add crt-guest shaders and presets and LUTify two presets

This commit is contained in:
hunterk 2019-01-08 16:21:34 -06:00
parent b54b0b29df
commit 488bcf4038
10 changed files with 1064 additions and 83 deletions

View file

@ -0,0 +1,48 @@
shaders = 8
shader0 = shaders/guest/afterglow.slang
filter_linear0 = false
scale_type0 = source
scale0 = 1.0
shader1 = shaders/guest/d65-d50.slang
filter_linear1 = false
scale_type1 = source
scale1 = 1.0
alias1 = temp_pass
shader2 = shaders/guest/avg-lum.slang
filter_linear2 = false
scale_type2 = source
scale2 = 0.0625
mipmap_input2 = true
alias2 = lum_pass
shader3 = ../stock.slang
filter_linear3 = false
scale_type3 = source
scale3 = 16.0
shader4 = shaders/guest/linearize.slang
filter_linear4 = false
scale_type4 = source
scale4 = 1.0
float_framebuffer4 = true
alias4 = linearize_pass
shader5 = shaders/guest/blur_horiz.slang
filter_linear5 = false
scale_type5 = source
scale5 = 1.0
float_framebuffer5 = true
shader6 = shaders/guest/blur_vert.slang
filter_linear6 = false
scale_type6 = source
scale6 = 1.0
float_framebuffer6 = true
shader7 = shaders/guest/crt-guest-dr-venom.slang
filter_linear7 = true
scale_type7 = viewport
scale7 = 1.0

View file

@ -0,0 +1,104 @@
#version 450
/*
Phosphor Afterglow Shader
Copyright (C) 2018 guest(r) - guest.r@gmail.com
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
layout(push_constant) uniform Push
{
vec4 SourceSize;
vec4 OriginalSize;
vec4 OutputSize;
uint FrameCount;
float SW;
float AR;
float PR;
float AG;
float PG;
float AB;
float PB;
float sat;
float GTH;
} params;
#pragma parameter SW "Afterglow switch ON/OFF" 1.0 0.0 1.0 1.0
#pragma parameter AR "Afterglow Red (more is more)" 0.07 0.0 1.0 0.01
#pragma parameter PR "Persistence Red (more is less)" 0.05 0.0 1.0 0.01
#pragma parameter AG "Afterglow Green" 0.07 0.0 1.0 0.01
#pragma parameter PG "Persistence Green" 0.05 0.0 1.0 0.01
#pragma parameter AB "Afterglow Blue" 0.07 0.0 1.0 0.01
#pragma parameter PB "Persistence Blue" 0.05 0.0 1.0 0.01
#pragma parameter sat "Afterglow saturation" 0.10 0.0 1.0 0.01
#pragma parameter GTH "Afterglow threshold" 5.0 0.0 255.0 1.0
layout(std140, set = 0, binding = 0) uniform UBO
{
mat4 MVP;
} global;
#pragma stage vertex
layout(location = 0) in vec4 Position;
layout(location = 1) in vec2 TexCoord;
layout(location = 0) out vec2 vTexCoord;
void main()
{
gl_Position = global.MVP * Position;
vTexCoord = TexCoord;
}
#pragma stage fragment
layout(location = 0) in vec2 vTexCoord;
layout(location = 0) out vec4 FragColor;
layout(set = 0, binding = 2) uniform sampler2D Source;
layout(set = 0, binding = 3) uniform sampler2D OriginalHistory1;
layout(set = 0, binding = 4) uniform sampler2D OriginalHistory2;
layout(set = 0, binding = 5) uniform sampler2D OriginalHistory3;
layout(set = 0, binding = 6) uniform sampler2D OriginalHistory4;
layout(set = 0, binding = 7) uniform sampler2D OriginalHistory5;
layout(set = 0, binding = 8) uniform sampler2D OriginalHistory6;
#define eps 1e-4
vec3 afterglow(float number)
{
return vec3(params.AR, params.AG, params.AB)*exp2(-vec3(params.PR, params.PG, params.PB)*vec3(number*number));
}
void main()
{
vec3 color = texture(Source, vTexCoord.xy).rgb;
vec3 color1 = texture(OriginalHistory1, vTexCoord.xy).rgb * afterglow(1.0);
vec3 color2 = texture(OriginalHistory2, vTexCoord.xy).rgb * afterglow(2.0);
vec3 color3 = texture(OriginalHistory3, vTexCoord.xy).rgb * afterglow(3.0);
vec3 color4 = texture(OriginalHistory4, vTexCoord.xy).rgb * afterglow(4.0);
vec3 color5 = texture(OriginalHistory5, vTexCoord.xy).rgb * afterglow(5.0);
vec3 color6 = texture(OriginalHistory6, vTexCoord.xy).rgb * afterglow(6.0);
vec3 glow = color1 + color2 + color3 + color4 + color5 + color6;
float l = length(glow);
glow = normalize(pow(glow + vec3(eps), vec3(params.sat)))*l;
float w = 1.0;
if ((color.r + color.g + color.b) > params.GTH/255.0) w = 0.0;
FragColor = vec4(color + params.SW*w*glow,1.0);
}

View file

@ -0,0 +1,64 @@
#version 450
/*
Average Luminance Shader
Copyright (C) 2018 guest(r) - guest.r@gmail.com
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
Thanks to HunterK for the mipmap hint. :D
*/
layout(push_constant) uniform Push
{
vec4 SourceSize;
vec4 OriginalSize;
vec4 OutputSize;
uint FrameCount;
float grade;
} params;
#pragma parameter grade "Blooming grade" 0.70 0.10 1.0 0.05
layout(std140, set = 0, binding = 0) uniform UBO
{
mat4 MVP;
} global;
#pragma stage vertex
layout(location = 0) in vec4 Position;
layout(location = 1) in vec2 TexCoord;
layout(location = 0) out vec2 vTexCoord;
void main()
{
gl_Position = global.MVP * Position;
vTexCoord = TexCoord;
}
#pragma stage fragment
layout(location = 0) in vec2 vTexCoord;
layout(location = 0) out vec4 FragColor;
layout(set = 0, binding = 2) uniform sampler2D Source;
void main()
{
float mip_level = max(log2(params.SourceSize.x), log2(params.SourceSize.y));
float black_compensation = (params.SourceSize.x*params.SourceSize.y)/(params.SourceSize.x*params.SourceSize.y);
float lum = length(textureLod(Source, vTexCoord.xy, mip_level).rgb * black_compensation);
lum = lum * inversesqrt(3.0);
FragColor = vec4(pow(lum, params.grade));
}

View file

@ -0,0 +1,55 @@
#version 450
// Higher value, more centered glow.
// Lower values might need more taps.
layout(push_constant) uniform Push
{
vec4 SourceSize;
vec4 OriginalSize;
vec4 OutputSize;
uint FrameCount;
float TAPSH;
float GLOW_FALLOFF_H;
} params;
#pragma parameter TAPSH "H. Glow Radius" 4.0 1.0 6.0 1.0
#pragma parameter GLOW_FALLOFF_H "GLOW_FALLOFF H" 0.30 0.10 1.0 0.01
layout(std140, set = 0, binding = 0) uniform UBO
{
mat4 MVP;
} global;
#pragma stage vertex
layout(location = 0) in vec4 Position;
layout(location = 1) in vec2 TexCoord;
layout(location = 0) out vec2 vTexCoord;
void main()
{
gl_Position = global.MVP * Position;
vTexCoord = TexCoord;
}
#pragma stage fragment
layout(location = 0) in vec2 vTexCoord;
layout(location = 0) out vec4 FragColor;
layout(set = 0, binding = 2) uniform sampler2D Source;
#define kernel(x) exp(-params.GLOW_FALLOFF_H * (x) * (x))
void main()
{
vec3 col = vec3(0.0);
float dx = params.SourceSize.z;
float k_total = 0.;
for (float i = -params.TAPSH; i <= params.TAPSH; i++)
{
float k = kernel(i);
k_total += k;
col += k * texture(Source, vTexCoord + vec2(float(i) * dx, 0.0)).rgb;
}
FragColor = vec4(col / k_total, 1.0);
}

