixel numbers. This assumption can be wrong + // for odd output resolutions (nondeterministically so). + const vec4 pixel_odd = frac(output_pixel_num_wrt_uvxy * 0.5) * 2.0; + const vec4 quad_vector = pixel_odd * 2.0 - vec4(1.0); + return quad_vector; +} + +vec4 get_quad_vector(const vec4 output_pixel_num_wrt_uvxy) +{ + // Requires: Same as get_quad_vector_naive() (see that first). + // Returns: Same as get_quad_vector_naive() (see that first), but it's + // correct even if the 2x2 pixel quad starts at an odd pixel, + // which can occur at odd resolutions. + const vec4 quad_vector_guess = + get_quad_vector_naive(output_pixel_num_wrt_uvxy); + // If quad_vector_guess.zw doesn't increase with screen xy, we know + // the 2x2 pixel quad starts at an odd pixel: + const vec2 odd_start_mirror = 0.5 * vec2(ddx(quad_vector_guess.z), + ddy(quad_vector_guess.w)); + return quad_vector_guess * odd_start_mirror.xyxy; +} + +vec4 get_quad_vector(const vec2 output_pixel_num_wrt_uv) +{ + // Requires: 1.) ddx() and ddy() are present in the current Cg profile. + // 2.) output_pixel_num_wrt_uv must increase with uv coords and + // measure the current fragment's output pixel number in: + // ([0, IN.output_size.x), [0, IN.output_size.y)) + // Returns: Same as get_quad_vector_naive() (see that first), but it's + // correct even if the 2x2 pixel quad starts at an odd pixel, + // which can occur at odd resolutions. + // Caveats: This function requires less information than the version + // taking a vec4, but it's potentially slower. + // Do screen coords increase with or against uv? Get the direction + // with respect to (uv.x, uv.y) for (screen.x, screen.y) in {-1, 1}. + const vec2 screen_uv_mirror = vec2(ddx(output_pixel_num_wrt_uv.x), + ddy(output_pixel_num_wrt_uv.y)); + const vec2 pixel_odd_wrt_uv = frac(output_pixel_num_wrt_uv * 0.5) * 2.0; + const vec2 quad_vector_uv_guess = (pixel_odd_wrt_uv - vec2(0.5)) * 2.0; + const vec2 quad_vector_screen_guess = quad_vector_uv_guess * screen_uv_mirror; + // If quad_vector_screen_guess doesn't increase with screen xy, we know + // the 2x2 pixel quad starts at an odd pixel: + const vec2 odd_start_mirror = 0.5 * vec2(ddx(quad_vector_screen_guess.x), + ddy(quad_vector_screen_guess.y)); + const vec4 quad_vector_guess = vec4( + quad_vector_uv_guess, quad_vector_screen_guess); + return quad_vector_guess * odd_start_mirror.xyxy; +} + +void quad_gather(const vec4 quad_vector, const vec4 curr, + out vec4 adjx, out vec4 adjy, out vec4 diag) +{ + // Requires: 1.) ddx() and ddy() are present in the current Cg profile. + // 2.) The GPU driver is using fine/high-quality derivatives. + // 3.) quad_vector describes the current fragment's location in + // its 2x2 pixel quad using get_quad_vector()'s conventions. + // 4.) curr is any vector you wish to get neighboring values of. + // Returns: Values of an input vector (curr) at neighboring fragments + // adjacent x, adjacent y, and diagonal (via out parameters). + adjx = curr - ddx(curr) * quad_vector.z; + adjy = curr - ddy(curr) * quad_vector.w; + diag = adjx - ddy(adjx) * quad_vector.w; +} + +void quad_gather(const vec4 quad_vector, const vec3 curr, + out vec3 adjx, out vec3 adjy, out vec3 diag) +{ + // vec3 version + adjx = curr - ddx(curr) * quad_vector.z; + adjy = curr - ddy(curr) * quad_vector.w; + diag = adjx - ddy(adjx) * quad_vector.w; +} + +void quad_gather(const vec4 quad_vector, const vec2 curr, + out vec2 adjx, out vec2 adjy, out vec2 diag) +{ + // vec2 version + adjx = curr - ddx(curr) * quad_vector.z; + adjy = curr - ddy(curr) * quad_vector.w; + diag = adjx - ddy(adjx) * quad_vector.w; +} + +vec4 quad_gather(const vec4 quad_vector, const float curr) +{ + // Float version: + // Returns: return.x == current + // return.y == adjacent x + // return.z == adjacent y + // return.w == diagonal + vec4 all = vec4(curr); + all.y = all.x - ddx(all.x) * quad_vector.z; + all.zw = all.xy - ddy(all.xy) * quad_vector.w; + return all; +} + +vec4 quad_gather_sum(const vec4 quad_vector, const vec4 curr) +{ + // Requires: Same as quad_gather() + // Returns: Sum of an input vector (curr) at all fragments in a quad. + vec4 adjx, adjy, diag; + quad_gather(quad_vector, curr, adjx, adjy, diag); + return (curr + adjx + adjy + diag); +} + +vec3 quad_gather_sum(const vec4 quad_vector, const vec3 curr) +{ + // vec3 version: + vec3 adjx, adjy, diag; + quad_gather(quad_vector, curr, adjx, adjy, diag); + return (curr + adjx + adjy + diag); +} + +vec2 quad_gather_sum(const vec4 quad_vector, const vec2 curr) +{ + // vec2 version: + vec2 adjx, adjy, diag; + quad_gather(quad_vector, curr, adjx, adjy, diag); + return (curr + adjx + adjy + diag); +} + +float quad_gather_sum(const vec4 quad_vector, const float curr) +{ + // Float version: + const vec4 all_values = quad_gather(quad_vector, curr); + return (all_values.x + all_values.y + all_values.z + all_values.w); +} + +bool fine_derivatives_working(const vec4 quad_vector, vec4 curr) +{ + // Requires: 1.) ddx() and ddy() are present in the current Cg profile. + // 2.) quad_vector describes the current fragment's location in + // its 2x2 pixel quad using get_quad_vector()'s conventions. + // 3.) curr must be a test vector with non-constant derivatives + // (its value should change nonlinearly across fragments). + // Returns: true if fine/hybrid/high-quality derivatives are used, or + // false if coarse derivatives are used or inconclusive + // Usage: Test whether quad-pixel communication is working! + // Method: We can confirm fine derivatives are used if the following + // holds (ever, for any value at any fragment): + // (ddy(curr) != ddy(adjx)) or (ddx(curr) != ddx(adjy)) + // The more values we test (e.g. test a vec4 two ways), the + // easier it is to demonstrate fine derivatives are working. + // TODO: Check for floating point exact comparison issues! + vec4 ddx_curr = ddx(curr); + vec4 ddy_curr = ddy(curr); + vec4 adjx = curr - ddx_curr * quad_vector.z; + vec4 adjy = curr - ddy_curr * quad_vector.w; + bool ddy_different = any(ddy_curr != ddy(adjx)); + bool ddx_different = any(ddx_curr != ddx(adjy)); + return any(bool2(ddy_different, ddx_different)); +} + +bool fine_derivatives_working_fast(const vec4 quad_vector, float curr) +{ + // Requires: Same as fine_derivatives_working() + // Returns: Same as fine_derivatives_working() + // Usage: This is faster than fine_derivatives_working() but more + // likely to return false negatives, so it's less useful for + // offline testing/debugging. It's also useless as the basis + // for dynamic runtime branching as of May 2014: Derivatives + // (and quad-pixel communication) are currently disallowed in + // branches. However, future GPU's may allow you to use them + // in dynamic branches if you promise the branch condition + // evaluates the same for every fragment in the quad (and/or if + // the driver enforces that promise by making a single fragment + // control branch decisions). If that ever happens, this + // version may become a more economical choice. + float ddx_curr = ddx(curr); + float ddy_curr = ddy(curr); + float adjx = curr - ddx_curr * quad_vector.z; + return (ddy_curr != ddy(adjx)); +} + +#endif // QUAD_PIXEL_COMMUNICATION_H + diff --git a/crt/shaders/crt-royale/src/scanline-functions-old.h b/crt/shaders/crt-royale/src/scanline-functions-old.h new file mode 100644 index 0000000..d71a500 --- /dev/null +++ b/crt/shaders/crt-royale/src/scanline-functions-old.h @@ -0,0 +1,572 @@ +#ifndef SCANLINE_FUNCTIONS_H +#define SCANLINE_FUNCTIONS_H + +///////////////////////////// GPL LICENSE NOTICE ///////////////////////////// + +// crt-royale: A full-featured CRT shader, with cheese. +// Copyright (C) 2014 TroggleMonkey +// +// This program is free software; you can redistribute it and/or modify it +// under the terms of the GNU General Public License as published by the Free +// Software Foundation; either version 2 of the License, or any later version. +// +// This program is distributed in the hope that it will be useful, but WITHOUT +// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or +// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for +// more details. +// +// You should have received a copy of the GNU General Public License along with +// this program; if not, write to the Free Software Foundation, Inc., 59 Temple +// Place, Suite 330, Boston, MA 02111-1307 USA + + +////////////////////////////////// INCLUDES ////////////////////////////////// + +#include "../user-settings.h" +#include "derived-settings-and-constants.h" +#include "../../../../include/special-functions.h" +#include "../../../../include/gamma-management.h" + + +///////////////////////////// SCANLINE FUNCTIONS ///////////////////////////// +/* +inline float3 get_gaussian_sigma(const float3 color, const float sigma_range) +{ + // Requires: Globals: + // 1.) beam_min_sigma and beam_max_sigma are global floats + // containing the desired minimum and maximum beam standard + // deviations, for dim and bright colors respectively. + // 2.) beam_max_sigma must be > 0.0 + // 3.) beam_min_sigma must be in (0.0, beam_max_sigma] + // 4.) beam_spot_power must be defined as a global float. + // Parameters: + // 1.) color is the underlying source color along a scanline + // 2.) sigma_range = beam_max_sigma - beam_min_sigma; we take + // sigma_range as a parameter to avoid repeated computation + // when beam_{min, max}_sigma are runtime shader parameters + // Optional: Users may set beam_spot_shape_function to 1 to define the + // inner f(color) subfunction (see below) as: + // f(color) = sqrt(1.0 - (color - 1.0)*(color - 1.0)) + // Otherwise (technically, if beam_spot_shape_function < 0.5): + // f(color) = pow(color, beam_spot_power) + // Returns: The standard deviation of the Gaussian beam for "color:" + // sigma = beam_min_sigma + sigma_range * f(color) + // Details/Discussion: + // The beam's spot shape vaguely resembles an aspect-corrected f() in the + // range [0, 1] (not quite, but it's related). f(color) = color makes + // spots look like diamonds, and a spherical function or cube balances + // between variable width and a soft/realistic shape. A beam_spot_power + // > 1.0 can produce an ugly spot shape and more initial clipping, but the + // final shape also differs based on the horizontal resampling filter and + // the phosphor bloom. For instance, resampling horizontally in nonlinear + // light and/or with a sharp (e.g. Lanczos) filter will sharpen the spot + // shape, but a sixth root is still quite soft. A power function (default + // 1.0/3.0 beam_spot_power) is most flexible, but a fixed spherical curve + // has the highest variability without an awful spot shape. + // + // beam_min_sigma affects scanline sharpness/aliasing in dim areas, and its + // difference from beam_max_sigma affects beam width variability. It only + // affects clipping [for pure Gaussians] if beam_spot_power > 1.0 (which is + // a conservative estimate for a more complex constraint). + // + // beam_max_sigma affects clipping and increasing scanline width/softness + // as color increases. The wider this is, the more scanlines need to be + // evaluated to avoid distortion. For a pure Gaussian, the max_beam_sigma + // at which the first unused scanline always has a weight < 1.0/255.0 is: + // num scanlines = 2, max_beam_sigma = 0.2089; distortions begin ~0.34 + // num scanlines = 3, max_beam_sigma = 0.3879; distortions begin ~0.52 + // num scanlines = 