mirror of
https://github.com/italicsjenga/slang-shaders.git
synced 2024-11-22 15:51:30 +11:00
add parameters and push constants to crt-geom
This commit is contained in:
parent
806e5fe46c
commit
46df8c20c6
|
@ -1,28 +1,47 @@
|
|||
#version 450
|
||||
|
||||
layout(push_constant) uniform Push
|
||||
{
|
||||
vec4 OutputSize;
|
||||
vec4 OriginalSize;
|
||||
vec4 SourceSize;
|
||||
uint FrameCount;
|
||||
float CRTgamma;
|
||||
float monitorgamma;
|
||||
float d;
|
||||
float R;
|
||||
float cornersize;
|
||||
float cornersmooth;
|
||||
float x_tilt;
|
||||
float y_tilt;
|
||||
float overscan_x;
|
||||
float overscan_y;
|
||||
float DOTMASK;
|
||||
float SHARPER;
|
||||
float scanline_weight;
|
||||
float CURVATURE;
|
||||
} registers;
|
||||
|
||||
layout(std140, set = 0, binding = 0) uniform UBO
|
||||
{
|
||||
mat4 MVP;
|
||||
vec4 OutputSize;
|
||||
vec4 OriginalSize;
|
||||
vec4 SourceSize;
|
||||
uint FrameCount;
|
||||
vec4 OutputSize;
|
||||
} global;
|
||||
|
||||
#define CRTgamma 2.4
|
||||
#define monitorgamma 2.2
|
||||
#define d 1.5
|
||||
#define CURVATURE 1.0
|
||||
#define R 2.0
|
||||
#define cornersize 0.03
|
||||
#define cornersmooth 1000.0
|
||||
#define x_tilt 0.0
|
||||
#define y_tilt 0.0
|
||||
#define overscan_x 100.0
|
||||
#define overscan_y 100.0
|
||||
#define DOTMASK 0.3
|
||||
#define SHARPER 1.0
|
||||
#define scanline_weight 0.3
|
||||
#pragma parameter CRTgamma "CRTGeom Target Gamma" 2.4 0.1 5.0 0.1
|
||||
#pragma parameter monitorgamma "CRTGeom Monitor Gamma" 2.2 0.1 5.0 0.1
|
||||
#pragma parameter d "CRTGeom Distance" 1.5 0.1 3.0 0.1
|
||||
#pragma parameter CURVATURE "CRTGeom Curvature Toggle" 1.0 0.0 1.0 1.0
|
||||
#pragma parameter R "CRTGeom Curvature Radius" 2.0 0.1 10.0 0.1
|
||||
#pragma parameter cornersize "CRTGeom Corner Size" 0.03 0.001 1.0 0.005
|
||||
#pragma parameter cornersmooth "CRTGeom Corner Smoothness" 1000.0 80.0 2000.0 100.0
|
||||
#pragma parameter x_tilt "CRTGeom Horizontal Tilt" 0.0 -0.5 0.5 0.05
|
||||
#pragma parameter y_tilt "CRTGeom Vertical Tilt" 0.0 -0.5 0.5 0.05
|
||||
#pragma parameter overscan_x "CRTGeom Horiz. Overscan %" 100.0 -125.0 125.0 1.0
|
||||
#pragma parameter overscan_y "CRTGeom Vert. Overscan %" 100.0 -125.0 125.0 1.0
|
||||
#pragma parameter DOTMASK "CRTGeom Dot Mask Toggle" 0.3 0.0 0.3 0.3
|
||||
#pragma parameter SHARPER "CRTGeom Sharpness" 1.0 1.0 3.0 1.0
|
||||
#pragma parameter scanline_weight "CRTGeom Scanline Weight" 0.3 0.1 0.5 0.05
|
||||
|
||||
/*
|
||||
CRT-interlaced
|
||||
|
@ -64,7 +83,7 @@ layout(std140, set = 0, binding = 0) uniform UBO
|
|||
#define PI 3.141592653589
|
||||
|
||||
#ifdef LINEAR_PROCESSING
|
||||
# define TEX2D(c) pow(texture(Source, (c)), vec4(CRTgamma))
|
||||
# define TEX2D(c) pow(texture(Source, (c)), vec4(registers.CRTgamma))
|
||||
#else
|
||||
# define TEX2D(c) texture(Source, (c))
|
||||
#endif
|
||||
|
@ -87,9 +106,9 @@ layout(location = 7) out vec2 TextureSize;
|
|||
|
||||
float intersect(vec2 xy)
|
||||
{
|
||||
float A = dot(xy,xy) + d*d;
|
||||
float B = 2.0*(R*(dot(xy,sinangle)-d*cosangle.x*cosangle.y)-d*d);
|
||||
float C = d*d + 2.0*R*d*cosangle.x*cosangle.y;
|
||||
float A = dot(xy,xy) + registers.d*registers.d;
|