View file

@ -0,0 +1,55 @@
#version 450
// Higher value, more centered glow.
// Lower values might need more taps.
layout(push_constant) uniform Push
{
vec4 SourceSize;
vec4 OriginalSize;
vec4 OutputSize;
uint FrameCount;
float TAPSV;
float GLOW_FALLOFF_V;
} params;
#pragma parameter TAPSV "V. Glow Radius" 4.0 1.0 6.0 1.0
#pragma parameter GLOW_FALLOFF_V "GLOW_FALLOFF_V" 0.30 0.10 1.0 0.01
layout(std140, set = 0, binding = 0) uniform UBO
{
mat4 MVP;
} global;
#pragma stage vertex
layout(location = 0) in vec4 Position;
layout(location = 1) in vec2 TexCoord;
layout(location = 0) out vec2 vTexCoord;
void main()
{
gl_Position = global.MVP * Position;
vTexCoord = TexCoord;
}
#pragma stage fragment
layout(location = 0) in vec2 vTexCoord;
layout(location = 0) out vec4 FragColor;
layout(set = 0, binding = 2) uniform sampler2D Source;
#define kernel(x) exp(-params.GLOW_FALLOFF_V * (x) * (x))
void main()
{
vec3 col = vec3(0.0);
float dy = params.SourceSize.w;
float k_total = 0.;
for (float i = -params.TAPSV; i <= params.TAPSV; i++)
{
float k = kernel(i);
k_total += k;
col += k * texture(Source, vTexCoord + vec2(0.0, float(i) * dy)).rgb;
}
FragColor = vec4(col / k_total, 1.0);
}