4, max_beam_sigma = 0.5723; distortions begin ~0.70 + // num scanlines = 5, max_beam_sigma = 0.7591; distortions begin ~0.89 + // num scanlines = 6, max_beam_sigma = 0.9483; distortions begin ~1.08 + // Generalized Gaussians permit more leeway here as steepness increases. + if(beam_spot_shape_function < 0.5) + { + // Use a power function: + return float3(beam_min_sigma) + sigma_range * + pow(color, beam_spot_power); + } + else + { + // Use a spherical function: + const float3 color_minus_1 = color - float3(1.0); + return float3(beam_min_sigma) + sigma_range * + sqrt(float3(1.0) - color_minus_1*color_minus_1); + } +} + +inline float3 get_generalized_gaussian_beta(const float3 color, + const float shape_range) +{ + // Requires: Globals: + // 1.) beam_min_shape and beam_max_shape are global floats + // containing the desired min/max generalized Gaussian + // beta parameters, for dim and bright colors respectively. + // 2.) beam_max_shape must be >= 2.0 + // 3.) beam_min_shape must be in [2.0, beam_max_shape] + // 4.) beam_shape_power must be defined as a global float. + // Parameters: + // 1.) color is the underlying source color along a scanline + // 2.) shape_range = beam_max_shape - beam_min_shape; we take + // shape_range as a parameter to avoid repeated computation + // when beam_{min, max}_shape are runtime shader parameters + // Returns: The type-I generalized Gaussian "shape" parameter beta for + // the given color. + // Details/Discussion: + // Beta affects the scanline distribution as follows: + // a.) beta < 2.0 narrows the peak to a spike with a discontinuous slope + // b.) beta == 2.0 just degenerates to a Gaussian + // c.) beta > 2.0 flattens and widens the peak, then drops off more steeply + // than a Gaussian. Whereas high sigmas widen and soften peaks, high + // beta widen and sharpen peaks at the risk of aliasing. + // Unlike high beam_spot_powers, high beam_shape_powers actually soften shape + // transitions, whereas lower ones sharpen them (at the risk of aliasing). + return beam_min_shape + shape_range * pow(color, beam_shape_power); +} + +float3 scanline_gaussian_integral_contrib(const float3 dist, + const float3 color, const float pixel_height, const float sigma_range) +{ + // Requires: 1.) dist is the distance of the [potentially separate R/G/B] + // point(s) from a scanline in units of scanlines, where + // 1.0 means the sample point straddles the next scanline. + // 2.) color is the underlying source color along a scanline. + // 3.) pixel_height is the output pixel height in scanlines. + // 4.) Requirements of get_gaussian_sigma() must be met. + // Returns: Return a scanline's light output over a given pixel. + // Details: + // The CRT beam profile follows a roughly Gaussian distribution which is + // wider for bright colors than dark ones. The integral over the full + // range of a Gaussian function is always 1.0, so we can vary the beam + // with a standard deviation without affecting brightness. 'x' = distance: + // gaussian sample = 1/(sigma*sqrt(2*pi)) * e**(-(x**2)/(2*sigma**2)) + // gaussian integral = 0.5 (1.0 + erf(x/(sigma * sqrt(2)))) + // Use a numerical approximation of the "error function" (the Gaussian + // indefinite integral) to find the definite integral of the scanline's + // average brightness over a given pixel area. Even if curved coords were + // used in this pass, a flat scalar pixel height works almost as well as a + // pixel height computed from a full pixel-space to scanline-space matrix. + const float3 sigma = get_gaussian_sigma(color, sigma_range); + const float3 ph_offset = float3(pixel_height * 0.5); + const float3 denom_inv = 1.0/(sigma*sqrt(2.0)); + const float3 integral_high = erf((dist + ph_offset)*denom_inv); + const float3 integral_low = erf((dist - ph_offset)*denom_inv); + return color * 0.5*(integral_high - integral_low)/pixel_height; +} + +float3 scanline_generalized_gaussian_integral_contrib(const float3 dist, + const float3 color, const float pixel_height, const float sigma_range, + const float shape_range) +{ + // Requires: 1.) Requirements of scanline_gaussian_integral_contrib() + // must be met. + // 2.) Requirements of get_gaussian_sigma() must be met. + // 3.) Requirements of get_generalized_gaussian_beta() must be + // met. + // Returns: Return a scanline's light output over a given pixel. + // A generalized Gaussian distribution allows the shape (beta) to vary + // as well as the width (alpha). "gamma" refers to the gamma function: + // generalized sample = + // beta/(2*alpha*gamma(1/beta)) * e**(-(|x|/alpha)**beta) + // ligamma(s, z) is the lower incomplete gamma function, for which we only + // implement two of four branches (because we keep 1/beta <= 0.5): + // generalized integral = 0.5 + 0.5* sign(x) * + // ligamma(1/beta, (|x|/alpha)**beta)/gamma(1/beta) + // See get_generalized_gaussian_beta() for a discussion of beta. + // We base alpha on the intended Gaussian sigma, but it only strictly + // models models standard deviation at beta == 2, because the standard + // deviation depends on both alpha and beta (keeping alpha independent is + // faster and preserves intuitive behavior and a full spectrum of results). + const float3 alpha = sqrt(2.0) * get_gaussian_sigma(color, sigma_range); + const float3 beta = get_generalized_gaussian_beta(color, shape_range); + const float3 alpha_inv = float3(1.0)/alpha; + const float3 s = float3(1.0)/beta; + const float3 ph_offset = float3(pixel_height * 0.5); + // Pass beta to gamma_impl to avoid repeated divides. Similarly pass + // beta (i.e. 1/s) and 1/gamma(s) to normalized_ligamma_impl. + const float3 gamma_s_inv = float3(1.0)/gamma_impl(s, beta); + const float3 dist1 = dist + ph_offset; + const float3 dist0 = dist - ph_offset; + const float3 integral_high = sign(dist1) * normalized_ligamma_impl( + s, pow(abs(dist1)*alpha_inv, beta), beta, gamma_s_inv); + const float3 integral_low = sign(dist0) * normalized_ligamma_impl( + s, pow(abs(dist0)*alpha_inv, beta), beta, gamma_s_inv); + return color * 0.5*(integral_high - integral_low)/pixel_height; +} + +float3 scanline_gaussian_sampled_contrib(const float3 dist, const float3 color, + const float pixel_height, const float sigma_range) +{ + // See scanline_gaussian integral_contrib() for detailed comments! + // gaussian sample = 1/(sigma*sqrt(2*pi)) * e**(-(x**2)/(2*sigma**2)) + const float3 sigma = get_gaussian_sigma(color, sigma_range); + // Avoid repeated divides: + const float3 sigma_inv = float3(1.0)/sigma; + const float3 inner_denom_inv = 0.5 * sigma_inv * sigma_inv; + const float3 outer_denom_inv = sigma_inv/sqrt(2.0*pi); + if(beam_antialias_level > 0.5) + { + // Sample 1/3 pixel away in each direction as well: + const float3 sample_offset = float3(pixel_height/3.0); + const float3 dist2 = dist + sample_offset; + const float3 dist3 = abs(dist - sample_offset); + // Average three pure Gaussian samples: + const float3 scale = color/3.0 * outer_denom_inv; + const float3 weight1 = exp(-(dist*dist)*inner_denom_inv); + const float3 weight2 = exp(-(dist2*dist2)*inner_denom_inv); + const float3 weight3 = exp(-(dist3*dist3)*inner_denom_inv); + return scale * (weight1 + weight2 + weight3); + } + else + { + return color*exp(-(dist*dist)*inner_denom_inv)*outer_denom_inv; + } +} + +float3 scanline_generalized_gaussian_sampled_contrib(const float3 dist, + const float3 color, const float pixel_height, const float sigma_range, + const float shape_range) +{ + // See scanline_generalized_gaussian_integral_contrib() for details! + // generalized sample = + // beta/(2*alpha*gamma(1/beta)) * e**(-(|x|/alpha)**beta) + const float3 alpha = sqrt(2.0) * get_gaussian_sigma(color, sigma_range); + const float3 beta = get_generalized_gaussian_beta(color, shape_range); + // Avoid repeated divides: + const float3 alpha_inv = float3(1.0)/alpha; + const float3 beta_inv = float3(1.0)/beta; + const float3 scale = color * beta * 0.5 * alpha_inv / + gamma_impl(beta_inv, beta); + if(beam_antialias_level > 0.5) + { + // Sample 1/3 pixel closer to and farther from the scanline too. + const float3 sample_offset = float3(pixel_height/3.0); + const float3 dist2 = dist + sample_offset; + const float3 dist3 = abs(dist - sample_offset); + // Average three generalized Gaussian samples: + const float3 weight1 = exp(-pow(abs(dist*alpha_inv), beta)); + const float3 weight2 = exp(-pow(abs(dist2*alpha_inv), beta)); + const float3 weight3 = exp(-pow(abs(dist3*alpha_inv), beta)); + return scale/3.0 * (weight1 + weight2 + weight3); + } + else + { + return scale * exp(-pow(abs(dist*alpha_inv), beta)); + } +} + +inline float3 scanline_contrib(float3 dist, float3 color, + float pixel_height, const float sigma_range, const float shape_range) +{ + // Requires: 1.) Requirements of scanline_gaussian_integral_contrib() + // must be met. + // 2.) Requirements of get_gaussian_sigma() must be met. + // 3.) Requirements of get_generalized_gaussian_beta() must be + // met. + // Returns: Return a scanline's light output over a given pixel, using + // a generalized or pure Gaussian distribution and sampling or + // integrals as desired by user codepath choices. + if(beam_generalized_gaussian) + { + if(beam_antialias_level > 1.5) + { + return scanline_generalized_gaussian_integral_contrib( + dist, color, pixel_height, sigma_range, shape_range); + } + else + { + return scanline_generalized_gaussian_sampled_contrib( + dist, color, pixel_height, sigma_range, shape_range); + } + } + else + { + if(beam_antialias_level > 1.5) + { + return scanline_gaussian_integral_contrib( + dist, color, pixel_height, sigma_range); + } + else + { + return scanline_gaussian_sampled_contrib( + dist, color, pixel_height, sigma_range); + } + } +} + +inline float3 get_raw_interpolated_color(const float3 color0, + const float3 color1, const float3 color2, const float3 color3, + const float4 weights) +{ + // Use max to avoid bizarre artifacts from negative colors: + return max(mul(weights, float4x3(color0, color1, color2, color3)), 0.0); +} + +float3 get_interpolated_linear_color(const float3 color0, const float3 color1, + const float3 color2, const float3 color3, const float4 weights) +{ + // Requires: 1.) Requirements of include/gamma-management.h must be met: + // intermediate_gamma must be globally defined, and input + // colors are interpreted as linear RGB unless you #define + // GAMMA_ENCODE_EVERY_FBO (in which case they are + // interpreted as gamma-encoded with intermediate_gamma). + // 2.) color0-3 are colors sampled from a texture with tex2D(). + // They are interpreted as defined in requirement 1. + // 3.) weights contains weights for each color, summing to 1.0. + // 4.) beam_horiz_linear_rgb_weight must be defined as a global + // float in [0.0, 1.0] describing how much blending should + // be done in linear RGB (rest is gamma-corrected RGB). + // 5.) RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE must be #defined + // if beam_horiz_linear_rgb_weight is anything other than a + // static constant, or we may try branching at runtime + // without dynamic branches allowed (slow). + // Returns: Return an interpolated color lookup between the four input + // colors based on the weights in weights. The final color will + // be a linear RGB value, but the blending will be done as + // indicated above. + const float intermediate_gamma = get_intermediate_gamma(); + // Branch if beam_horiz_linear_rgb_weight is static (for free) or if the + // profile