||||
float B = 2.0*(registers.R*(dot(xy,sinangle)-registers.d*cosangle.x*cosangle.y)-registers.d*registers.d);
|
||||
float C = registers.d*registers.d + 2.0*registers.R*registers.d*cosangle.x*cosangle.y;
|
||||
|
||||
return (-B-sqrt(B*B-4.0*A*C))/(2.0*A);
|
||||
}
|
||||
|
@ -97,7 +116,7 @@ float intersect(vec2 xy)
|
|||
vec2 bkwtrans(vec2 xy)
|
||||
{
|
||||
float c = intersect(xy);
|
||||
vec2 point = (vec2(c, c)*xy - vec2(-R, -R)*sinangle) / vec2(R, R);
|
||||
vec2 point = (vec2(c, c)*xy - vec2(-registers.R, -registers.R)*sinangle) / vec2(registers.R, registers.R);
|
||||
vec2 poc = point/cosangle;
|
||||
|
||||
vec2 tang = sinangle/cosangle;
|
||||
|
@ -107,24 +126,24 @@ vec2 bkwtrans(vec2 xy)
|
|||
|
||||
float a = (-B + sqrt(B*B - 4.0*A*C))/(2.0*A);
|
||||
vec2 uv = (point - a*sinangle)/cosangle;
|
||||
float r = FIX(R*acos(a));
|
||||
float r = FIX(registers.R*acos(a));
|
||||
|
||||
return uv*r/sin(r/R);
|
||||
return uv*r/sin(r/registers.R);
|
||||
}
|
||||
|
||||
vec2 fwtrans(vec2 uv)
|
||||
{
|
||||
float r = FIX(sqrt(dot(uv,uv)));
|
||||
uv *= sin(r/R)/r;
|
||||
float x = 1.0-cos(r/R);
|
||||
float D = d/R + x*cosangle.x*cosangle.y+dot(uv,sinangle);
|
||||
uv *= sin(r/registers.R)/r;
|
||||
float x = 1.0-cos(r/registers.R);
|
||||
float D = registers.d/registers.R + x*cosangle.x*cosangle.y+dot(uv,sinangle);
|
||||
|
||||
return d*(uv*cosangle-x*sinangle)/D;
|
||||
return registers.d*(uv*cosangle-x*sinangle)/D;
|
||||
}
|
||||
|
||||
vec3 maxscale()
|
||||
{
|
||||
vec2 c = bkwtrans(-R * sinangle / (1.0 + R/d*cosangle.x*cosangle.y));
|
||||
vec2 c = bkwtrans(-registers.R * sinangle / (1.0 + registers.R/registers.d*cosangle.x*cosangle.y));
|
||||
vec2 a = vec2(0.5,0.5)*aspect;
|
||||
|
||||
vec2 lo = vec2(fwtrans(vec2(-a.x, c.y)).x,
|
||||
|
@ -161,7 +180,7 @@ vec4 scanlineWeights(float distance, vec4 color)
|
|||
return 0.4 * exp(-weights * weights) / wid;
|
||||
#else
|
||||
vec4 wid = 2.0 + 2.0 * pow(color, vec4(4.0));
|
||||
vec4 weights = vec4(distance / scanline_weight);
|
||||
vec4 weights = vec4(distance / registers.scanline_weight);
|
||||
|
||||
return 1.4 * exp(-pow(weights * inversesqrt(0.5 * wid), wid)) / (0.6 + 0.2 * wid);
|
||||
#endif
|
||||
|
@ -174,22 +193,22 @@ void main()
|
|||
|
||||
// Precalculate a bunch of useful values we'll need in the fragment
|
||||
// shader.
|
||||
sinangle = sin(vec2(x_tilt, y_tilt));
|
||||
cosangle = cos(vec2(x_tilt, y_tilt));
|
||||
sinangle = sin(vec2(registers.x_tilt, registers.y_tilt));
|
||||
cosangle = cos(vec2(registers.x_tilt, registers.y_tilt));
|
||||
stretch = maxscale();
|
||||
TextureSize = vec2(SHARPER * global.SourceSize.x, global.SourceSize.y);
|
||||
TextureSize = vec2(registers.SHARPER * registers.SourceSize.x, registers.SourceSize.y);
|
||||
|
||||
#ifdef INTERLACED
|
||||
ilfac = vec2(1.0, clamp(floor(global.SourceSize.y/200.0), 1.0, 2.0));
|
||||
ilfac = vec2(1.0, clamp(floor(registers.SourceSize.y/200.0), 1.0, 2.0));
|
||||
#else
|
||||
ilfac = vec2(1.0, clamp(floor(global.SourceSize.y/1000.0), 1.0, 2.0));
|
||||
ilfac = vec2(1.0, clamp(floor(registers.SourceSize.y/1000.0), 1.0, 2.0));
|
||||
#endif
|
||||
|
||||
// The size of one texel, in texture-coordinates.