View file

@ -0,0 +1,300 @@
#version 450
/*
CRT - Guest - Dr. Venom
Copyright (C) 2018 guest(r) - guest.r@gmail.com
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
layout(push_constant) uniform Push
{
vec4 SourceSize;
vec4 OutputSize;
float OS;
float BLOOM;
float brightboost;
float saturation;
float scanline;
float beam_min;
float beam_max;
float h_sharp;
float l_sharp;
float gamma_out;
float warpX;
float warpY;
float glow;
float shadowMask;
float maskDark;
float maskLight;
float CGWG;
float GTW;
} params;
#pragma parameter OS "Do Overscan" 1.0 0.0 2.0 1.0
#define OS params.OS
#pragma parameter BLOOM "Bloom percentage" 5.0 0.0 20.0 1.0
#define BLOOM params.BLOOM
#pragma parameter brightboost "Bright boost" 1.10 0.50 2.00 0.01
#define brightboost params.brightboost
#pragma parameter saturation "Saturation adjustment" 1.0 0.1 2.0 0.05
#define saturation params.saturation
#pragma parameter scanline "Scanline adjust" 8.0 1.0 12.0 1.0
#define scanline params.scanline
#pragma parameter beam_min "Scanline dark" 1.40 0.5 2.0 0.05
#define beam_min params.beam_min
#pragma parameter beam_max "Scanline bright" 0.80 0.5 2.0 0.05
#define beam_max params.beam_max
#pragma parameter h_sharp "Horizontal sharpness" 5.0 1.5 20.0 0.25
#define h_sharp params.h_sharp
#pragma parameter l_sharp "Substractive sharpness" 0.0 0.0 0.30 0.01
#define l_sharp params.l_sharp
#pragma parameter gamma_out "Gamma out" 2.4 1.0 3.0 0.05
#define gamma_out params.gamma_out
#pragma parameter warpX "warpX" 0.031 0.0 0.125 0.01
#define warpX params.warpX
#pragma parameter warpY "warpY" 0.041 0.0 0.125 0.01
#define warpY params.warpY
#pragma parameter glow "Glow Strength" 0.06 0.0 0.5 0.01
#define glow params.glow
#pragma parameter shadowMask "Mask Style (0 = CGWG)" 0.0 0.0 4.0 1.0
#pragma parameter maskDark "Lottes maskDark" 0.5 0.0 2.0 0.1
#define maskDark params.maskDark
#pragma parameter maskLight "Lottes maskLight" 1.5 0.0 2.0 0.1
#define maskLight params.maskLight
#pragma parameter CGWG "CGWG Mask Str." 0.4 0.0 1.0 0.1
#define CGWG params.CGWG
#pragma parameter GTW "Gamma Tweak" 1.10 0.5 1.5 0.01
#define GTW params.GTW
layout(std140, set = 0, binding = 0) uniform UBO
{
mat4 MVP;
} global;
#pragma stage vertex
layout(location = 0) in vec4 Position;
layout(location = 1) in vec2 TexCoord;
layout(location = 0) out vec2 vTexCoord;
void main()
{
gl_Position = global.MVP * Position;
vTexCoord = TexCoord * 1.0001;
}
#pragma stage fragment
layout(location = 0) in vec2 vTexCoord;
layout(location = 0) out vec4 FragColor;
layout(set = 0, binding = 2) uniform sampler2D Source;
layout(set = 0, binding = 3) uniform sampler2D lum_pass;
layout(set = 0, binding = 4) uniform sampler2D linearize_pass;
#define eps 1e-10
vec3 sw(float x, vec3 color)
{
vec3 tmp = mix(vec3(beam_min),vec3(beam_max), color);
vec3 ex = vec3(x)*tmp;
return exp2(-scanline*ex*ex);
}
// Shadow mask (mostly from PD Lottes shader).
vec3 Mask(vec2 pos)
{
vec3 mask = vec3(maskDark, maskDark, maskDark);
// Phosphor.
if (params.shadowMask == 0.0)
{
float mf = floor(mod(pos.x,2.0));
float mc = 1.0 - CGWG;
if (mf == 0.0) { mask.r = 1.0; mask.g = mc; mask.b = 1.0; }
else { mask.r = mc; mask.g = 1.0; mask.b = mc; };
}
// Very compressed TV style shadow mask.
else if (params.shadowMask == 1.0)
{
float line = maskLight;
float odd = 0.0;
if (fract(pos.x/6.0) < 0.5)
odd = 1.0;
if (fract((pos.y + odd)/2.0) < 0.5)
line = maskDark;
pos.x = fract(pos.x/3.0);
if (pos.x < 0.333) mask.r = maskLight;
else if (pos.x < 0.666) mask.g = maskLight;
else mask.b = maskLight;
mask*=line;
}
// Aperture-grille.
else if (params.shadowMask == 2.0)
{
pos.x = fract(pos.x/3.0);
if (pos.x < 0.333) mask.r = maskLight;
else if (pos.x < 0.666) mask.g = maskLight;
else mask.b = maskLight;
}
// Stretched VGA style shadow mask (same as prior shaders).
else if (params.shadowMask == 3.0)
{
pos.x += pos.y*3.0;
pos.x = fract(pos.x/6.0);
if (pos.x < 0.333) mask.r = maskLight;
else if (pos.x < 0.666) mask.g = maskLight;
else mask.b = maskLight;
}
// VGA style shadow mask.
else if (params.shadowMask == 4.0)
{
pos.xy = floor(pos.xy*vec2(1.0, 0.5));
pos.x += pos.y*3.0;
pos.x = fract(pos.x/6.0);
if (pos.x < 0.333) mask.r = maskLight;
else if (pos.x < 0.666) mask.g = maskLight;
else mask.b = maskLight;
}
return mask;
}
// Distortion of scanlines, and end of screen alpha (PD Lottes Curvature)
vec2 Warp(vec2 pos)
{
pos = pos*2.0-1.0;
pos *= vec2(1.0 + (pos.y*pos.y)*warpX, 1.0 + (pos.x*pos.x)*warpY);
return pos*0.5 + 0.5;
}
vec2 Overscan(vec2 pos, float dx, float dy){
pos=pos*2.0-1.0;
pos*=vec2(dx,dy);
return pos*0.5+0.5;
}
// Borrowed from cgwg's crt-geom, under GPL
float corner(vec2 coord)
{
coord *= params.SourceSize.xy / params.SourceSize.xy;
coord = (coord - vec2(0.5)) * 1.0 + vec2(0.5);
coord = min(coord, vec2(1.0)-coord) * vec2(1.0, params.SourceSize.y/params.SourceSize.x);
vec2 cdist = vec2(0.003);
coord = (cdist - min(coord,cdist));
float dist = sqrt(dot(coord,coord));
return clamp((cdist.x-dist)*600.0,0.0, 1.0);
}
const float sqrt3 = 1.732050807568877;
vec3 gamma_correct(vec3 color, vec3 tmp)
{
float l = length(color)/sqrt3;
float g = mix(1.0/GTW, 1.0, max(max(tmp.r,tmp.g),tmp.b));
l = pow(l,g)*sqrt3;
return l*normalize(color + vec3(eps));
}
void main()
{
vec3 lum = texture(lum_pass, vec2(0.1,0.1)).xyz;
float factor = 1.00 + (1.0-0.5*OS)*BLOOM/100.0 - lum.x*BLOOM/100.0;
vec2 texcoord = Overscan(vTexCoord.xy*(params.SourceSize.xy/params.SourceSize.xy), factor, factor)*(params.SourceSize.xy/params.SourceSize.xy);
vec2 pos = Warp(texcoord);
vec2 pos0 = Warp(texcoord);
vec2 ps = params.SourceSize.zw;
vec2 OGL2Pos = pos * params.SourceSize.xy - vec2(0.0,0.5);
vec2 fp = fract(OGL2Pos);
vec2 dx = vec2(ps.x,0.0);
vec2 dy = vec2(0.0, ps.y);
vec2 pC4 = floor(OGL2Pos) * ps + 0.5*ps;
// Reading the texels
vec2 x2 = 2.0*dx;
float wl = exp2(-h_sharp*0.36)*l_sharp;
float wl2 = 1.5 + fp.x; wl2*=wl2; wl2 = exp2(-h_sharp*wl2); wl2 = max(wl2 - wl, -wl2);
float wl1 = 0.5 + fp.x; wl1*=wl1; wl1 = exp2(-h_sharp*wl1); wl1 = max(wl1 - wl, -0.25);
float wct = 0.5 - fp.x; wct*=wct; wct = exp2(-h_sharp*wct);
float wr1 = 1.5 - fp.x; wr1*=wr1; wr1 = exp2(-h_sharp*wr1); wr1 = max(wr1 - wl, -0.25);
float wr2 = 2.5 - fp.x; wr2*=wr2; wr2 = exp2(-h_sharp*wr2); wr2 = max(wr2 - wl, -wr2);
float wt = 1.0/(wl2+wl1+wct+wr1+wr2);
vec3 l2 = texture(linearize_pass, pC4 -x2).xyz;
vec3 l1 = texture(linearize_pass, pC4 -dx).xyz;
vec3 ct = texture(linearize_pass, pC4 ).xyz;
vec3 r1 = texture(linearize_pass, pC4 +dx).xyz;
vec3 r2 = texture(linearize_pass, pC4 +x2).xyz;
vec3 color1 = (l2*wl2 + l1*wl1 + ct*wct + r1*wr1 + r2*wr2)*wt;
if (l_sharp > 0.0) color1 = clamp(color1, 0.8*min(min(l1,r1),ct), 1.2*max(max(l1,r1),ct));
l2 = texture(linearize_pass, pC4 -x2 +dy).xyz;
l1 = texture(linearize_pass, pC4 -dx +dy).xyz;
ct = texture(linearize_pass, pC4 +dy).xyz;
r1 = texture(linearize_pass, pC4 +dx +dy).xyz;
r2 = texture(linearize_pass, pC4 +x2 +dy).xyz;
vec3 color2 = (l2*wl2 + l1*wl1 + ct*wct + r1*wr1 + r2*wr2)*wt;
if (l_sharp > 0.0) color2 = clamp(color2, 0.8*min(min(l1,r1),ct), 1.2*max(max(l1,r1),ct));
// calculating scanlines
float f = fp.y;
vec3 w1 = sw(f,color1);
vec3 w2 = sw(1.0-f,color2);
vec3 color = color1*w1 + color2*w2;
vec3 ctmp = color/(w1+w2);
color = pow(color, vec3(1.0/gamma_out));
float l = length(color);
color = normalize(pow(color + vec3(eps), vec3(saturation,saturation,saturation)))*l;
color*=brightboost;
color = gamma_correct(color,ctmp);
color = pow(color, vec3(gamma_out));
color = min(color, 1.0);
// Apply Mask
color = color*Mask(vTexCoord * params.OutputSize.xy);
vec3 Bloom = texture(Source, pos).xyz;
color+=glow*Bloom;
color = min(color, 1.0);
color = pow(color, vec3(1.0/gamma_out));
FragColor = vec4(color*corner(pos0), 1.0);
}

View file

@ -0,0 +1,57 @@
#version 450
layout(push_constant) uniform Push
{
vec4 SourceSize;
vec4 OriginalSize;
vec4 OutputSize;
uint FrameCount;
float WP;
} params;
#pragma parameter WP "D65 to D50 strength %" 0.0 -100.0 100.0 10.0
layout(std140, set = 0, binding = 0) uniform UBO
{
mat4 MVP;
} global;
#pragma stage vertex
layout(location = 0) in vec4 Position;
layout(location = 1) in vec2 TexCoord;
layout(location = 0) out vec2 vTexCoord;
void main()
{
gl_Position = global.MVP * Position;
vTexCoord = TexCoord;
}
#pragma stage fragment
layout(location = 0) in vec2 vTexCoord;
layout(location = 0) out vec4 FragColor;
layout(set = 0, binding = 2) uniform sampler2D Source;
const mat3 D65 = mat3 (
0.5767309, 0.2973769, 0.0270343,
0.1855540, 0.6273491, 0.0706872,
0.1881852, 0.0752741, 0.9911085);
const mat3 D50 = mat3 (
1.7552599, -0.5441336, 0.0063467,
-0.4836786, 1.5068789, -0.0175761,
-0.2530000, 0.0215528, 1.2256959);
void main()
{
vec3 color = texture(Source, vTexCoord.xy).rgb;
vec3 c65 = D65*color;
vec3 c50 = D50*c65;
float m = params.WP/100.0;
color = (1.0-m)*color + m*c50;
FragColor = vec4(color,1.0);
}