allows dynamic branches (faster than computing extra pows): + #ifndef RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE + #define SCANLINES_BRANCH_FOR_LINEAR_RGB_WEIGHT + #else + #ifdef DRIVERS_ALLOW_DYNAMIC_BRANCHES + #define SCANLINES_BRANCH_FOR_LINEAR_RGB_WEIGHT + #endif + #endif + #ifdef SCANLINES_BRANCH_FOR_LINEAR_RGB_WEIGHT + // beam_horiz_linear_rgb_weight is static, so we can branch: + #ifdef GAMMA_ENCODE_EVERY_FBO + const float3 gamma_mixed_color = pow(get_raw_interpolated_color( + color0, color1, color2, color3, weights), intermediate_gamma); + if(beam_horiz_linear_rgb_weight > 0.0) + { + const float3 linear_mixed_color = get_raw_interpolated_color( + pow(color0, intermediate_gamma), + pow(color1, intermediate_gamma), + pow(color2, intermediate_gamma), + pow(color3, intermediate_gamma), + weights); + return lerp(gamma_mixed_color, linear_mixed_color, + beam_horiz_linear_rgb_weight); + } + else + { + return gamma_mixed_color; + } + #else + const float3 linear_mixed_color = get_raw_interpolated_color( + color0, color1, color2, color3, weights); + if(beam_horiz_linear_rgb_weight < 1.0) + { + const float3 gamma_mixed_color = get_raw_interpolated_color( + pow(color0, 1.0/intermediate_gamma), + pow(color1, 1.0/intermediate_gamma), + pow(color2, 1.0/intermediate_gamma), + pow(color3, 1.0/intermediate_gamma), + weights); + return lerp(gamma_mixed_color, linear_mixed_color, + beam_horiz_linear_rgb_weight); + } + else + { + return linear_mixed_color; + } + #endif // GAMMA_ENCODE_EVERY_FBO + #else + #ifdef GAMMA_ENCODE_EVERY_FBO + // Inputs: color0-3 are colors in gamma-encoded RGB. + const float3 gamma_mixed_color = pow(get_raw_interpolated_color( + color0, color1, color2, color3, weights), intermediate_gamma); + const float3 linear_mixed_color = get_raw_interpolated_color( + pow(color0, intermediate_gamma), + pow(color1, intermediate_gamma), + pow(color2, intermediate_gamma), + pow(color3, intermediate_gamma), + weights); + return lerp(gamma_mixed_color, linear_mixed_color, + beam_horiz_linear_rgb_weight); + #else + // Inputs: color0-3 are colors in linear RGB. + const float3 linear_mixed_color = get_raw_interpolated_color( + color0, color1, color2, color3, weights); + const float3 gamma_mixed_color = get_raw_interpolated_color( + pow(color0, 1.0/intermediate_gamma), + pow(color1, 1.0/intermediate_gamma), + pow(color2, 1.0/intermediate_gamma), + pow(color3, 1.0/intermediate_gamma), + weights); + return lerp(gamma_mixed_color, linear_mixed_color, + beam_horiz_linear_rgb_weight); + #endif // GAMMA_ENCODE_EVERY_FBO + #endif // SCANLINES_BRANCH_FOR_LINEAR_RGB_WEIGHT +} + +float3 get_scanline_color(const sampler2D texture, const float2 scanline_uv, + const float2 uv_step_x, const float4 weights) +{ + // Requires: 1.) scanline_uv must be vertically snapped to the caller's + // desired line or scanline and horizontally snapped to the + // texel just left of the output pixel (color1) + // 2.) uv_step_x must contain the horizontal uv distance + // between texels. + // 3.) weights must contain interpolation filter weights for + // color0, color1, color2, and color3, where color1 is just + // left of the output pixel. + // Returns: Return a horizontally interpolated texture lookup using 2-4 + // nearby texels, according to weights and the conventions of + // get_interpolated_linear_color(). + // We can ignore the outside texture lookups for Quilez resampling. + const float3 color1 = tex2D(texture, scanline_uv).rgb; + const float3 color2 = tex2D(texture, scanline_uv + uv_step_x).rgb; + float3 color0 = float3(0.0); + float3 color3 = float3(0.0); + if(beam_horiz_filter > 0.5) + { + color0 = tex2D(texture, scanline_uv - uv_step_x).rgb; + color3 = tex2D(texture, scanline_uv + 2.0 * uv_step_x).rgb; + } + // Sample the texture as-is, whether it's linear or gamma-encoded: + // get_interpolated_linear_color() will handle the difference. + return get_interpolated_linear_color(color0, color1, color2, color3, weights); +} + +float3 sample_single_scanline_horizontal(const sampler2D texture, + const float2 tex_uv, const float2 texture_size, + const float2 texture_size_inv) +{ + // TODO: Add function requirements. + // Snap to the previous texel and get sample dists from 2/4 nearby texels: + const float2 curr_texel = tex_uv * texture_size; + // Use under_half to fix a rounding bug right around exact texel locations. + const float2 prev_texel = + floor(curr_texel - float2(under_half)) + float2(0.5); + const float2 prev_texel_hor = float2(prev_texel.x, curr_texel.y); + const float2 prev_texel_hor_uv = prev_texel_hor * texture_size_inv; + const float prev_dist = curr_texel.x - prev_texel_hor.x; + const float4 sample_dists = float4(1.0 + prev_dist, prev_dist, + 1.0 - prev_dist, 2.0 - prev_dist); + // Get Quilez, Lanczos2, or Gaussian resize weights for 2/4 nearby texels: + float4 weights; + if(beam_horiz_filter < 0.5) + { + // Quilez: + const float x = sample_dists.y; + const float w2 = x*x*x*(x*(x*6.0 - 15.0) + 10.0); + weights = float4(0.0, 1.0 - w2, w2, 0.0); + } + else if(beam_horiz_filter < 1.5) + { + // Gaussian: + float inner_denom_inv = 1.0/(2.0*beam_horiz_sigma*beam_horiz_sigma); + weights = exp(-(sample_dists*sample_dists)*inner_denom_inv); + } + else + { + // Lanczos2: + const float4 pi_dists = FIX_ZERO(sample_dists * pi); + weights = 2.0 * sin(pi_dists) * sin(pi_dists * 0.5) / + (pi_dists * pi_dists); + } + // Ensure the weight sum == 1.0: + const float4 final_weights = weights/dot(weights, float4(1.0)); + // Get the interpolated horizontal scanline color: + const float2 uv_step_x = float2(texture_size_inv.x, 0.0); + return get_scanline_color( + texture, prev_texel_hor_uv, uv_step_x, final_weights); +} + +float3 sample_rgb_scanline_horizontal(const sampler2D texture, + const float2 tex_uv, const float2 texture_size, + const float2 texture_size_inv) +{ + // TODO: Add function requirements. + // Rely on a helper to make convergence easier. + if(beam_misconvergence) + { + const float3 convergence_offsets_rgb = + get_convergence_offsets_x_vector(); + const float3 offset_u_rgb = + convergence_offsets_rgb * texture_size_inv.xxx; + const float2 scanline_uv_r = tex_uv - float2(offset_u_rgb.r, 0.0); + const float2 scanline_uv_g = tex_uv - float2(offset_u_rgb.g, 0.0); + const float2 scanline_uv_b = tex_uv - float2(offset_u_rgb.b, 0.0); + const float3 sample_r = sample_single_scanline_horizontal( + texture, scanline_uv_r, texture_size, texture_size_inv); + const float3 sample_g = sample_single_scanline_horizontal( + texture, scanline_uv_g, texture_size, texture_size_inv); + const float3 sample_b = sample_single_scanline_horizontal( + texture, scanline_uv_b, texture_size, texture_size_inv); + return float3(sample_r.r, sample_g.g, sample_b.b); + } + else + { + return sample_single_scanline_horizontal(texture, tex_uv, texture_size, + texture_size_inv); + } +} + +float2 get_last_scanline_uv(const float2 tex_uv, const float2 texture_size, + const float2 texture_size_inv, const float2 il_step_multiple, + const float frame_count, out float dist) +{ + // Compute texture coords for the last/upper scanline, accounting for + // interlacing: With interlacing, only consider even/odd scanlines every + // other frame. Top-field first (TFF) order puts even scanlines on even + // frames, and BFF order puts them on odd frames. Texels are centered at: + // frac(tex_uv * texture_size) == x.5 + // Caution: If these coordinates ever seem incorrect, first make sure it's + // not because anisotropic filtering is blurring across field boundaries. + // Note: TFF/BFF won't matter for sources that double-weave or similar. + const float field_offset = floor(il_step_multiple.y * 0.75) * + fmod(frame_count + float(interlace_bff), 2.0); + const float2 curr_texel = tex_uv * texture_size; + // Use under_half to fix a rounding bug right around exact texel locations. + const float2 prev_texel_num = floor(curr_texel - float2(under_half)); + const float wrong_field = fmod( + prev_texel_num.y + field_offset, il_step_multiple.y); + const float2 scanline_texel_num = prev_texel_num - float2(0.0, wrong_field); + // Snap to the center of the previous scanline in the current field: + const float2 scanline_texel = scanline_texel_num + float2(0.5); + const float2 scanline_uv = scanline_texel * texture_size_inv; + // Save the sample's distance from the scanline, in units of scanlines: + dist = (curr_texel.y - scanline_texel.y)/il_step_multiple.y; + return scanline_uv; +} +*/ +bool is_interlaced(float num_lines) +{ + // Detect interlacing based on the number of lines in the source. + if(interlace_detect) + { + // NTSC: 525 lines, 262.5/field; 486 active (2 half-lines), 243/field + // NTSC Emulators: Typically 224 or 240 lines + // PAL: 625 lines, 312.5/field; 576 active (typical), 288/field + // PAL Emulators: ? + // ATSC: 720p, 1080i, 1080p + // Where do we place our cutoffs? Assumptions: + // 1.) We only need to care about active lines. + // 2.) Anything > 288 and <= 576 lines is probably interlaced. + // 3.) Anything > 576 lines is probably not interlaced... + // 4.) ...except 1080 lines, which is a crapshoot (user decision). + // 5.) Just in case the main program uses calculated video sizes, + // we should nudge the float thresholds a bit. + bool sd_interlace; + if (num_lines > 288.5 && num_lines < 576.5) + {sd_interlace = true;} + else + {sd_interlace = false;} + bool hd_interlace; + if (num_lines > 1079.5 && num_lines < 1080.5) + {hd_interlace = false;} + else + {hd_interlace = sd_interlace || hd_interlace;} + } + else + { + return false; + } +} + + +#endif // SCANLINE_FUNCTIONS_H + diff --git a/crt/shaders/crt-royale/src/scanline-functions.h b/crt/shaders/crt-royale/src/scanline-functions.h index d71a500..48f0073 100644 --- a/crt/shaders/crt-royale/src/scanline-functions.h +++ b/crt/shaders/crt-royale/src/scanline-functions.h @@ -1,6 +1,3 @@ -#ifndef SCANLINE_FUNCTIONS_H -#define SCANLINE_FUNCTIONS_H - ///////////////////////////// GPL LICENSE NOTICE ///////////////////////////// // crt-royale: A full-featured CRT shader, with cheese. @@ -22,15 +19,77 @@ ////////////////////////////////// INCLUDES ////////////////////////////////// -#include "../user-settings.h" -#include "derived-settings-and-constants.h" -#include "../../../../include/special-functions.h" -#include "../../../../include/gamma-management.h" - +//#include "../user-settings.h" +//#include "derived-settings-and-constants.h" +//#include "../../../../include/special-functions.h" +//#include "../../../../include/gamma-management.h" ///////////////////////////// SCANLINE FUNCTIONS ///////////////////////////// -/* -inline float3 get_gaussian_sigma(const float3 color, const float sigma_range) + +bool is_interlaced(float num_lines) +{ + // Detect interlacing based on the number of lines in the source. + if(interlace_detect) + { + // NTSC: 525 lines, 262.5/field; 486 active (2 half-lines), 243/field + // NTSC Emulators: Typically 224 or 240 lines + // PAL: 625 lines, 312.5/field; 576 active (typical), 288/field + // PAL Emulators: ? + // ATSC: 720p, 1080i, 1080p + // Where do we place our cutoffs? Assumptions: + // 1.) We only need to care about active lines. + // 2.) Anything > 288 and <= 576 lines is probably interlaced. + // 3.) Anything > 576 lines is probably not interlaced... + // 4.) ...except 1080 lines, which is a crapshoot (user decision). + // 5.) Just in case the main program uses calculated video sizes, + // we should