|
||||
one = ilfac / TextureSize;
|
||||
|
||||
// Resulting X pixel-coordinate of the pixel we're drawing.
|
||||
mod_factor = vTexCoord.x * global.SourceSize.x * global.OutputSize.x / global.SourceSize.x;
|
||||
mod_factor = vTexCoord.x * registers.SourceSize.x * registers.OutputSize.x / registers.SourceSize.x;
|
||||
}
|
||||
|
||||
#pragma stage fragment
|
||||
|
@ -206,9 +225,9 @@ layout(set = 0, binding = 2) uniform sampler2D Source;
|
|||
|
||||
float intersect(vec2 xy)
|
||||
{
|
||||
float A = dot(xy,xy) + d*d;
|
||||
float B = 2.0*(R*(dot(xy,sinangle) - d*cosangle.x*cosangle.y) - d*d);
|
||||
float C = d*d + 2.0*R*d*cosangle.x*cosangle.y;
|
||||
float A = dot(xy,xy) + registers.d*registers.d;
|
||||
float B = 2.0*(registers.R*(dot(xy,sinangle) - registers.d*cosangle.x*cosangle.y) - registers.d*registers.d);
|
||||
float C = registers.d*registers.d + 2.0*registers.R*registers.d*cosangle.x*cosangle.y;
|
||||
|
||||
return (-B-sqrt(B*B - 4.0*A*C))/(2.0*A);
|
||||
}
|
||||
|
@ -216,7 +235,7 @@ float intersect(vec2 xy)
|
|||
vec2 bkwtrans(vec2 xy)
|
||||
{
|
||||
float c = intersect(xy);
|
||||
vec2 point = (vec2(c, c)*xy - vec2(-R, -R)*sinangle) / vec2(R, R);
|
||||
vec2 point = (vec2(c, c)*xy - vec2(-registers.R, -registers.R)*sinangle) / vec2(registers.R, registers.R);
|
||||
vec2 poc = point/cosangle;
|
||||
vec2 tang = sinangle/cosangle;
|
||||
|
||||
|
@ -226,24 +245,24 @@ vec2 bkwtrans(vec2 xy)
|
|||
|
||||
float a = (-B + sqrt(B*B - 4.0*A*C)) / (2.0*A);
|
||||
vec2 uv = (point - a*sinangle) / cosangle;
|
||||
float r = FIX(R*acos(a));
|
||||
float r = FIX(registers.R*acos(a));
|
||||
|
||||
return uv*r/sin(r/R);
|
||||
return uv*r/sin(r/registers.R);
|
||||
}
|
||||
|
||||
vec2 fwtrans(vec2 uv)
|
||||
{
|
||||
float r = FIX(sqrt(dot(uv, uv)));
|
||||
uv *= sin(r/R)/r;
|
||||
float x = 1.0 - cos(r/R);
|
||||
float D = d/R + x*cosangle.x*cosangle.y + dot(uv,sinangle);
|
||||
uv *= sin(r/registers.R)/r;
|
||||
float x = 1.0 - cos(r/registers.R);
|
||||
float D = registers.d/registers.R + x*cosangle.x*cosangle.y + dot(uv,sinangle);
|
||||
|
||||
return d*(uv*cosangle - x*sinangle)/D;
|
||||
return registers.d*(uv*cosangle - x*sinangle)/D;
|
||||
}
|
||||
|
||||
vec3 maxscale()
|
||||
{
|
||||
vec2 c = bkwtrans(-R * sinangle / (1.0 + R/d*cosangle.x*cosangle.y));
|
||||
vec2 c = bkwtrans(-registers.R * sinangle / (1.0 + registers.R/registers.d*cosangle.x*cosangle.y));
|
||||
vec2 a = vec2(0.5, 0.5)*aspect;
|
||||
|
||||
vec2 lo = vec2(fwtrans(vec2(-a.x, c.y)).x,
|
||||
|
@ -278,7 +297,7 @@ vec4 scanlineWeights(float distance, vec4 color)
|
|||
return 0.4 * exp(-weights * weights) / wid;
|
||||
#else
|
||||
vec4 wid = 2.0 + 2.0 * pow(color, vec4(4.0));
|
||||
vec4 weights = vec4(distance / scanline_weight);
|
||||
vec4 weights = vec4(distance / registers.scanline_weight);
|
||||
return 1.4 * exp(-pow(weights * inversesqrt(0.5 * wid), wid)) / (0.6 + 0.2 * wid);
|
||||
#endif
|
||||
}
|
||||
|
@ -288,18 +307,18 @@ vec2 transform(vec2 coord)