View file

@ -0,0 +1,38 @@
#version 450
layout(push_constant) uniform Push
{
vec4 SourceSize;
vec4 OriginalSize;
vec4 OutputSize;
uint FrameCount;
float GAMMA_INPUT;
} params;
#pragma parameter GAMMA_INPUT "Gamma Input" 2.4 0.1 5.0 0.01
layout(std140, set = 0, binding = 0) uniform UBO
{
mat4 MVP;
} global;
#pragma stage vertex
layout(location = 0) in vec4 Position;
layout(location = 1) in vec2 TexCoord;
layout(location = 0) out vec2 vTexCoord;
void main()
{
gl_Position = global.MVP * Position;
vTexCoord = TexCoord;
}
#pragma stage fragment
layout(location = 0) in vec2 vTexCoord;
layout(location = 0) out vec4 FragColor;
layout(set = 0, binding = 2) uniform sampler2D temp_pass;
void main()
{
FragColor = pow(vec4(texture(temp_pass, vTexCoord)), vec4(params.GAMMA_INPUT));
}

View file

@ -0,0 +1,256 @@
# IMPORTANT:
# Shader passes need to know details about the image in the mask_texture LUT
# files, so set the following constants in user-cgp-constants.h accordingly:
# 1.) mask_triads_per_tile = (number of horizontal triads in mask texture LUT's)
# 2.) mask_texture_small_size = (texture size of mask*texture_small LUT's)
# 3.) mask_texture_large_size = (texture size of mask*texture_large LUT's)
# 4.) mask_grille_avg_color = (avg. brightness of mask_grille_texture* LUT's, in [0, 1])
# 5.) mask_slot_avg_color = (avg. brightness of mask_slot_texture* LUT's, in [0, 1])
# 6.) mask_shadow_avg_color = (avg. brightness of mask_shadow_texture* LUT's, in [0, 1])
# Shader passes also need to know certain scales set in this .slangp, but their
# compilation model doesn't currently allow the .slangp file to tell them. Make
# sure to set the following constants in user-cgp-constants.h accordingly too:
# 1.) bloom_approx_scale_x = scale_x2
# 2.) mask_resize_viewport_scale = float2(scale_x6, scale_y5)
# Finally, shader passes need to know the value of geom_max_aspect_ratio used to
# calculate scale_y6 (among other values):
# 1.) geom_max_aspect_ratio = (geom_max_aspect_ratio used to calculate scale_y5)
shaders = "13"
# Set an identifier, filename, and sampling traits for the phosphor mask texture.
# Load an aperture grille, slot mask, and an EDP shadow mask, and load a small
# non-mipmapped version and a large mipmapped version.
# TODO: Test masks in other directories.
textures = "mask_grille_texture_small;mask_grille_texture_large;mask_slot_texture_small;mask_slot_texture_large;mask_shadow_texture_small;mask_shadow_texture_large;SamplerLUT"
mask_grille_texture_small = "../crt/shaders/crt-royale/TileableLinearApertureGrille15Wide8And5d5SpacingResizeTo64.png"
mask_grille_texture_large = "../crt/shaders/crt-royale/TileableLinearApertureGrille15Wide8And5d5Spacing.png"
mask_slot_texture_small = "../crt/shaders/crt-royale/TileableLinearSlotMaskTall15Wide9And4d5Horizontal9d14VerticalSpacingResizeTo64.png"
mask_slot_texture_large = "../crt/shaders/crt-royale/TileableLinearSlotMaskTall15Wide9And4d5Horizontal9d14VerticalSpacing.png"
mask_shadow_texture_small = "../crt/shaders/crt-royale/TileableLinearShadowMaskEDPResizeTo64.png"
mask_shadow_texture_large = "../crt/shaders/crt-royale/TileableLinearShadowMaskEDP.png"
mask_grille_texture_small_wrap_mode = "repeat"
mask_grille_texture_large_wrap_mode = "repeat"
mask_slot_texture_small_wrap_mode = "repeat"
mask_slot_texture_large_wrap_mode = "repeat"
mask_shadow_texture_small_wrap_mode = "repeat"
mask_shadow_texture_large_wrap_mode = "repeat"
mask_grille_texture_small_linear = "true"
mask_grille_texture_large_linear = "true"
mask_slot_texture_small_linear = "true"
mask_slot_texture_large_linear = "true"
mask_shadow_texture_small_linear = "true"
mask_shadow_texture_large_linear = "true"
mask_grille_texture_small_mipmap = "false" # Mipmapping causes artifacts with manually resized masks without tex2Dlod
mask_grille_texture_large_mipmap = "true" # Essential for hardware-resized masks
mask_slot_texture_small_mipmap = "false" # Mipmapping causes artifacts with manually resized masks without tex2Dlod
mask_slot_texture_large_mipmap = "true" # Essential for hardware-resized masks
mask_shadow_texture_small_mipmap = "false" # Mipmapping causes artifacts with manually resized masks without tex2Dlod
mask_shadow_texture_large_mipmap = "true" # Essential for hardware-resized masks
SamplerLUT = "../reshade/shaders/LUT/Sony_Trinitron_Std_50_no_gamma.png"
SamplerLUT_linear = true
shader0 = "../reshade/shaders/LUT/LUT.slang"
# Pass0: Linearize the input based on CRT gamma and bob interlaced fields.
# (Bobbing ensures we can immediately blur without getting artifacts.)
shader1 = "../crt/shaders/crt-royale/src/crt-royale-first-pass-linearize-crt-gamma-bob-fields.slang"
alias1 = "ORIG_LINEARIZED"
filter_linear1 = "false"
scale_type1 = "source"
scale1 = "1.0"
srgb_framebuffer1 = "true"
# Pass1: Resample interlaced (and misconverged) scanlines vertically.
# Separating vertical/horizontal scanline sampling is faster: It lets us
# consider more scanlines while calculating weights for fewer pixels, and
# it reduces our samples from vertical*horizontal to vertical+horizontal.
# This has to come right after ORIG_LINEARIZED, because there's no
# "original_source" scale_type we can use later.
shader2 = "../crt/shaders/crt-royale/src/crt-royale-scanlines-vertical-interlacing.slang"
alias2 = "VERTICAL_SCANLINES"
filter_linear2 = "true"
scale_type_x2 = "source"
scale_x2 = "1.0"
scale_type_y2 = "viewport"
scale_y2 = "1.0"
#float_framebuffer2 = "true"
srgb_framebuffer2 = "true"
# Pass2: Do a small resize blur of ORIG_LINEARIZED at an absolute size, and
# account for convergence offsets. We want to blur a predictable portion of the
# screen to match the phosphor bloom, and absolute scale works best for
# reliable results with a fixed-size bloom. Picking a scale is tricky:
# a.) 400x300 is a good compromise for the "fake-bloom" version: It's low enough
# to blur high-res/interlaced sources but high enough that resampling
# doesn't smear low-res sources too much.
# b.) 320x240 works well for the "real bloom" version: It's 1-1.5% faster, and
# the only noticeable visual difference is a larger halation spread (which
# may be a good thing for people who like to crank it up).
# Note the 4:4 aspect ratio assumes the input has cropped geom_overscan (so it's
# *intended* for an ~4:4 aspect ratio).
shader3 = "../crt/shaders/crt-royale/src/crt-royale-bloom-approx.slang"
alias3 = "BLOOM_APPROX"
filter_linear3 = "true"
scale_type3 = "absolute"
scale_x3 = "320"
scale_y3 = "240"
srgb_framebuffer3 = "true"
# Pass3: Vertically blur the input for halation and refractive diffusion.
# Base this on BLOOM_APPROX: This blur should be small and fast, and blurring
# a constant portion of the screen is probably physically correct if the
# viewport resolution is proportional to the simulated CRT size.
shader4 = "../blurs/blur5fast-vertical.slang"
filter_linear4 = "true"
scale_type4 = "source"
scale4 = "1.0"
srgb_framebuffer4 = "true"