nudge the float thresholds a bit. + bool sd_interlace; + if (num_lines > 288.5 && num_lines < 576.5) + {sd_interlace = true;} + else + {sd_interlace = false;} + bool hd_interlace; + if (num_lines > 1079.5 && num_lines < 1080.5) + {hd_interlace = true;} + else + {hd_interlace = false;} + return (sd_interlace || hd_interlace); + } + else + { + return false; + } +} + +vec2 get_last_scanline_uv(const vec2 tex_uv, const vec2 texture_size, + const vec2 texture_size_inv, const vec2 il_step_multiple, + const float frame_count, out float dist) +{ + // Compute texture coords for the last/upper scanline, accounting for + // interlacing: With interlacing, only consider even/odd scanlines every + // other frame. Top-field first (TFF) order puts even scanlines on even + // frames, and BFF order puts them on odd frames. Texels are centered at: + // frac(tex_uv * texture_size) == x.5 + // Caution: If these coordinates ever seem incorrect, first make sure it's + // not because anisotropic filtering is blurring across field boundaries. + // Note: TFF/BFF won't matter for sources that double-weave or similar. + const float field_offset = floor(il_step_multiple.y * 0.75) * + mod(frame_count + float(interlace_bff), 2.0); + const vec2 curr_texel = tex_uv * texture_size; + // Use under_half to fix a rounding bug right around exact texel locations. + const vec2 prev_texel_num = floor(curr_texel - vec2(under_half)); + const float wrong_field = mod( + prev_texel_num.y + field_offset, il_step_multiple.y); + const vec2 scanline_texel_num = prev_texel_num - vec2(0.0, wrong_field); + // Snap to the center of the previous scanline in the current field: + const vec2 scanline_texel = scanline_texel_num + vec2(0.5); + const vec2 scanline_uv = scanline_texel * texture_size_inv; + // Save the sample's distance from the scanline, in units of scanlines: + dist = (curr_texel.y - scanline_texel.y)/il_step_multiple.y; + return scanline_uv; +} + +vec3 get_gaussian_sigma(const vec3 color, const float sigma_range) { // Requires: Globals: // 1.) beam_min_sigma and beam_max_sigma are global floats @@ -82,19 +141,19 @@ inline float3 get_gaussian_sigma(const float3 color, const float sigma_range) if(beam_spot_shape_function < 0.5) { // Use a power function: - return float3(beam_min_sigma) + sigma_range * - pow(color, beam_spot_power); + return vec3(beam_min_sigma) + sigma_range * + pow(color, vec3(beam_spot_power)); } else { // Use a spherical function: - const float3 color_minus_1 = color - float3(1.0); - return float3(beam_min_sigma) + sigma_range * - sqrt(float3(1.0) - color_minus_1*color_minus_1); + const vec3 color_minus_1 = color - vec3(1.0); + return vec3(beam_min_sigma) + sigma_range * + sqrt(vec3(1.0) - color_minus_1*color_minus_1); } } -inline float3 get_generalized_gaussian_beta(const float3 color, +vec3 get_generalized_gaussian_beta(const vec3 color, const float shape_range) { // Requires: Globals: @@ -120,11 +179,11 @@ inline float3 get_generalized_gaussian_beta(const float3 color, // beta widen and sharpen peaks at the risk of aliasing. // Unlike high beam_spot_powers, high beam_shape_powers actually soften shape // transitions, whereas lower ones sharpen them (at the risk of aliasing). - return beam_min_shape + shape_range * pow(color, beam_shape_power); + return beam_min_shape + shape_range * pow(color, vec3(beam_shape_power)); } -float3 scanline_gaussian_integral_contrib(const float3 dist, - const float3 color, const float pixel_height, const float sigma_range) +vec3 scanline_gaussian_integral_contrib(const vec3 dist, + const vec3 color, const float pixel_height, const float sigma_range) { // Requires: 1.) dist is the distance of the [potentially separate R/G/B] // point(s) from a scanline in units of scanlines, where @@ -145,16 +204,16 @@ float3 scanline_gaussian_integral_contrib(const float3 dist, // average brightness over a given pixel area. Even if curved coords were // used in this pass, a flat scalar pixel height works almost as well as a // pixel height computed from a full pixel-space to scanline-space matrix. - const float3 sigma = get_gaussian_sigma(color, sigma_range); - const float3 ph_offset = float3(pixel_height * 0.5); - const float3 denom_inv = 1.0/(sigma*sqrt(2.0)); - const float3 integral_high = erf((dist + ph_offset)*denom_inv); - const float3 integral_low = erf((dist - ph_offset)*denom_inv); + const vec3 sigma = get_gaussian_sigma(color, sigma_range); + const vec3 ph_offset = vec3(pixel_height * 0.5); + const vec3 denom_inv = 1.0/(sigma*sqrt(2.0)); + const vec3 integral_high = erf((dist + ph_offset)*denom_inv); + const vec3 integral_low = erf((dist - ph_offset)*denom_inv); return color * 0.5*(integral_high - integral_low)/pixel_height; } -float3 scanline_generalized_gaussian_integral_contrib(const float3 dist, - const float3 color, const float pixel_height, const float sigma_range, +vec3 scanline_generalized_gaussian_integral_contrib(const vec3 dist, + const vec3 color, const float pixel_height, const float sigma_range, const float shape_range) { // Requires: 1.) Requirements of scanline_gaussian_integral_contrib() @@ -176,44 +235,44 @@ float3 scanline_generalized_gaussian_integral_contrib(const float3 dist, // models models standard deviation at beta == 2, because the standard // deviation depends on both alpha and beta (keeping alpha independent is // faster and preserves intuitive behavior and a full spectrum of results). - const float3 alpha = sqrt(2.0) * get_gaussian_sigma(color, sigma_range); - const float3 beta = get_generalized_gaussian_beta(color, shape_range); - const float3 alpha_inv = float3(1.0)/alpha; - const float3 s = float3(1.0)/beta; - const float3 ph_offset = float3(pixel_height * 0.5); + const vec3 alpha = sqrt(2.0) * get_gaussian_sigma(color, sigma_range); + const vec3 beta = get_generalized_gaussian_beta(color, shape_range); + const vec3 alpha_inv = vec3(1.0)/alpha; + const vec3 s = vec3(1.0)/beta; + const vec3 ph_offset = vec3(pixel_height * 0.5); // Pass beta to gamma_impl to avoid repeated divides. Similarly pass // beta (i.e. 1/s) and 1/gamma(s) to normalized_ligamma_impl. - const float3 gamma_s_inv = float3(1.0)/gamma_impl(s, beta); - const float3 dist1 = dist + ph_offset; - const float3 dist0 = dist - ph_offset; - const float3 integral_high = sign(dist1) * normalized_ligamma_impl( + const vec3 gamma_s_inv = vec3(1.0)/gamma_impl(s, beta); + const vec3 dist1 = dist + ph_offset; + const vec3 dist0 = dist - ph_offset; + const vec3 integral_high = sign(dist1) * normalized_ligamma_impl( s, pow(abs(dist1)*alpha_inv, beta), beta, gamma_s_inv); - const float3 integral_low = sign(dist0) * normalized_ligamma_impl( + const vec3 integral_low = sign(dist0) * normalized_ligamma_impl( s, pow(abs(dist0)*alpha_inv, beta), beta, gamma_s_inv); return color * 0.5*(integral_high - integral_low)/pixel_height; } -float3 scanline_gaussian_sampled_contrib(const float3 dist, const float3 color, +vec3 scanline_gaussian_sampled_contrib(const vec3 dist, const vec3 color, const float pixel_height, const float sigma_range) { // See scanline_gaussian integral_contrib() for detailed comments! // gaussian sample = 1/(sigma*sqrt(2*pi)) * e**(-(x**2)/(2*sigma**2)) - const float3 sigma = get_gaussian_sigma(color, sigma_range); + const vec3 sigma = get_gaussian_sigma(color, sigma_range); // Avoid repeated divides: - const float3 sigma_inv = float3(1.0)/sigma; - const float3 inner_denom_inv = 0.5 * sigma_inv * sigma_inv; - const float3 outer_denom_inv = sigma_inv/sqrt(2.0*pi); + const vec3 sigma_inv = vec3(1.0)/sigma; + const vec3 inner_denom_inv = 0.5 * sigma_inv * sigma_inv; + const vec3 outer_denom_inv = sigma_inv/sqrt(2.0*pi); if(beam_antialias_level > 0.5) { // Sample 1/3 pixel away in each direction as well: - const float3 sample_offset = float3(pixel_height/3.0); - const float3 dist2 = dist + sample_offset; - const float3 dist3 = abs(dist - sample_offset); + const vec3 sample_offset = vec3(pixel_height/3.0); + const vec3 dist2 = dist + sample_offset; + const vec3 dist3 = abs(dist - sample_offset); // Average three pure Gaussian samples: - const float3 scale = color/3.0 * outer_denom_inv; - const float3 weight1 = exp(-(dist*dist)*inner_denom_inv); - const float3 weight2 = exp(-(dist2*dist2)*inner_denom_inv); - const float3 weight3 = exp(-(dist3*dist3)*inner_denom_inv); + const vec3 scale = color/3.0 * outer_denom_inv; + const vec3 weight1 = exp(-(dist*dist)*inner_denom_inv); + const vec3 weight2 = exp(-(dist2*dist2)*inner_denom_inv); + const vec3 weight3 = exp(-(dist3*dist3)*inner_denom_inv); return scale * (weight1 + weight2 + weight3); } else @@ -222,30 +281,30 @@ float3 scanline_gaussian_sampled_contrib(const float3 dist, const float3 color, } } -float3 scanline_generalized_gaussian_sampled_contrib(const float3 dist, - const float3 color, const float pixel_height, const float sigma_range, +vec3 scanline_generalized_gaussian_sampled_contrib(const vec3 dist, + const vec3 color, const float pixel_height, const float sigma_range, const float shape_range) { // See scanline_generalized_gaussian_integral_contrib() for details! // generalized sample = // beta/(2*alpha*gamma(1/beta)) * e**(-(|x|/alpha)**beta) - const float3 alpha = sqrt(2.0) * get_gaussian_sigma(color, sigma_range); - const float3 beta = get_generalized_gaussian_beta(color, shape_range); + const vec3 alpha = sqrt(2.0) * get_gaussian_sigma(color, sigma_range); + const vec3 beta = get_generalized_gaussian_beta(color, shape_range); // Avoid repeated divides: - const float3 alpha_inv = float3(1.0)/alpha; - const float3 beta_inv = float3(1.0)/beta; - const float3 scale = color * beta * 0.5 * alpha_inv / + const vec3 alpha_inv = vec3(1.0)/alpha; + const vec3 beta_inv = vec3(1.0)/beta; + const vec3 scale = color * beta * 0.5 * alpha_inv / gamma_impl(beta_inv, beta); if(beam_antialias_level > 0.5) { // Sample 1/3 pixel closer to and farther from the scanline too. - const float3 sample_offset = float3(pixel_height/3.0); - const float3 dist2 = dist + sample_offset; - const float3 dist3 = abs(dist - sample_offset); + const vec3 sample_offset = vec3(pixel_height/3.0); + const vec3 dist2 = dist + sample_offset; + const vec3 dist3 = abs(dist - sample_offset); // Average three generalized Gaussian samples: - const float3 weight1 = exp(-pow(abs(dist*alpha_inv), beta)); - const float3 weight2 = exp(-pow(abs(dist2*alpha_inv), beta)); - const float3 weight3 = exp(-pow(abs(dist3*alpha_inv), beta)); + const vec3 weight1 = exp(-pow(abs(dist*alpha_inv), beta)); + const vec3 weight2 = exp(-pow(abs(dist2*alpha_inv), beta)); + const vec3 weight3 = exp(-pow(abs(dist3*alpha_inv), beta)); return scale/3.0 * (weight1 + weight2 + weight3); } else @@ -254,7 +313,7 @@ float3 scanline_generalized_gaussian_sampled_contrib(const float3 dist, } } -inline float3 scanline_contrib(float3 dist, float3 color, +vec3 scanline_contrib(vec3 dist, vec3 color, float pixel_height, const float sigma_range, const float shape_range) { // Requires: 1.) Requirements of scanline_gaussian_integral_contrib() @@ -291,282 +350,4 @@ inline float3 scanline_contrib(float3 dist, float3 color, dist, color, pixel_height, sigma_range); } } -} - -inline float3 get_raw_interpolated_color(const float3 color0, - const float3 color1, const float3 color2, const float3 color3, - const float4 weights) -{ - // Use max to avoid bizarre artifacts from negative colors: - return max(mul(weights, float4x3(color0, color1, color2, color3)), 0.0); -} - -float3 