|
|||
coord = (coord - vec2(0.5, 0.5))*aspect*stretch.z + stretch.xy;
|
||||
|
||||
return (bkwtrans(coord) /
|
||||
vec2(overscan_x / 100.0, overscan_y / 100.0)/aspect + vec2(0.5, 0.5));
|
||||
vec2(registers.overscan_x / 100.0, registers.overscan_y / 100.0)/aspect + vec2(0.5, 0.5));
|
||||
}
|
||||
|
||||
float corner(vec2 coord)
|
||||
{
|
||||
coord = (coord - vec2(0.5)) * vec2(overscan_x / 100.0, overscan_y / 100.0) + vec2(0.5, 0.5);
|
||||
coord = (coord - vec2(0.5)) * vec2(registers.overscan_x / 100.0, registers.overscan_y / 100.0) + vec2(0.5, 0.5);
|
||||
coord = min(coord, vec2(1.0) - coord) * aspect;
|
||||
vec2 cdist = vec2(cornersize);
|
||||
vec2 cdist = vec2(registers.cornersize);
|
||||
coord = (cdist - min(coord, cdist));
|
||||
float dist = sqrt(dot(coord, coord));
|
||||
|
||||
return clamp((cdist.x - dist)*cornersmooth, 0.0, 1.0);
|
||||
return clamp((cdist.x - dist)*registers.cornersmooth, 0.0, 1.0);
|
||||
}
|
||||
|
||||
void main()
|
||||
|
@ -326,18 +345,18 @@ void main()
|
|||
// edges of the texels of the underlying texture.
|
||||
|
||||
// Texture coordinates of the texel containing the active pixel.
|
||||
#ifdef CURVATURE
|
||||
vec2 xy = transform(vTexCoord);
|
||||
#else
|
||||
vec2 xy = vTexCoord;
|
||||
#endif
|
||||
vec2 xy;
|
||||
if (registers.CURVATURE > 0.5)
|
||||
xy = transform(vTexCoord);
|
||||
else
|
||||
xy = vTexCoord;
|
||||
|
||||
float cval = corner(xy);
|
||||
|
||||
// Of all the pixels that are mapped onto the texel we are
|
||||
// currently rendering, which pixel are we currently rendering?
|
||||
#ifdef INTERLACED
|
||||
vec2 ilvec = vec2(0.0, ilfac.y > 1.5 ? mod(float(global.FrameCount), 2.0) : 0.0);
|
||||
vec2 ilvec = vec2(0.0, ilfac.y > 1.5 ? mod(float(registers.FrameCount), 2.0) : 0.0);
|
||||
#else
|
||||
vec2 ilvec = vec2(0.0, ilfac.y);
|
||||
#endif
|
||||
|
@ -385,8 +404,8 @@ void main()
|
|||
);
|
||||
|
||||
#ifndef LINEAR_PROCESSING
|
||||
col = pow(col , vec4(CRTgamma));
|
||||
col2 = pow(col2, vec4(CRTgamma));
|
||||
col = pow(col , vec4(registers.CRTgamma));
|
||||
col2 = pow(col2, vec4(registers.CRTgamma));
|
||||
#endif
|
||||
|
||||
// Calculate the influence of the current and next scanlines on
|
||||
|
@ -409,15 +428,15 @@ void main()
|
|||
// dot-mask emulation:
|
||||
// Output pixels are alternately tinted green and magenta.
|
||||
vec3 dotMaskWeights = mix(
|
||||
vec3(1.0, 1.0 - DOTMASK, 1.0),
|
||||
vec3(1.0 - DOTMASK, 1.0, 1.0 - DOTMASK),
|
||||
vec3(1.0, 1.0 - registers.DOTMASK, 1.0),
|
||||
vec3(1.0 - registers.DOTMASK, 1.0, 1.0 - registers.DOTMASK),
|
||||
floor(mod(mod_factor, 2.0))
|
||||
);
|
||||
|
||||
mul_res *= dotMaskWeights;
|
||||
|
||||
// Convert the image gamma for display on our output device.
|
||||
mul_res = pow(mul_res, vec3(1.0 / monitorgamma));
|
||||
mul_res = pow(mul_res, vec3(1.0 / registers.monitorgamma));
|
||||
|
||||
FragColor = vec4(mul_res, 1.0);
|
||||
}
|
||||
|
|
Loading…
Reference in a new issue