# Pass4: Horizontally blur the input for halation and refractive diffusion.
# Note: Using a one-pass 9x10 blur is about 1% slower.
shader5 = "../blurs/blur5fast-horizontal.slang"
alias5 = "HALATION_BLUR"
filter_linear5 = "true"
scale_type5 = "source"
scale5 = "1.0"
srgb_framebuffer5 = "true"
# Pass5: Lanczos-resize the phosphor mask vertically. Set the absolute
# scale_x6 == mask_texture_small_size.x (see IMPORTANT above). Larger scales
# will blur, and smaller scales could get nasty. The vertical size must be
# based on the viewport size and calculated carefully to avoid artifacts later.
# First calculate the minimum number of mask tiles we need to draw.
# Since curvature is computed after the scanline masking pass:
# num_resized_mask_tiles = 2.0;
# If curvature were computed in the scanline masking pass (it's not):
# max_mask_texel_border = ~3.0 * (1/3.0 + 4.0*sqrt(2.0) + 0.6 + 1.0);
# max_mask_tile_border = max_mask_texel_border/
# (min_resized_phosphor_triad_size * mask_triads_per_tile);
# num_resized_mask_tiles = max(2.0, 1.0 + max_mask_tile_border * 2.0);
# At typical values (triad_size >= 2.0, mask_triads_per_tile == 8):
# num_resized_mask_tiles = ~3.8
# Triad sizes are given in horizontal terms, so we need geom_max_aspect_ratio
# to relate them to vertical resolution. The widest we expect is:
# geom_max_aspect_ratio = 4.0/3.0 # Note: Shader passes need to know this!
# The fewer triads we tile across the screen, the larger each triad will be as a
# fraction of the viewport size, and the larger scale_y6 must be to draw a full
# num_resized_mask_tiles. Therefore, we must decide the smallest number of
# triads we'll guarantee can be displayed on screen. We'll set this according
# to 3-pixel triads at 768p resolution (the lowest anyone's likely to use):
# min_allowed_viewport_triads = 768.0*geom_max_aspect_ratio / 3.0 = 341.333333
# Now calculate the viewport scale that ensures we can draw resized_mask_tiles:
# min_scale_x = resized_mask_tiles * mask_triads_per_tile /
# min_allowed_viewport_triads
# scale_y6 = geom_max_aspect_ratio * min_scale_x
# # Some code might depend on equal scales:
# scale_x7 = scale_y5
# Given our default geom_max_aspect_ratio and min_allowed_viewport_triads:
# scale_y6 = 4.0/3.0 * 2.0/(341.33334 / 8.0) = 0.0625
# IMPORTANT: The scales MUST be calculated in this way. If you wish to change
# geom_max_aspect_ratio, update that constant in user-cgp-constants.h!
shader6 = "../crt/shaders/crt-royale/src/crt-royale-mask-resize-vertical.slang"
filter_linear6 = "true"
scale_type_x6 = "absolute"
scale_x6 = "64"
scale_type_y6 = "viewport"
scale_y6 = "0.0625" # Safe for >= 341.334 horizontal triads at viewport size
#srgb_framebuffer6 = "false" # mask_texture is already assumed linear
# Pass6: Lanczos-resize the phosphor mask horizontally. scale_x7 = scale_y5.
# TODO: Check again if the shaders actually require equal scales.
shader7 = "../crt/shaders/crt-royale/src/crt-royale-mask-resize-horizontal.slang"
alias7 = "MASK_RESIZE"
filter_linear7 = "false"
scale_type_x7 = "viewport"
scale_x7 = "0.0625"
scale_type_y7 = "source"
scale_y7 = "1.0"
#srgb_framebuffer7 = "false" # mask_texture is already assumed linear
# Pass7: Resample (misconverged) scanlines horizontally, apply halation, and
# apply the phosphor mask.
shader8 = "../crt/shaders/crt-royale/src/crt-royale-scanlines-horizontal-apply-mask.slang"
alias8 = "MASKED_SCANLINES"
filter_linear8 = "true" # This could just as easily be nearest neighbor.
scale_type8 = "viewport"
scale8 = "1.0"
#float_framebuffer8 = "true"
srgb_framebuffer8 = "true"
# Pass 8: Compute a brightpass. This will require reading the final mask.
shader9 = "../crt/shaders/crt-royale/src/crt-royale-brightpass.slang"
alias9 = "BRIGHTPASS"
filter_linear9 = "true" # This could just as easily be nearest neighbor.
scale_type9 = "viewport"
scale9 = "1.0"
srgb_framebuffer9 = "true"
# Pass 9: Blur the brightpass vertically
shader10 = "../crt/shaders/crt-royale/src/crt-royale-bloom-vertical.slang"
filter_linear10 = "true" # This could just as easily be nearest neighbor.
scale_type10 = "source"
scale10 = "1.0"
srgb_framebuffer10 = "true"
# Pass 10: Blur the brightpass horizontally and combine it with the dimpass:
shader11 = "../crt/shaders/crt-royale/src/crt-royale-bloom-horizontal-reconstitute.slang"
filter_linear11 = "true"
scale_type11 = "source"
scale11 = "1.0"
srgb_framebuffer11 = "true"
# Pass 11: Compute curvature/AA:
shader12 = "../crt/shaders/crt-royale/src/crt-royale-last-pass-no-geom.slang"
filter_linear12 = "true"
scale_type12 = "viewport"
mipmap_input12 = "true"
texture_wrap_mode12 = "clamp_to_edge"
parameters = "crt_gamma;lcd_gamma;levels_contrast;halation_weight;diffusion_weight;bloom_underestimate_levels;bloom_excess;beam_min_sigma;beam_max_sigma;beam_spot_power;beam_min_shape;beam_max_shape;beam_shape_power;beam_horiz_filter;beam_horiz_sigma;beam_horiz_linear_rgb_weight;convergence_offset_x_r;convergence_offset_x_g;convergence_offset_x_b;convergence_offset_y_r;convergence_offset_y_g;convergence_offset_y_b;mask_type;mask_sample_mode_desired;mask_specify_num_triads;mask_triad_size_desired;mask_num_triads_desired;aa_subpixel_r_offset_x_runtime;aa_subpixel_r_offset_y_runtime;aa_cubic_c;aa_gauss_sigma;geom_mode_runtime;geom_radius;geom_view_dist;geom_tilt_angle_x;geom_tilt_angle_y;geom_aspect_ratio_x;geom_aspect_ratio_y;geom_overscan_x;geom_overscan_y;border_size;border_darkness;border_compress;interlace_bff;interlace_1080i;LUT_Size"
crt_gamma = "2.400000"
lcd_gamma = "2.400000"
levels_contrast = "0.740000"
halation_weight = "0.004600"
diffusion_weight = "0.001000"
bloom_underestimate_levels = "0.800000"
bloom_excess = "0.000000"
beam_min_sigma = "0.020000"
beam_max_sigma = "0.200000"
beam_spot_power = "0.370000"
beam_min_shape = "2.000000"
beam_max_shape = "4.000000"
beam_shape_power = "0.250000"
beam_horiz_filter = "0.000000"
beam_horiz_sigma = "0.545000"
beam_horiz_linear_rgb_weight = "1.000000"
convergence_offset_x_r = "-0.050000"
convergence_offset_x_g = "0.000000"
convergence_offset_x_b = "0.000000"
convergence_offset_y_r = "0.100000"
convergence_offset_y_g = "-0.050000"
convergence_offset_y_b = "0.100000"
mask_type = "0.000000"
mask_sample_mode_desired = "0.000000"
mask_specify_num_triads = "0.000000"
mask_triad_size_desired = "1.000000"
mask_num_triads_desired = "900.000000"
aa_subpixel_r_offset_x_runtime = "-0.333333"
aa_subpixel_r_offset_y_runtime = "0.000000"
aa_cubic_c = "0.500000"
aa_gauss_sigma = "0.500000"
geom_mode_runtime = "0.000000"
geom_radius = "3.000000"
geom_view_dist = "2.000000"
geom_tilt_angle_x = "0.000000"
geom_tilt_angle_y = "0.000000"
geom_aspect_ratio_x = "432.000000"
geom_aspect_ratio_y = "329.000000"
geom_overscan_x = "1.000000"
geom_overscan_y = "1.000000"
border_size = "0.005000"
border_darkness = "0.000000"
border_compress = "2.500000"
interlace_bff = "0.000000"
interlace_1080i = "0.000000"
LUT_Size = "32.0"