get_interpolated_linear_color(const float3 color0, const float3 color1, - const float3 color2, const float3 color3, const float4 weights) -{ - // Requires: 1.) Requirements of include/gamma-management.h must be met: - // intermediate_gamma must be globally defined, and input - // colors are interpreted as linear RGB unless you #define - // GAMMA_ENCODE_EVERY_FBO (in which case they are - // interpreted as gamma-encoded with intermediate_gamma). - // 2.) color0-3 are colors sampled from a texture with tex2D(). - // They are interpreted as defined in requirement 1. - // 3.) weights contains weights for each color, summing to 1.0. - // 4.) beam_horiz_linear_rgb_weight must be defined as a global - // float in [0.0, 1.0] describing how much blending should - // be done in linear RGB (rest is gamma-corrected RGB). - // 5.) RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE must be #defined - // if beam_horiz_linear_rgb_weight is anything other than a - // static constant, or we may try branching at runtime - // without dynamic branches allowed (slow). - // Returns: Return an interpolated color lookup between the four input - // colors based on the weights in weights. The final color will - // be a linear RGB value, but the blending will be done as - // indicated above. - const float intermediate_gamma = get_intermediate_gamma(); - // Branch if beam_horiz_linear_rgb_weight is static (for free) or if the - // profile allows dynamic branches (faster than computing extra pows): - #ifndef RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE - #define SCANLINES_BRANCH_FOR_LINEAR_RGB_WEIGHT - #else - #ifdef DRIVERS_ALLOW_DYNAMIC_BRANCHES - #define SCANLINES_BRANCH_FOR_LINEAR_RGB_WEIGHT - #endif - #endif - #ifdef SCANLINES_BRANCH_FOR_LINEAR_RGB_WEIGHT - // beam_horiz_linear_rgb_weight is static, so we can branch: - #ifdef GAMMA_ENCODE_EVERY_FBO - const float3 gamma_mixed_color = pow(get_raw_interpolated_color( - color0, color1, color2, color3, weights), intermediate_gamma); - if(beam_horiz_linear_rgb_weight > 0.0) - { - const float3 linear_mixed_color = get_raw_interpolated_color( - pow(color0, intermediate_gamma), - pow(color1, intermediate_gamma), - pow(color2, intermediate_gamma), - pow(color3, intermediate_gamma), - weights); - return lerp(gamma_mixed_color, linear_mixed_color, - beam_horiz_linear_rgb_weight); - } - else - { - return gamma_mixed_color; - } - #else - const float3 linear_mixed_color = get_raw_interpolated_color( - color0, color1, color2, color3, weights); - if(beam_horiz_linear_rgb_weight < 1.0) - { - const float3 gamma_mixed_color = get_raw_interpolated_color( - pow(color0, 1.0/intermediate_gamma), - pow(color1, 1.0/intermediate_gamma), - pow(color2, 1.0/intermediate_gamma), - pow(color3, 1.0/intermediate_gamma), - weights); - return lerp(gamma_mixed_color, linear_mixed_color, - beam_horiz_linear_rgb_weight); - } - else - { - return linear_mixed_color; - } - #endif // GAMMA_ENCODE_EVERY_FBO - #else - #ifdef GAMMA_ENCODE_EVERY_FBO - // Inputs: color0-3 are colors in gamma-encoded RGB. - const float3 gamma_mixed_color = pow(get_raw_interpolated_color( - color0, color1, color2, color3, weights), intermediate_gamma); - const float3 linear_mixed_color = get_raw_interpolated_color( - pow(color0, intermediate_gamma), - pow(color1, intermediate_gamma), - pow(color2, intermediate_gamma), - pow(color3, intermediate_gamma), - weights); - return lerp(gamma_mixed_color, linear_mixed_color, - beam_horiz_linear_rgb_weight); - #else - // Inputs: color0-3 are colors in linear RGB. - const float3 linear_mixed_color = get_raw_interpolated_color( - color0, color1, color2, color3, weights); - const float3 gamma_mixed_color = get_raw_interpolated_color( - pow(color0, 1.0/intermediate_gamma), - pow(color1, 1.0/intermediate_gamma), - pow(color2, 1.0/intermediate_gamma), - pow(color3, 1.0/intermediate_gamma), - weights); - return lerp(gamma_mixed_color, linear_mixed_color, - beam_horiz_linear_rgb_weight); - #endif // GAMMA_ENCODE_EVERY_FBO - #endif // SCANLINES_BRANCH_FOR_LINEAR_RGB_WEIGHT -} - -float3 get_scanline_color(const sampler2D texture, const float2 scanline_uv, - const float2 uv_step_x, const float4 weights) -{ - // Requires: 1.) scanline_uv must be vertically snapped to the caller's - // desired line or scanline and horizontally snapped to the - // texel just left of the output pixel (color1) - // 2.) uv_step_x must contain the horizontal uv distance - // between texels. - // 3.) weights must contain interpolation filter weights for - // color0, color1, color2, and color3, where color1 is just - // left of the output pixel. - // Returns: Return a horizontally interpolated texture lookup using 2-4 - // nearby texels, according to weights and the conventions of - // get_interpolated_linear_color(). - // We can ignore the outside texture lookups for Quilez resampling. - const float3 color1 = tex2D(texture, scanline_uv).rgb; - const float3 color2 = tex2D(texture, scanline_uv + uv_step_x).rgb; - float3 color0 = float3(0.0); - float3 color3 = float3(0.0); - if(beam_horiz_filter > 0.5) - { - color0 = tex2D(texture, scanline_uv - uv_step_x).rgb; - color3 = tex2D(texture, scanline_uv + 2.0 * uv_step_x).rgb; - } - // Sample the texture as-is, whether it's linear or gamma-encoded: - // get_interpolated_linear_color() will handle the difference. - return get_interpolated_linear_color(color0, color1, color2, color3, weights); -} - -float3 sample_single_scanline_horizontal(const sampler2D texture, - const float2 tex_uv, const float2 texture_size, - const float2 texture_size_inv) -{ - // TODO: Add function requirements. - // Snap to the previous texel and get sample dists from 2/4 nearby texels: - const float2 curr_texel = tex_uv * texture_size; - // Use under_half to fix a rounding bug right around exact texel locations. - const float2 prev_texel = - floor(curr_texel - float2(under_half)) + float2(0.5); - const float2 prev_texel_hor = float2(prev_texel.x, curr_texel.y); - const float2 prev_texel_hor_uv = prev_texel_hor * texture_size_inv; - const float prev_dist = curr_texel.x - prev_texel_hor.x; - const float4 sample_dists = float4(1.0 + prev_dist, prev_dist, - 1.0 - prev_dist, 2.0 - prev_dist); - // Get Quilez, Lanczos2, or Gaussian resize weights for 2/4 nearby texels: - float4 weights; - if(beam_horiz_filter < 0.5) - { - // Quilez: - const float x = sample_dists.y; - const float w2 = x*x*x*(x*(x*6.0 - 15.0) + 10.0); - weights = float4(0.0, 1.0 - w2, w2, 0.0); - } - else if(beam_horiz_filter < 1.5) - { - // Gaussian: - float inner_denom_inv = 1.0/(2.0*beam_horiz_sigma*beam_horiz_sigma); - weights = exp(-(sample_dists*sample_dists)*inner_denom_inv); - } - else - { - // Lanczos2: - const float4 pi_dists = FIX_ZERO(sample_dists * pi); - weights = 2.0 * sin(pi_dists) * sin(pi_dists * 0.5) / - (pi_dists * pi_dists); - } - // Ensure the weight sum == 1.0: - const float4 final_weights = weights/dot(weights, float4(1.0)); - // Get the interpolated horizontal scanline color: - const float2 uv_step_x = float2(texture_size_inv.x, 0.0); - return get_scanline_color( - texture, prev_texel_hor_uv, uv_step_x, final_weights); -} - -float3 sample_rgb_scanline_horizontal(const sampler2D texture, - const float2 tex_uv, const float2 texture_size, - const float2 texture_size_inv) -{ - // TODO: Add function requirements. - // Rely on a helper to make convergence easier. - if(beam_misconvergence) - { - const float3 convergence_offsets_rgb = - get_convergence_offsets_x_vector(); - const float3 offset_u_rgb = - convergence_offsets_rgb * texture_size_inv.xxx; - const float2 scanline_uv_r = tex_uv - float2(offset_u_rgb.r, 0.0); - const float2 scanline_uv_g = tex_uv - float2(offset_u_rgb.g, 0.0); - const float2 scanline_uv_b = tex_uv - float2(offset_u_rgb.b, 0.0); - const float3 sample_r = sample_single_scanline_horizontal( - texture, scanline_uv_r, texture_size, texture_size_inv); - const float3 sample_g = sample_single_scanline_horizontal( - texture, scanline_uv_g, texture_size, texture_size_inv); - const float3 sample_b = sample_single_scanline_horizontal( - texture, scanline_uv_b, texture_size, texture_size_inv); - return float3(sample_r.r, sample_g.g, sample_b.b); - } - else - { - return sample_single_scanline_horizontal(texture, tex_uv, texture_size, - texture_size_inv); - } -} - -float2 get_last_scanline_uv(const float2 tex_uv, const float2 texture_size, - const float2 texture_size_inv, const float2 il_step_multiple, - const float frame_count, out float dist) -{ - // Compute texture coords for the last/upper scanline, accounting for - // interlacing: With interlacing, only consider even/odd scanlines every - // other frame. Top-field first (TFF) order puts even scanlines on even - // frames, and BFF order puts them on odd frames. Texels are centered at: - // frac(tex_uv * texture_size) == x.5 - // Caution: If these coordinates ever seem incorrect, first make sure it's - // not because anisotropic filtering is blurring across field boundaries. - // Note: TFF/BFF won't matter for sources that double-weave or similar. - const float field_offset = floor(il_step_multiple.y * 0.75) * - fmod(frame_count + float(interlace_bff), 2.0); - const float2 curr_texel = tex_uv * texture_size; - // Use under_half to fix a rounding bug right around exact texel locations. - const float2 prev_texel_num = floor(curr_texel - float2(under_half)); - const float wrong_field = fmod( - prev_texel_num.y + field_offset, il_step_multiple.y); - const float2 scanline_texel_num = prev_texel_num - float2(0.0, wrong_field); - // Snap to the center of the previous scanline in the current field: - const float2 scanline_texel = scanline_texel_num + float2(0.5); - const float2 scanline_uv = scanline_texel * texture_size_inv; - // Save the sample's distance from the scanline, in units of scanlines: - dist = (curr_texel.y - scanline_texel.y)/il_step_multiple.y; - return scanline_uv; -} -*/ -bool is_interlaced(float num_lines) -{ - // Detect interlacing based on the number of lines in the source. - if(interlace_detect) - { - // NTSC: 525 lines, 262.5/field; 486 active (2 half-lines), 243/field - // NTSC Emulators: Typically 224 or 240 lines - // PAL: 625 lines, 312.5/field; 576 active (typical), 288/field - // PAL Emulators: ? - // ATSC: 720p, 1080i, 1080p - // Where do we place our cutoffs? Assumptions: - // 1.) We only need to care about active lines. - // 2.) Anything > 288 and <= 576 lines is probably interlaced. - // 3.) Anything > 576 lines is probably not interlaced... - // 4.) ...except 1080 lines, which is a crapshoot (user decision). - // 5.) Just in case the main program uses calculated video sizes, - // we should nudge the float thresholds a bit. - bool sd_interlace; - if (num_lines > 288.5 && num_lines < 576.5) - {sd_interlace = true;} - else - {sd_interlace = false;} - bool hd_interlace; - if (num_lines > 1079.5 && num_lines < 1080.5) - {hd_interlace = false;} - else - {hd_interlace = sd_interlace || hd_interlace;} - } - else - { - return false; - } -} - - -#endif // SCANLINE_FUNCTIONS_H - +} \ No newline at end of file diff --git a/crt/shaders/crt-royale/src/special-functions-old.h b/crt/shaders/crt-royale/src/special-functions-old.h new file mode 100644 index 0000000..839267a --- /dev/null +++ b/crt/shaders/crt-royale/src/special-functions-old.h @@ -0,0 +1,498 @@ +#ifndef SPECIAL_FUNCTIONS_H +#define SPECIAL_FUNCTIONS_H + +///////////////////////////////// MIT LICENSE //////////////////////////////// + +// Copyright (C) 2014 TroggleMonkey +// +// Permission is hereby granted, free of charge, to any person obtaining a copy +// of this software and associated documentation files (the "Software"), to +// deal in the Software without restriction, including without limitation the +// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or +// sell copies of the Software, and to permit persons to whom the Software is +// furnished to do so, subject to the following conditions: +// +// The above copyright notice and this permission notice shall be included in +// all copies or substantial portions of the Software. +// +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING +// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS +// IN THE SOFTWARE. + + +///////////////////////////////// DESCRIPTION //////////////////////////////// + +// This file implements the following mathematical special functions: +// 1.) erf() = 2/sqrt(pi) * indefinite_integral(e**(-x**2)) +// 2.) gamma(s), a real-numbered extension of the integer factorial function +// It also implements normalized_ligamma(s, z), a normalized lower incomplete +// gamma function for s < 0.5 only. Both gamma() and normalized_ligamma() can +// be called with an _impl suffix to use an implementation version with a few +// extra precomputed parameters (which may be useful for the caller to reuse). +// See below for details. +// +// Design Rationale: +// Pretty much every line of code in this file is duplicated four times for +// different input types (vec4/vec3/vec2/float). This is unfortunate, +// but Cg doesn't allow function templates. Macros would be far less verbose, +// but they would make the code harder to document and read. I don't expect +// these functions will require a whole lot of maintenance changes unless +// someone ever has need for more robust incomplete gamma functions, so code +// duplication seems to be the lesser evil in this case. + + +/////////////////////////// GAUSSIAN ERROR FUNCTION ////////////////////////// + +vec4 erf6(vec4 x) +{ + // Requires: x is the standard parameter to erf(). + // Returns: Return an Abramowitz/Stegun approximation of erf(), where: + // erf(x) = 2/sqrt(pi) * integral(e**(-x**2)) + // This approximation has a max absolute error of 2.5*10**-5 + // with solid numerical robustness and efficiency. See: + // https://en.wikipedia.org/wiki/Error_function#Approximation_with_elementary_functions + const vec4 one = vec4(1.0); + const vec4 sign_x = sign(x); + const vec4 t = one/(one + 0.47047*abs(x)); + const vec4 result = one - t*(0.3480242 + t*(-0.0958798 + t*0.7478556))* + exp(-(x*x)); + return result * sign_x; +} + +vec3 erf6(const vec3 x) +{ + // vec3 version: + const vec3 one = vec3(1.0); + const vec3 sign_x = sign(x); + const vec3 t = one/(one + 0.47047*abs(x)); + const vec3 result = one - t*(0.3480242 + t*(-0.0958798 + t*0.7478556))* + exp(-(x*x)); + return result * sign_x; +} + +vec2 erf6(const vec2 x) +{ + // vec2 version: + const vec2 one = vec2(1.0); + const vec2 sign_x = sign(x); + const vec2 t = one/(one + 0.47047*abs(x)); + const vec2 result = one - t*(0.3480242 + t*(-0.0958798 + t*0.7478556))* + exp(-(x*x)); + return result * sign_x; +} + +float erf6(const float x) +{ + // Float version: + const float sign_x = sign(x); + const float t = 1.0/(1.0 + 0.47047*abs(x)); + const float result = 1.0 - t*(0.3480242 + t*(-0.0958798 + t*0.7478556))* + exp(-(x*x)); + return result * sign_x; +} + +vec4 erft(const vec4 x) +{ + // Requires: x is the standard parameter to erf(). + // Returns: Approximate erf() with the hyperbolic tangent. The error is + // visually noticeable, but it's blazing fast and perceptually + // close...at least on ATI hardware. See: + // http://www.maplesoft.com/applications/view.aspx?SID=5525&view=html + // Warning: Only use this if your hardware drivers correctly implement + // tanh(): My nVidia 8800GTS returns garbage output. + return tanh(1.202760580 * x); +} + +vec3 erft(const vec3 x) +{ + // vec3 version: + return tanh(1.202760580 * x); +} + +vec2 erft(const vec2 x) +{ + // vec2 version: + return tanh(1.202760580 * x); +} + +float erft(const float x) +{ + // Float version: + return tanh(1.202760580 * x); +} + +vec4 erf(const vec4 x) +{ + // Requires: x is the standard parameter to erf(). + // Returns: Some approximation of erf(x), depending on user settings. + #ifdef ERF_FAST_APPROXIMATION + return erft(x); + #else + return erf6(x); + #endif +} + +vec3 erf(const vec3 x) +{ + // vec3 version: + #ifdef ERF_FAST_APPROXIMATION + return erft(x); + #else + return erf6(x); + #endif +} + +vec2 erf(const vec2 x) +{ + // vec2 version: + #ifdef ERF_FAST_APPROXIMATION + return erft(x); + #else + return erf6(x); + #endif +} + +float erf(const float x) +{ + // Float version: + #ifdef ERF_FAST_APPROXIMATION + return erft(x); + #else + return erf6(x); + #endif +} + + +/////////////////////////// COMPLETE GAMMA FUNCTION ////////////////////////// + +vec4 gamma_impl(const vec4 s, const vec4 s_inv) +{ + // Requires: 1.) s is the standard parameter to the gamma function, and + // it should lie in the [0, 36] range. + // 2.) s_inv = 1.0/s. This implementation function requires + // the caller to precompute this value, giving users the + // opportunity to reuse it. + // Returns: Return approximate gamma function (real-numbered factorial) + // output using the Lanczos approximation with two coefficients + // calculated using Paul Godfrey's method here: + // http://my.fit.edu/~gabdo/gamma.txt + // An optimal g value for s in [0, 36] is ~1.12906830989, with + // a maximum relative error of 0.000463 for 2**16 equally + // evals. We could use three coeffs (0.0000346 error) without + // hurting latency, but this allows more parallelism with + // outside instructions. + const vec4 g = vec4(1.12906830989); + const vec4 c0 = vec4(0.8109119309638332633713423362694399653724431); + const vec4 c1 = vec4(0.4808354605142681877121661197951496120000040); + const vec4 e = vec4(2.71828182845904523536028747135266249775724709); + const vec4 sph = s + vec4(0.5); + const vec4 lanczos_sum = c0 + c1/(s + vec4(1.0)); + const vec4 base = (sph + g)/e; // or (s + g + vec4(0.5))/e + // gamma(s + 1) = base**sph * lanczos_sum; divide by s for gamma(s). + // This has less error for small s's than (s -= 1.0) at the beginning. + return (pow(base, sph) * lanczos_sum) * s_inv; +} + +vec3 gamma_impl(const vec3 s, const vec3 s_inv) +{ + // vec3 version: + const vec3 g = vec3(1.12906830989); + const vec3 c0 = vec3(0.8109119309638332633713423362694399653724431); + const vec3 c1 = vec3(0.4808354605142681877121661197951496120000040); + const vec3 e = vec3(2.71828182845904523536028747135266249775724709); + const vec3 sph = s + vec3(0.5); + const vec3 lanczos_sum = c0 + c1/(s + vec3(1.0)); + const vec3 base = (sph + g)/e; + return (pow(base, sph) * lanczos_sum) * s_inv; +} + +vec2 gamma_impl(const vec2 s, const vec2 s_inv) +{ + // vec2 version: + const vec2 g = vec2(1.12906830989); + const vec2 c0 = vec2(0.8109119309638332633713423362694399653724431); + const vec2 c1 = vec2(0.4808354605142681877121661197951496120000040); + const vec2 e = vec2(2.71828182845904523536028747135266249775724709); + const vec2 sph = s + vec2(0.5); + const vec2 lanczos_sum = c0 + c1/(s + vec2(1.0)); + const vec2 base = (sph + g)/e; + return (pow(base, sph) * lanczos_sum) * s_inv; +} + +float gamma_impl(const float s, const float s_inv) +{ + // Float version: + const float g = 1.12906830989; + const float c0 = 0.8109119309638332633713423362694399653724431; + const float c1 = 0.4808354605142681877121661197951496120000040; + const float e = 2.71828182845904523536028747135266249775724709; + const float sph = s + 0.5; + const float lanczos_sum = c0 + c1/(s + 1.0); + const float base = (sph + g)/e; + return (pow(base, sph) * lanczos_sum) * s_inv; +} + +vec4 gamma(const vec4 s) +{ + // Requires: s is the standard parameter to the gamma function, and it + // should lie in the [0, 36] range. + // Returns: Return approximate gamma function output with a maximum + // relative error of 0.000463. See gamma_impl for details. + return gamma_impl(s, vec4(1.0)/s); +} + +vec3 gamma(const vec3 s) +{ + // vec3 version: + return gamma_impl(s, vec3(1.0)/s); +} + +vec2 gamma(const vec2 s) +{ + // vec2 version: + return gamma_impl(s, vec2(1.0)/s); +} + +float gamma(const float s) +{ + // Float version: + return gamma_impl(s, 1.0/s); +} + + +//////////////// INCOMPLETE GAMMA FUNCTIONS (RESTRICTED INPUT) /////////////// + +// Lower incomplete gamma function for small s and z (implementation): +vec4 ligamma_small_z_impl(const vec4 s, const vec4 z, const vec4 s_inv) +{ + // Requires: 1.) s < ~0.5 + // 2.) z <= ~0.775075 + // 3.) s_inv = 1.0/s (precomputed for outside reuse) + // Returns: A series representation for the lower incomplete gamma + // function for small s and small z (4 terms). + // The actual "rolled up" summation looks like: + // last_sign = 1.0; last_pow = 1.0; last_factorial = 1.0; + // sum = last_sign * last_pow / ((s + k) * last_factorial) + // for(int i = 0; i < 4; ++i) + // { + // last_sign *= -1.0; last_pow *= z; last_factorial *= i; + // sum += last_sign * last_pow / ((s + k) * last_factorial); + // } + // Unrolled, constant-unfolded and arranged for madds and parallelism: + const vec4 scale = pow(z, s); + vec4 sum = s_inv; // Summation iteration 0 result + // Summation iterations 1, 2, and 3: + const vec4 z_sq = z*z; + const vec4 denom1 = s + vec4(1.0); + const vec4 denom2 = 2.0*s + vec4(4.0); + const vec4 denom3 = 6.0*s + vec4(18.0); + //vec4 denom4 = 24.0*s + vec4(96.0); + sum -= z/denom1; + sum += z_sq/denom2; + sum -= z * z_sq/denom3; + //sum += z_sq * z_sq / denom4; + // Scale and return: + return scale * sum; +} + +vec3 ligamma_small_z_impl(const vec3 s, const vec3 z, const vec3 s_inv) +{ + // vec3 version: + const vec3 scale = pow(z, s); + vec3 sum = s_inv; + const vec3 z_sq = z*z; + const vec3 denom1 = s + vec3(1.0); + const vec3 denom2 = 2.0*s + vec3(4.0); + const vec3 denom3 = 6.0*s + vec3(18.0); + sum -= z/denom1; + sum += z_sq/denom2; + sum -= z * z_sq/denom3; + return scale * sum; +} + +vec2 ligamma_small_z_impl(const vec2 s, const vec2 z, const vec2 s_inv) +{ + // vec2 version: + const vec2 scale = pow(z, s); + vec2 sum = s_inv; + const vec2 z_sq = z*z; + const vec2 denom1 = s + vec2(1.0); + const vec2 denom2 = 2.0*s + vec2(4.0); + const vec2 denom3 = 6.0*s + vec2(18.0); + sum -= z/denom1; + sum += z_sq/denom2; + sum -= z * z_sq/denom3; + return scale * sum; +} + +float ligamma_small_z_impl(const float s, const float z, const float s_inv) +{ + // Float version: + const float scale = pow(z, s); + float sum = s_inv; + const float z_sq = z*z; + const float denom1 = s + 1.0; + const float denom2 = 2.0*s + 4.0; + const float denom3 = 6.0*s + 18.0; + sum -= z/denom1; + sum += z_sq/denom2; + sum -= z * z_sq/denom3; + return scale * sum; +} + +// Upper incomplete gamma function for small s and large z (implementation): +vec4 uigamma_large_z_impl(const vec4 s, const vec4 z) +{ + // Requires: 1.) s < ~0.5 + // 2.) z > ~0.775075 + // Returns: Gauss's continued fraction representation for the upper + // incomplete gamma function (4 terms). + // The "rolled up" continued fraction looks like this. The denominator + // is truncated, and it's calculated "from the bottom up:" + // denom = vec4('inf'); + // vec4 one = vec4(1.0); + // for(int i = 4; i > 0; --i) + // { + // denom = ((i * 2.0) - one) + z - s + (i * (s - i))/denom; + // } + // Unrolled and constant-unfolded for madds and parallelism: + const vec4 numerator = pow(z, s) * exp(-z); + vec4 denom = vec4(7.0) + z - s; + denom = vec4(5.0) + z - s + (3.0*s - vec4(9.0))/denom; + denom = vec4(3.0) + z - s + (2.0*s - vec4(4.0))/denom; + denom = vec4(1.0) + z - s + (s - vec4(1.0))/denom; + return numerator / denom; +} + +vec3 uigamma_large_z_impl(const vec3 s, const vec3 z) +{ + // vec3 version: + const vec3 numerator = pow(z, s) * exp(-z); + vec3 denom = vec3(7.0) + z - s; + denom = vec3(5.0) + z - s + (3.0*s - vec3(9.0))/denom; + denom = vec3(3.0) + z - s + (2.0*s - vec3(4.0))/denom; + denom = vec3(1.0) + z - s + (s - vec3(1.0))/denom; + return numerator / denom; +} + +vec2 uigamma_large_z_impl(const vec2 s, const vec2 z) +{ + // vec2 version: + const vec2 numerator = pow(z, s) * exp(-z); + vec2 denom = vec2(7.0) + z - s; + denom = vec2(5.0) + z - s + (3.0*s - vec2(9.0))/denom; + denom = vec2(3.0) + z - s + (2.0*s - vec2(4.0))/denom; + denom = vec2(1.0) + z - s + (s - vec2(1.0))/denom; + return numerator / denom; +} + +float uigamma_large_z_impl(const float s, const float z) +{ + // Float version: + const float numerator = pow(z, s) * exp(-z); + float denom = 7.0 + z - s; + denom = 5.0 + z - s + (3.0*s - 9.0)/denom; + denom = 3.0 + z - s + (2.0*s - 4.0)/denom; + denom = 1.0 + z - s + (s - 1.0)/denom; + return numerator / denom; +} + +// Normalized lower incomplete gamma function for small s (implementation): +vec4 normalized_ligamma_impl(const vec4 s, const vec4 z, + const vec4 s_inv, const vec4 gamma_s_inv) +{ + // Requires: 1.) s < ~0.5 + // 2.) s_inv = 1/s (precomputed for outside reuse) + // 3.) gamma_s_inv = 1/gamma(s) (precomputed for outside reuse) + // Returns: Approximate the normalized lower incomplete gamma function + // for s < 0.5. Since we only care about s < 0.5, we only need + // to evaluate two branches (not four) based on z. Each branch + // uses four terms, with a max relative error of ~0.00182. The + // branch threshold and specifics were adapted for fewer terms + // from Gil/Segura/Temme's paper here: + // http://oai.cwi.nl/oai/asset/20433/20433B.pdf + // Evaluate both branches: Real branches test slower even when available. + const vec4 thresh = vec4(0.775075); + const bool4 z_is_large = z > thresh; + const vec4 large_z = vec4(1.0) - uigamma_large_z_impl(s, z) * gamma_s_inv; + const vec4 small_z = ligamma_small_z_impl(s, z, s_inv) * gamma_s_inv; + // Combine the results from both branches: + return large_z * vec4(z_is_large) + small_z * vec4(!z_is_large); +} + +vec3 normalized_ligamma_impl(const vec3 s, const vec3 z, + const vec3 s_inv, const vec3 gamma_s_inv) +{ + // vec3 version: + const vec3 thresh = vec3(0.775075); + const bool3 z_is_large = z > thresh; + const vec3 large_z = vec3(1.0) - uigamma_large_z_impl(s, z) * gamma_s_inv; + const vec3 small_z = ligamma_small_z_impl(s, z, s_inv) * gamma_s_inv; + return large_z * vec3(z_is_large) + small_z * vec3(!z_is_large); +} + +vec2 normalized_ligamma_impl(const vec2 s, const vec2 z, + const vec2 s_inv, const vec2 gamma_s_inv) +{ + // vec2 version: + const vec2 thresh = vec2(0.775075); + const bool2 z_is_large = z > thresh; + const vec2 large_z = vec2(1.0) - uigamma_large_z_impl(s, z) * gamma_s_inv; + const vec2 small_z = ligamma_small_z_impl(s, z, s_inv) * gamma_s_inv; + return large_z * vec2(z_is_large) + small_z * vec2(!z_is_large); +} + +float normalized_ligamma_impl(const float s, const float z, + const float s_inv, const float gamma_s_inv) +{ + // Float version: + const float thresh = 0.775075; + const bool z_is_large = z > thresh; + const float large_z = 1.0 - uigamma_large_z_impl(s, z) * gamma_s_inv; + const float small_z = ligamma_small_z_impl(s, z, s_inv) * gamma_s_inv; + return large_z * float(z_is_large) + small_z * float(!z_is_large); +} + +// Normalized lower incomplete gamma function for small s: +vec4 normalized_ligamma(const vec4 s, const vec4 z) +{ + // Requires: s < ~0.5 + // Returns: Approximate the normalized lower incomplete gamma function + // for s < 0.5. See normalized_ligamma_impl() for details. + const vec4 s_inv = vec4(1.0)/s; + const vec4 gamma_s_inv = vec4(1.0)/gamma_impl(s, s_inv); + return normalized_ligamma_impl(s, z, s_inv, gamma_s_inv); +} + +vec3 normalized_ligamma(const vec3 s, const vec3 z) +{ + // vec3 version: + const vec3 s_inv = vec3(1.0)/s; + const vec3 gamma_s_inv = vec3(1.0)/gamma_impl(s, s_inv); + return normalized_ligamma_impl(s, z, s_inv, gamma_s_inv); +} + +vec2 normalized_ligamma(const vec2 s, const vec2 z) +{ + // vec2 version: + const vec2 s_inv = vec2(1.0)/s; + const vec2 gamma_s_inv = vec2(1.0)/gamma_impl(s, s_inv); + return normalized_ligamma_impl(s, z, s_inv, gamma_s_inv); +} + +float normalized_ligamma(const float s, const float z) +{ + // Float version: + const float s_inv = 1.0/s; + const float gamma_s_inv = 1.0/gamma_impl(s, s_inv); + return normalized_ligamma_impl(s, z, s_inv, gamma_s_inv); +} + + +#endif // SPECIAL_FUNCTIONS_H + + diff --git a/crt/shaders/crt-royale/src/special-functions.h b/crt/shaders/crt-royale/src/special-functions.h new file mode 100644 index 0000000..1f6d7a4 --- /dev/null +++ b/crt/shaders/crt-royale/src/special-functions.h @@ -0,0 +1,492 @@ +///////////////////////////////// MIT LICENSE //////////////////////////////// + +// Copyright (C) 2014 TroggleMonkey +// +// Permission is hereby granted, free of charge, to any person obtaining a copy +// of this software and associated documentation files (the "Software"), to +// deal in the Software without restriction, including without limitation the +// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or +// sell copies of the Software, and to permit persons to whom the Software is +// furnished to do so, subject to the following conditions: +// +// The above copyright notice and this permission notice shall be included in +// all copies or substantial portions of the Software. +// +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING +// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS +// IN THE SOFTWARE. + + +///////////////////////////////// DESCRIPTION //////////////////////////////// + +// This file implements the following mathematical special functions: +// 1.) erf() = 2/sqrt(pi) * indefinite_integral(e**(-x**2)) +// 2.) gamma(s), a real-numbered extension of the integer factorial function +// It also implements normalized_ligamma(s, z), a normalized lower incomplete +// gamma function for s < 0.5 only. Both gamma() and normalized_ligamma() can +// be called with an _impl suffix to use an implementation version with a few +// extra precomputed parameters (which may be useful for the caller to reuse). +// See below for details. +// +// Design Rationale: +// Pretty much every line of code in this file is duplicated four times for +// different input types (vec4/vec3/vec2/float). This is unfortunate, +// but Cg doesn't allow function templates. Macros would be far less verbose, +// but they would make the code harder to document and read. I don't expect +// these functions will require a whole lot of maintenance changes unless +// someone ever has need for more robust incomplete gamma functions, so code +// duplication seems to be the lesser evil in this case. + + +/////////////////////////// GAUSSIAN ERROR FUNCTION ////////////////////////// + +vec4 erf6(vec4 x) +{ + // Requires: x is the standard parameter to erf(). + // Returns: Return an Abramowitz/Stegun approximation of erf(), where: + // erf(x) = 2/sqrt(pi) * integral(e**(-x**2)) + // This approximation has a max absolute error of 2.5*10**-5 + // with solid numerical robustness and efficiency. See: + // https://en.wikipedia.org/wiki/Error_function#Approximation_with_elementary_functions + const vec4 one = vec4(1.0); + const vec4 sign_x = sign(x); + const vec4 t = one/(one + 0.47047*abs(x)); + const vec4 result = one - t*(0.3480242 + t*(-0.0958798 + t*0.7478556))* + exp(-(x*x)); + return result * sign_x; +} + +vec3 erf6(const vec3 x) +{ + // vec3 version: + const vec3 one = vec3(1.0); + const vec3 sign_x = sign(x); + const vec3 t = one/(one + 0.47047*abs(x)); + const vec3 result = one - t*(0.3480242 + t*(-0.0958798 + t*0.7478556))* + exp(-(x*x)); + return result * sign_x; +} + +vec2 erf6(const vec2 x) +{ + // vec2 version: + const vec2 one = vec2(1.0); + const vec2 sign_x = sign(x); + const vec2 t = one/(one + 0.47047*abs(x)); + const vec2 result = one - t*(0.3480242 + t*(-0.0958798 + t*0.7478556))* + exp(-(x*x)); + return result * sign_x; +} + +float erf6(const float x) +{ + // Float version: + const float sign_x = sign(x); + const float t = 1.0/(1.0 + 0.47047*abs(x)); + const float result = 1.0 - t*(0.3480242 + t*(-0.0958798 + t*0.7478556))* + exp(-(x*x)); + return result * sign_x; +} + +vec4 erft(const vec4 x) +{ + // Requires: x is the standard parameter to erf(). + // Returns: Approximate erf() with the hyperbolic tangent. The error is + // visually noticeable, but it's blazing fast and perceptually + // close...at least on ATI hardware. See: + // http://www.maplesoft.com/applications/view.aspx?SID=5525&view=html + // Warning: Only use this if your hardware drivers correctly implement + // tanh(): My nVidia 8800GTS returns garbage output. + return tanh(1.202760580 * x); +} + +vec3 erft(const vec3 x) +{ + // vec3 version: + return tanh(1.202760580 * x); +} + +vec2 erft(const vec2 x) +{ + // vec2 version: + return tanh(1.202760580 * x); +} + +float erft(const float x) +{ + // Float version: + return tanh(1.202760580 * x); +} + +vec4 erf(const vec4 x) +{ + // Requires: x is the standard parameter to erf(). + // Returns: Some approximation of erf(x), depending on user settings. + #ifdef ERF_FAST_APPROXIMATION + return erft(x); + #else + return erf6(x); + #endif +} + +vec3 erf(const vec3 x) +{ + // vec3 version: + #ifdef ERF_FAST_APPROXIMATION + return erft(x); + #else + return erf6(x); + #endif +} + +vec2 erf(const vec2 x) +{ + // vec2 version: + #ifdef ERF_FAST_APPROXIMATION + return erft(x); + #else + return erf6(x); + #endif +} + +float erf(const float x) +{ + // Float version: + #ifdef ERF_FAST_APPROXIMATION + return erft(x); + #else + return erf6(x); + #endif +} + +/////////////////////////// COMPLETE GAMMA FUNCTION ////////////////////////// + +vec4 gamma_impl(const vec4 s, const vec4 s_inv) +{ + // Requires: 1.) s is the standard parameter to the gamma function, and + // it should lie in the [0, 36] range. + // 2.) s_inv = 1.0/s. This implementation function requires + // the caller to precompute this value, giving users the + // opportunity to reuse it. + // Returns: Return approximate gamma function (real-numbered factorial) + // output using the Lanczos approximation with two coefficients + // calculated using Paul Godfrey's method here: + // http://my.fit.edu/~gabdo/gamma.txt + // An optimal g value for s in [0, 36] is ~1.12906830989, with + // a maximum relative error of 0.000463 for 2**16 equally + // evals. We could use three coeffs (0.0000346 error) without + // hurting latency, but this allows more parallelism with + // outside instructions. + const vec4 g = vec4(1.12906830989); + const vec4 c0 = vec4(0.8109119309638332633713423362694399653724431); + const vec4 c1 = vec4(0.4808354605142681877121661197951496120000040); + const vec4 e = vec4(2.71828182845904523536028747135266249775724709); + const vec4 sph = s + vec4(0.5); + const vec4 lanczos_sum = c0 + c1/(s + vec4(1.0)); + const vec4 base = (sph + g)/e; // or (s + g + vec4(0.5))/e + // gamma(s + 1) = base**sph * lanczos_sum; divide by s for gamma(s). + // This has less error for small s's than (s -= 1.0) at the beginning. + return (pow(base, sph) * lanczos_sum) * s_inv; +} + +vec3 gamma_impl(const vec3 s, const vec3 s_inv) +{ + // vec3 version: + const vec3 g = vec3(1.12906830989); + const vec3 c0 = vec3(0.8109119309638332633713423362694399653724431); + const vec3 c1 = vec3(0.4808354605142681877121661197951496120000040); + const vec3 e = vec3(2.71828182845904523536028747135266249775724709); + const vec3 sph = s + vec3(0.5); + const vec3 lanczos_sum = c0 + c1/(s + vec3(1.0)); + const vec3 base = (sph + g)/e; + return (pow(base, sph) * lanczos_sum) * s_inv; +} + +vec2 gamma_impl(const vec2 s, const vec2 s_inv) +{ + // vec2 version: + const vec2 g = vec2(1.12906830989); + const vec2 c0 = vec2(0.8109119309638332633713423362694399653724431); + const vec2 c1 = vec2(0.4808354605142681877121661197951496120000040); + const vec2 e = vec2(2.71828182845904523536028747135266249775724709); + const vec2 sph = s + vec2(0.5); + const vec2 lanczos_sum = c0 + c1/(s + vec2(1.0)); + const vec2 base = (sph + g)/e; + return (pow(base, sph) * lanczos_sum) * s_inv; +} + +float gamma_impl(const float s, const float s_inv) +{ + // Float version: + const float g = 1.12906830989; + const float c0 = 0.8109119309638332633713423362694399653724431; + const float c1 = 0.4808354605142681877121661197951496120000040; + const float e = 2.71828182845904523536028747135266249775724709; + const float sph = s + 0.5; + const float lanczos_sum = c0 + c1/(s + 1.0); + const float base = (sph + g)/e; + return (pow(base, sph) * lanczos_sum) * s_inv; +} + +vec4 gamma(const vec4 s) +{ + // Requires: s is the standard parameter to the gamma function, and it + // should lie in the [0, 36] range. + // Returns: Return approximate gamma function output with a maximum + // relative error of 0.000463. See gamma_impl for details. + return gamma_impl(s, vec4(1.0)/s); +} + +vec3 gamma(const vec3 s) +{ + // vec3 version: + return gamma_impl(s, vec3(1.0)/s); +} + +vec2 gamma(const vec2 s) +{ + // vec2 version: + return gamma_impl(s, vec2(1.0)/s); +} + +float gamma(const float s) +{ + // Float version: + return gamma_impl(s, 1.0/s); +} + +//////////////// INCOMPLETE GAMMA FUNCTIONS (RESTRICTED INPUT) /////////////// + +// Lower incomplete gamma function for small s and z (implementation): +vec4 ligamma_small_z_impl(const vec4 s, const vec4 z, const vec4 s_inv) +{ + // Requires: 1.) s < ~0.5 + // 2.) z <= ~0.775075 + // 3.) s_inv = 1.0/s (precomputed for outside reuse) + // Returns: A series representation for the lower incomplete gamma + // function for small s and small z (4 terms). + // The actual "rolled up" summation looks like: + // last_sign = 1.0; last_pow = 1.0; last_factorial = 1.0; + // sum = last_sign * last_pow / ((s + k) * last_factorial) + // for(int i = 0; i < 4; ++i) + // { + // last_sign *= -1.0; last_pow *= z; last_factorial *= i; + // sum += last_sign * last_pow / ((s + k) * last_factorial); + // } + // Unrolled, constant-unfolded and arranged for madds and parallelism: + const vec4 scale = pow(z, s); + vec4 sum = s_inv; // Summation iteration 0 result + // Summation iterations 1, 2, and 3: + const vec4 z_sq = z*z; + const vec4 denom1 = s + vec4(1.0); + const vec4 denom2 = 2.0*s + vec4(4.0); + const vec4 denom3 = 6.0*s + vec4(18.0); + //vec4 denom4 = 24.0*s + vec4(96.0); + sum -= z/denom1; + sum += z_sq/denom2; + sum -= z * z_sq/denom3; + //sum += z_sq * z_sq / denom4; + // Scale and return: + return scale * sum; +} + +vec3 ligamma_small_z_impl(const vec3 s, const vec3 z, const vec3 s_inv) +{ + // vec3 version: + const vec3 scale = pow(z, s); + vec3 sum = s_inv; + const vec3 z_sq = z*z; + const vec3 denom1 = s + vec3(1.0); + const vec3 denom2 = 2.0*s + vec3(4.0); + const vec3 denom3 = 6.0*s + vec3(18.0); + sum -= z/denom1; + sum += z_sq/denom2; + sum -= z * z_sq/denom3; + return scale * sum; +} + +vec2 ligamma_small_z_impl(const vec2 s, const vec2 z, const vec2 s_inv) +{ + // vec2 version: + const vec2 scale = pow(z, s); + vec2 sum = s_inv; + const vec2 z_sq = z*z; + const vec2 denom1 = s + vec2(1.0); + const vec2 denom2 = 2.0*s + vec2(4.0); + const vec2 denom3 = 6.0*s + vec2(18.0); + sum -= z/denom1; + sum += z_sq/denom2; + sum -= z * z_sq/denom3; + return scale * sum; +} + +float ligamma_small_z_impl(const float s, const float z, const float s_inv) +{ + // Float version: + const float scale = pow(z, s); + float sum = s_inv; + const float z_sq = z*z; + const float denom1 = s + 1.0; + const float denom2 = 2.0*s + 4.0; + const float denom3 = 6.0*s + 18.0; + sum -= z/denom1; + sum += z_sq/denom2; + sum -= z * z_sq/denom3; + return scale * sum; +} + +// Upper incomplete gamma function for small s and large z (implementation): +vec4 uigamma_large_z_impl(const vec4 s, const vec4 z) +{ + // Requires: 1.) s < ~0.5 + // 2.) z > ~0.775075 + // Returns: Gauss's continued fraction representation for the upper + // incomplete gamma function (4 terms). + // The "rolled up" continued fraction looks like this. The denominator + // is truncated, and it's calculated "from the bottom up:" + // denom = vec4('inf'); + // vec4 one = vec4(1.0); + // for(int i = 4; i > 0; --i) + // { + // denom = ((i * 2.0) - one) + z - s + (i * (s - i))/denom; + // } + // Unrolled and constant-unfolded for madds and parallelism: + const vec4 numerator = pow(z, s) * exp(-z); + vec4 denom = vec4(7.0) + z - s; + denom = vec4(5.0) + z - s + (3.0*s - vec4(9.0))/denom; + denom = vec4(3.0) + z - s + (2.0*s - vec4(4.0))/denom; + denom = vec4(1.0) + z - s + (s - vec4(1.0))/denom; + return numerator / denom; +} + +vec3 uigamma_large_z_impl(const vec3 s, const vec3 z) +{ + // vec3 version: + const vec3 numerator = pow(z, s) * exp(-z); + vec3 denom = vec3(7.0) + z - s; + denom = vec3(5.0) + z - s + (3.0*s - vec3(9.0))/denom; + denom = vec3(3.0) + z - s + (2.0*s - vec3(4.0))/denom; + denom = vec3(1.0) + z - s + (s - vec3(1.0))/denom; + return numerator / denom; +} + +vec2 uigamma_large_z_impl(const vec2 s, const vec2 z) +{ + // vec2 version: + const vec2 numerator = pow(z, s) * exp(-z); + vec2 denom = vec2(7.0) + z - s; + denom = vec2(5.0) + z - s + (3.0*s - vec2(9.0))/denom; + denom = vec2(3.0) + z - s + (2.0*s - vec2(4.0))/denom; + denom = vec2(1.0) + z - s + (s - vec2(1.0))/denom; + return numerator / denom; +} + +float uigamma_large_z_impl(const float s, const float z) +{ + // Float version: + const float numerator = pow(z, s) * exp(-z); + float denom = 7.0 + z - s; + denom = 5.0 + z - s + (3.0*s - 9.0)/denom; + denom = 3.0 + z - s + (2.0*s - 4.0)/denom; + denom = 1.0 + z - s + (s - 1.0)/denom; + return numerator / denom; +} + +// Normalized lower incomplete gamma function for small s (implementation): +vec4 normalized_ligamma_impl(const vec4 s, const vec4 z, + const vec4 s_inv, const vec4 gamma_s_inv) +{ + // Requires: 1.) s < ~0.5 + // 2.) s_inv = 1/s (precomputed for outside reuse) + // 3.) gamma_s_inv = 1/gamma(s) (precomputed for outside reuse) + // Returns: Approximate the normalized lower incomplete gamma function + // for s < 0.5. Since we only care about s < 0.5, we only need + // to evaluate two branches (not four) based on z. Each branch + // uses four terms, with a max relative error of ~0.00182. The + // branch threshold and specifics were adapted for fewer terms + // from Gil/Segura/Temme's paper here: + // http://oai.cwi.nl/oai/asset/20433/20433B.pdf + // Evaluate both branches: Real branches test slower even when available. + const vec4 thresh = vec4(0.775075); + bvec4 z_is_large = greaterThan(z , thresh); + vec4 z_size_check = vec4(z_is_large.x ? 1.0 : 0.0, z_is_large.y ? 1.0 : 0.0, z_is_large.z ? 1.0 : 0.0, z_is_large.w ? 1.0 : 0.0); + const vec4 large_z = vec4(1.0) - uigamma_large_z_impl(s, z) * gamma_s_inv; + const vec4 small_z = ligamma_small_z_impl(s, z, s_inv) * gamma_s_inv; + // Combine the results from both branches: + return large_z * vec4(z_size_check) + small_z * vec4(z_size_check); +} + +vec3 normalized_ligamma_impl(const vec3 s, const vec3 z, + const vec3 s_inv, const vec3 gamma_s_inv) +{ + // vec3 version: + const vec3 thresh = vec3(0.775075); + bvec3 z_is_large = greaterThan(z , thresh); + vec3 z_size_check = vec3(z_is_large.x ? 1.0 : 0.0, z_is_large.y ? 1.0 : 0.0, z_is_large.z ? 1.0 : 0.0); + const vec3 large_z = vec3(1.0) - uigamma_large_z_impl(s, z) * gamma_s_inv; + const vec3 small_z = ligamma_small_z_impl(s, z, s_inv) * gamma_s_inv; + return large_z * vec3(z_size_check) + small_z * vec3(z_size_check); +} + +vec2 normalized_ligamma_impl(const vec2 s, const vec2 z, + const vec2 s_inv, const vec2 gamma_s_inv) +{ + // vec2 version: + const vec2 thresh = vec2(0.775075); + bvec2 z_is_large = greaterThan(z , thresh); + vec2 z_size_check = vec2(z_is_large.x ? 1.0 : 0.0, z_is_large.y ? 1.0 : 0.0); + const vec2 large_z = vec2(1.0) - uigamma_large_z_impl(s, z) * gamma_s_inv; + const vec2 small_z = ligamma_small_z_impl(s, z, s_inv) * gamma_s_inv; + return large_z * vec2(z_size_check) + small_z * vec2(z_size_check); +} + +float normalized_ligamma_impl(const float s, const float z, + const float s_inv, const float gamma_s_inv) +{ + // Float version: + const float thresh = 0.775075; + float z_size_check = 0.0; + if (z > thresh) z_size_check = 1.0; + const float large_z = 1.0 - uigamma_large_z_impl(s, z) * gamma_s_inv; + const float small_z = ligamma_small_z_impl(s, z, s_inv) * gamma_s_inv; + return large_z * float(z_size_check) + small_z * float(z_size_check); +} + +// Normalized lower incomplete gamma function for small s: +vec4 normalized_ligamma(const vec4 s, const vec4 z) +{ + // Requires: s < ~0.5 + // Returns: Approximate the normalized lower incomplete gamma function + // for s < 0.5. See normalized_ligamma_impl() for details. + const vec4 s_inv = vec4(1.0)/s; + const vec4 gamma_s_inv = vec4(1.0)/gamma_impl(s, s_inv); + return normalized_ligamma_impl(s, z, s_inv, gamma_s_inv); +} + +vec3 normalized_ligamma(const vec3 s, const vec3 z) +{ + // vec3 version: + const vec3 s_inv = vec3(1.0)/s; + const vec3 gamma_s_inv = vec3(1.0)/gamma_impl(s, s_inv); + return normalized_ligamma_impl(s, z, s_inv, gamma_s_inv); +} + +vec2 normalized_ligamma(const vec2 s, const vec2 z) +{ + // vec2 version: + const vec2 s_inv = vec2(1.0)/s; + const vec2 gamma_s_inv = vec2(1.0)/gamma_impl(s, s_inv); + return normalized_ligamma_impl(s, z, s_inv, gamma_s_inv); +} + +float normalized_ligamma(const float s, const float z) +{ + // Float version: + const float s_inv = 1.0/s; + const float gamma_s_inv = 1.0/gamma_impl(s, s_inv); + return normalized_ligamma_impl(s, z, s_inv, gamma_s_inv); +} \ No newline at end of file diff --git a/crt/shaders/crt-royale/src/user-preset-constants.h b/crt/shaders/crt-royale/src/user-preset-constants.h index ad70a9a..93a77d5 100644 --- a/crt/shaders/crt-royale/src/user-preset-constants.h +++ b/crt/shaders/crt-royale/src/user-preset-constants.h @@ -12,6 +12,7 @@ // this shader: One does a viewport-scale bloom, and the other skips it. The // latter benefits from a higher bloom_approx_scale_x, so save both separately: const float bloom_approx_size_x = 320.0; +const float bloom_approx_scale_x = 320.0; //dunno why this is necessary const float bloom_approx_size_x_for_fake = 400.0; // Copy the viewport-relative scales of the phosphor mask resize passes // (MASK_RESIZE and the pass immediately preceding it):