View file

@ -13,16 +13,16 @@
# 1.) bloom_approx_scale_x = scale_x2 # 1.) bloom_approx_scale_x = scale_x2
# 2.) mask_resize_viewport_scale = float2(scale_x6, scale_y5) # 2.) mask_resize_viewport_scale = float2(scale_x6, scale_y5)
# Finally, shader passes need to know the value of geom_max_aspect_ratio used to # Finally, shader passes need to know the value of geom_max_aspect_ratio used to
# calculate scale_y5 (among other values): # calculate scale_y6 (among other values):
# 1.) geom_max_aspect_ratio = (geom_max_aspect_ratio used to calculate scale_y5) # 1.) geom_max_aspect_ratio = (geom_max_aspect_ratio used to calculate scale_y5)
shaders = "12" shaders = "13"
# Set an identifier, filename, and sampling traits for the phosphor mask texture. # Set an identifier, filename, and sampling traits for the phosphor mask texture.
# Load an aperture grille, slot mask, and an EDP shadow mask, and load a small # Load an aperture grille, slot mask, and an EDP shadow mask, and load a small
# non-mipmapped version and a large mipmapped version. # non-mipmapped version and a large mipmapped version.
# TODO: Test masks in other directories. # TODO: Test masks in other directories.
textures = "mask_grille_texture_small;mask_grille_texture_large;mask_slot_texture_small;mask_slot_texture_large;mask_shadow_texture_small;mask_shadow_texture_large" textures = "mask_grille_texture_small;mask_grille_texture_large;mask_slot_texture_small;mask_slot_texture_large;mask_shadow_texture_small;mask_shadow_texture_large;SamplerLUT"
mask_grille_texture_small = "../crt/shaders/crt-royale/TileableLinearApertureGrille15Wide8And5d5SpacingResizeTo64.png" mask_grille_texture_small = "../crt/shaders/crt-royale/TileableLinearApertureGrille15Wide8And5d5SpacingResizeTo64.png"
mask_grille_texture_large = "../crt/shaders/crt-royale/TileableLinearApertureGrille15Wide8And5d5Spacing.png" mask_grille_texture_large = "../crt/shaders/crt-royale/TileableLinearApertureGrille15Wide8And5d5Spacing.png"
mask_slot_texture_small = "../crt/shaders/crt-royale/TileableLinearSlotMaskTall15Wide9And4d5Horizontal9d14VerticalSpacingResizeTo64.png" mask_slot_texture_small = "../crt/shaders/crt-royale/TileableLinearSlotMaskTall15Wide9And4d5Horizontal9d14VerticalSpacingResizeTo64.png"
@ -47,16 +47,19 @@ mask_slot_texture_small_mipmap = "false" # Mipmapping causes artifacts with m
mask_slot_texture_large_mipmap = "true" # Essential for hardware-resized masks mask_slot_texture_large_mipmap = "true" # Essential for hardware-resized masks
mask_shadow_texture_small_mipmap = "false" # Mipmapping causes artifacts with manually resized masks without tex2Dlod mask_shadow_texture_small_mipmap = "false" # Mipmapping causes artifacts with manually resized masks without tex2Dlod
mask_shadow_texture_large_mipmap = "true" # Essential for hardware-resized masks mask_shadow_texture_large_mipmap = "true" # Essential for hardware-resized masks
SamplerLUT = "../reshade/shaders/LUT/NEC_XM29plus_capture.png"
SamplerLUT_linear = true
shader0 = "../reshade/shaders/LUT/LUT.slang"
# Pass0: Linearize the input based on CRT gamma and bob interlaced fields. # Pass0: Linearize the input based on CRT gamma and bob interlaced fields.
# (Bobbing ensures we can immediately blur without getting artifacts.) # (Bobbing ensures we can immediately blur without getting artifacts.)
shader0 = "../crt/shaders/crt-royale/src/crt-royale-first-pass-linearize-crt-gamma-bob-fields.slang" shader1 = "../crt/shaders/crt-royale/src/crt-royale-first-pass-linearize-crt-gamma-bob-fields.slang"
alias0 = "ORIG_LINEARIZED" alias1 = "ORIG_LINEARIZED"
filter_linear0 = "false" filter_linear1 = "false"
scale_type0 = "source" scale_type1 = "source"
scale0 = "1.0" scale1 = "1.0"
srgb_framebuffer0 = "true" srgb_framebuffer1 = "true"
# Pass1: Resample interlaced (and misconverged) scanlines vertically. # Pass1: Resample interlaced (and misconverged) scanlines vertically.
# Separating vertical/horizontal scanline sampling is faster: It lets us # Separating vertical/horizontal scanline sampling is faster: It lets us
@ -64,15 +67,15 @@ srgb_framebuffer0 = "true"
# it reduces our samples from vertical*horizontal to vertical+horizontal. # it reduces our samples from vertical*horizontal to vertical+horizontal.
# This has to come right after ORIG_LINEARIZED, because there's no # This has to come right after ORIG_LINEARIZED, because there's no
# "original_source" scale_type we can use later. # "original_source" scale_type we can use later.
shader1 = "../crt/shaders/crt-royale/src/crt-royale-scanlines-vertical-interlacing.slang" shader2 = "../crt/shaders/crt-royale/src/crt-royale-scanlines-vertical-interlacing.slang"
alias1 = "VERTICAL_SCANLINES" alias2 = "VERTICAL_SCANLINES"
filter_linear1 = "true" filter_linear2 = "true"
scale_type_x1 = "source" scale_type_x2 = "source"
scale_x1 = "1.0" scale_x2 = "1.0"
scale_type_y1 = "viewport" scale_type_y2 = "viewport"
scale_y1 = "1.0" scale_y2 = "1.0"
#float_framebuffer1 = "true" #float_framebuffer2 = "true"
srgb_framebuffer1 = "true" srgb_framebuffer2 = "true"
# Pass2: Do a small resize blur of ORIG_LINEARIZED at an absolute size, and # Pass2: Do a small resize blur of ORIG_LINEARIZED at an absolute size, and
# account for convergence offsets. We want to blur a predictable portion of the # account for convergence offsets. We want to blur a predictable portion of the
@ -84,44 +87,44 @@ srgb_framebuffer1 = "true"
# b.) 320x240 works well for the "real bloom" version: It's 1-1.5% faster, and # b.) 320x240 works well for the "real bloom" version: It's 1-1.5% faster, and
# the only noticeable visual difference is a larger halation spread (which # the only noticeable visual difference is a larger halation spread (which
# may be a good thing for people who like to crank it up). # may be a good thing for people who like to crank it up).
# Note the 4:3 aspect ratio assumes the input has cropped geom_overscan (so it's # Note the 4:4 aspect ratio assumes the input has cropped geom_overscan (so it's
# *intended* for an ~4:3 aspect ratio). # *intended* for an ~4:4 aspect ratio).
shader2 = "../crt/shaders/crt-royale/src/crt-royale-bloom-approx.slang" shader3 = "../crt/shaders/crt-royale/src/crt-royale-bloom-approx.slang"
alias2 = "BLOOM_APPROX" alias3 = "BLOOM_APPROX"
filter_linear2 = "true" filter_linear3 = "true"
scale_type2 = "absolute" scale_type3 = "absolute"
scale_x2 = "320" scale_x3 = "320"
scale_y2 = "240" scale_y3 = "240"
srgb_framebuffer2 = "true" srgb_framebuffer3 = "true"
# Pass3: Vertically blur the input for halation and refractive diffusion. # Pass3: Vertically blur the input for halation and refractive diffusion.
# Base this on BLOOM_APPROX: This blur should be small and fast, and blurring # Base this on BLOOM_APPROX: This blur should be small and fast, and blurring
# a constant portion of the screen is probably physically correct if the # a constant portion of the screen is probably physically correct if the
# viewport resolution is proportional to the simulated CRT size. # viewport resolution is proportional to the simulated CRT size.
shader3 = "../blurs/blur5fast-vertical.slang" shader4 = "../blurs/blur5fast-vertical.slang"
filter_linear3 = "true"
scale_type3 = "source"
scale3 = "1.0"
srgb_framebuffer3 = "true"
# Pass4: Horizontally blur the input for halation and refractive diffusion.
# Note: Using a one-pass 9x9 blur is about 1% slower.
shader4 = "../blurs/blur5fast-horizontal.slang"
alias4 = "HALATION_BLUR"
filter_linear4 = "true" filter_linear4 = "true"
scale_type4 = "source" scale_type4 = "source"
scale4 = "1.0" scale4 = "1.0"
srgb_framebuffer4 = "true" srgb_framebuffer4 = "true"
# Pass4: Horizontally blur the input for halation and refractive diffusion.
# Note: Using a one-pass 9x10 blur is about 1% slower.
shader5 = "../blurs/blur5fast-horizontal.slang"
alias5 = "HALATION_BLUR"
filter_linear5 = "true"
scale_type5 = "source"
scale5 = "1.0"
srgb_framebuffer5 = "true"
# Pass5: Lanczos-resize the phosphor mask vertically. Set the absolute # Pass5: Lanczos-resize the phosphor mask vertically. Set the absolute
# scale_x5 == mask_texture_small_size.x (see IMPORTANT above). Larger scales # scale_x6 == mask_texture_small_size.x (see IMPORTANT above). Larger scales
# will blur, and smaller scales could get nasty. The vertical size must be # will blur, and smaller scales could get nasty. The vertical size must be
# based on the viewport size and calculated carefully to avoid artifacts later. # based on the viewport size and calculated carefully to avoid artifacts later.
# First calculate the minimum number of mask tiles we need to draw. # First calculate the minimum number of mask tiles we need to draw.
# Since curvature is computed after the scanline masking pass: # Since curvature is computed after the scanline masking pass:
# num_resized_mask_tiles = 2.0; # num_resized_mask_tiles = 2.0;
# If curvature were computed in the scanline masking pass (it's not): # If curvature were computed in the scanline masking pass (it's not):
# max_mask_texel_border = ~3.0 * (1/3.0 + 4.0*sqrt(2.0) + 0.5 + 1.0); # max_mask_texel_border = ~3.0 * (1/3.0 + 4.0*sqrt(2.0) + 0.6 + 1.0);
# max_mask_tile_border = max_mask_texel_border/ # max_mask_tile_border = max_mask_texel_border/
# (min_resized_phosphor_triad_size * mask_triads_per_tile); # (min_resized_phosphor_triad_size * mask_triads_per_tile);
# num_resized_mask_tiles = max(2.0, 1.0 + max_mask_tile_border * 2.0); # num_resized_mask_tiles = max(2.0, 1.0 + max_mask_tile_border * 2.0);
@ -131,7 +134,7 @@ srgb_framebuffer4 = "true"
# to relate them to vertical resolution. The widest we expect is: # to relate them to vertical resolution. The widest we expect is:
# geom_max_aspect_ratio = 4.0/3.0 # Note: Shader passes need to know this! # geom_max_aspect_ratio = 4.0/3.0 # Note: Shader passes need to know this!
# The fewer triads we tile across the screen, the larger each triad will be as a # The fewer triads we tile across the screen, the larger each triad will be as a
# fraction of the viewport size, and the larger scale_y5 must be to draw a full # fraction of the viewport size, and the larger scale_y6 must be to draw a full
# num_resized_mask_tiles. Therefore, we must decide the smallest number of # num_resized_mask_tiles. Therefore, we must decide the smallest number of
# triads we'll guarantee can be displayed on screen. We'll set this according # triads we'll guarantee can be displayed on screen. We'll set this according
# to 3-pixel triads at 768p resolution (the lowest anyone's likely to use): # to 3-pixel triads at 768p resolution (the lowest anyone's likely to use):
@ -139,72 +142,72 @@ srgb_framebuffer4 = "true"
# Now calculate the viewport scale that ensures we can draw resized_mask_tiles: # Now calculate the viewport scale that ensures we can draw resized_mask_tiles:
# min_scale_x = resized_mask_tiles * mask_triads_per_tile / # min_scale_x = resized_mask_tiles * mask_triads_per_tile /
# min_allowed_viewport_triads # min_allowed_viewport_triads
# scale_y5 = geom_max_aspect_ratio * min_scale_x # scale_y6 = geom_max_aspect_ratio * min_scale_x
# # Some code might depend on equal scales: # # Some code might depend on equal scales:
# scale_x6 = scale_y5 # scale_x7 = scale_y5
# Given our default geom_max_aspect_ratio and min_allowed_viewport_triads: # Given our default geom_max_aspect_ratio and min_allowed_viewport_triads:
# scale_y5 = 4.0/3.0 * 2.0/(341.33333 / 8.0) = 0.0625 # scale_y6 = 4.0/3.0 * 2.0/(341.33334 / 8.0) = 0.0625
# IMPORTANT: The scales MUST be calculated in this way. If you wish to change # IMPORTANT: The scales MUST be calculated in this way. If you wish to change
# geom_max_aspect_ratio, update that constant in user-cgp-constants.h! # geom_max_aspect_ratio, update that constant in user-cgp-constants.h!
shader5 = "../crt/shaders/crt-royale/src/crt-royale-mask-resize-vertical.slang" shader6 = "../crt/shaders/crt-royale/src/crt-royale-mask-resize-vertical.slang"
filter_linear5 = "true" filter_linear6 = "true"
scale_type_x5 = "absolute" scale_type_x6 = "absolute"
scale_x5 = "64" scale_x6 = "64"
scale_type_y5 = "viewport" scale_type_y6 = "viewport"
scale_y5 = "0.0625" # Safe for >= 341.333 horizontal triads at viewport size scale_y6 = "0.0625" # Safe for >= 341.334 horizontal triads at viewport size
#srgb_framebuffer5 = "false" # mask_texture is already assumed linear
# Pass6: Lanczos-resize the phosphor mask horizontally. scale_x6 = scale_y5.
# TODO: Check again if the shaders actually require equal scales.
shader6 = "../crt/shaders/crt-royale/src/crt-royale-mask-resize-horizontal.slang"
alias6 = "MASK_RESIZE"
filter_linear6 = "false"
scale_type_x6 = "viewport"
scale_x6 = "0.0625"
scale_type_y6 = "source"
scale_y6 = "1.0"
#srgb_framebuffer6 = "false" # mask_texture is already assumed linear #srgb_framebuffer6 = "false" # mask_texture is already assumed linear
# Pass6: Lanczos-resize the phosphor mask horizontally. scale_x7 = scale_y5.
# TODO: Check again if the shaders actually require equal scales.
shader7 = "../crt/shaders/crt-royale/src/crt-royale-mask-resize-horizontal.slang"
alias7 = "MASK_RESIZE"
filter_linear7 = "false"
scale_type_x7 = "viewport"
scale_x7 = "0.0625"
scale_type_y7 = "source"
scale_y7 = "1.0"
#srgb_framebuffer7 = "false" # mask_texture is already assumed linear
# Pass7: Resample (misconverged) scanlines horizontally, apply halation, and # Pass7: Resample (misconverged) scanlines horizontally, apply halation, and
# apply the phosphor mask. # apply the phosphor mask.
shader7 = "../crt/shaders/crt-royale/src/crt-royale-scanlines-horizontal-apply-mask.slang" shader8 = "../crt/shaders/crt-royale/src/crt-royale-scanlines-horizontal-apply-mask.slang"
alias7 = "MASKED_SCANLINES" alias8 = "MASKED_SCANLINES"
filter_linear7 = "true" # This could just as easily be nearest neighbor.
scale_type7 = "viewport"
scale7 = "1.0"
#float_framebuffer7 = "true"
srgb_framebuffer7 = "true"
# Pass 8: Compute a brightpass. This will require reading the final mask.
shader8 = "../crt/shaders/crt-royale/src/crt-royale-brightpass.slang"
alias8 = "BRIGHTPASS"
filter_linear8 = "true" # This could just as easily be nearest neighbor. filter_linear8 = "true" # This could just as easily be nearest neighbor.
scale_type8 = "viewport" scale_type8 = "viewport"
scale8 = "1.0" scale8 = "1.0"
#float_framebuffer8 = "true"
srgb_framebuffer8 = "true" srgb_framebuffer8 = "true"
# Pass 9: Blur the brightpass vertically # Pass 8: Compute a brightpass. This will require reading the final mask.
shader9 = "../crt/shaders/crt-royale/src/crt-royale-bloom-vertical.slang" shader9 = "../crt/shaders/crt-royale/src/crt-royale-brightpass.slang"
alias9 = "BRIGHTPASS"
filter_linear9 = "true" # This could just as easily be nearest neighbor. filter_linear9 = "true" # This could just as easily be nearest neighbor.
scale_type9 = "source" scale_type9 = "viewport"
scale9 = "1.0" scale9 = "1.0"
srgb_framebuffer9 = "true" srgb_framebuffer9 = "true"
# Pass 10: Blur the brightpass horizontally and combine it with the dimpass: # Pass 9: Blur the brightpass vertically
shader10 = "../crt/shaders/crt-royale/src/crt-royale-bloom-horizontal-reconstitute.slang" shader10 = "../crt/shaders/crt-royale/src/crt-royale-bloom-vertical.slang"
filter_linear10 = "true" filter_linear10 = "true" # This could just as easily be nearest neighbor.
scale_type10 = "source" scale_type10 = "source"
scale10 = "1.0" scale10 = "1.0"
srgb_framebuffer10 = "true" srgb_framebuffer10 = "true"
# Pass 11: Compute curvature/AA: # Pass 10: Blur the brightpass horizontally and combine it with the dimpass:
shader11 = "../crt/shaders/crt-royale/src/crt-royale-last-pass-no-geom.slang" shader11 = "../crt/shaders/crt-royale/src/crt-royale-bloom-horizontal-reconstitute.slang"
filter_linear11 = "true" filter_linear11 = "true"
scale_type11 = "viewport" scale_type11 = "source"
mipmap_input11 = "true" scale11 = "1.0"
texture_wrap_mode11 = "clamp_to_edge" srgb_framebuffer11 = "true"
parameters = "crt_gamma;lcd_gamma;levels_contrast;halation_weight;diffusion_weight;bloom_underestimate_levels;bloom_excess;beam_min_sigma;beam_max_sigma;beam_spot_power;beam_min_shape;beam_max_shape;beam_shape_power;beam_horiz_filter;beam_horiz_sigma;beam_horiz_linear_rgb_weight;convergence_offset_x_r;convergence_offset_x_g;convergence_offset_x_b;convergence_offset_y_r;convergence_offset_y_g;convergence_offset_y_b;mask_type;mask_sample_mode_desired;mask_specify_num_triads;mask_triad_size_desired;mask_num_triads_desired;aa_subpixel_r_offset_x_runtime;aa_subpixel_r_offset_y_runtime;aa_cubic_c;aa_gauss_sigma;geom_mode_runtime;geom_radius;geom_view_dist;geom_tilt_angle_x;geom_tilt_angle_y;geom_aspect_ratio_x;geom_aspect_ratio_y;geom_overscan_x;geom_overscan_y;border_size;border_darkness;border_compress;interlace_bff;interlace_1080i" # Pass 11: Compute curvature/AA:
shader12 = "../crt/shaders/crt-royale/src/crt-royale-last-pass-no-geom.slang"
filter_linear12 = "true"
scale_type12 = "viewport"
mipmap_input12 = "true"
texture_wrap_mode12 = "clamp_to_edge"
parameters = "crt_gamma;lcd_gamma;levels_contrast;halation_weight;diffusion_weight;bloom_underestimate_levels;bloom_excess;beam_min_sigma;beam_max_sigma;beam_spot_power;beam_min_shape;beam_max_shape;beam_shape_power;beam_horiz_filter;beam_horiz_sigma;beam_horiz_linear_rgb_weight;convergence_offset_x_r;convergence_offset_x_g;convergence_offset_x_b;convergence_offset_y_r;convergence_offset_y_g;convergence_offset_y_b;mask_type;mask_sample_mode_desired;mask_specify_num_triads;mask_triad_size_desired;mask_num_triads_desired;aa_subpixel_r_offset_x_runtime;aa_subpixel_r_offset_y_runtime;aa_cubic_c;aa_gauss_sigma;geom_mode_runtime;geom_radius;geom_view_dist;geom_tilt_angle_x;geom_tilt_angle_y;geom_aspect_ratio_x;geom_aspect_ratio_y;geom_overscan_x;geom_overscan_y;border_size;border_darkness;border_compress;interlace_bff;interlace_1080i;LUT_Size"
beam_horiz_filter = "0.000000" beam_horiz_filter = "0.000000"
beam_horiz_linear_rgb_weight = "1.000000" beam_horiz_linear_rgb_weight = "1.000000"
beam_horiz_sigma = "0.555000" beam_horiz_sigma = "0.555000"
@ -249,3 +252,4 @@ aa_cubic_c = "0.500000"
aa_gauss_sigma = "0.500000" aa_gauss_sigma = "0.500000"
aa_subpixel_r_offset_x_runtime = "-0.333333" aa_subpixel_r_offset_x_runtime = "-0.333333"
aa_subpixel_r_offset_y_runtime = "0.000000" aa_subpixel_r_offset_y_runtime = "0.000000"
LUT_Size = "32.0"