diff --git a/blurs/blur9fast-horizontal.slang b/blurs/blur9fast-horizontal.slang index 6215b58..78f6a91 100644 --- a/blurs/blur9fast-horizontal.slang +++ b/blurs/blur9fast-horizontal.slang @@ -77,7 +77,7 @@ void main() // (not output pixels), but we avoid this and consistently blur at the // destination size. Otherwise, combining statically calculated weights // with bilinear sample exploitation would result in terrible artifacts. - const vec2 dxdy_scale = params.SourceSize.xy * params.OutputSize.zw; + const vec2 dxdy_scale = vec2(1.0);//params.SourceSize.xy * params.OutputSize.zw; const vec2 dxdy = dxdy_scale * params.SourceSize.zw; // This blur is horizontal-only, so zero out the vertical offset: blur_dxdy = vec2(dxdy.x, 0.0); diff --git a/blurs/blur9fast-vertical.slang b/blurs/blur9fast-vertical.slang index be8a770..2cdfbd5 100644 --- a/blurs/blur9fast-vertical.slang +++ b/blurs/blur9fast-vertical.slang @@ -77,7 +77,7 @@ void main() // (not output pixels), but we avoid this and consistently blur at the // destination size. Otherwise, combining statically calculated weights // with bilinear sample exploitation would result in terrible artifacts. - const vec2 dxdy_scale = params.SourceSize.xy * params.OutputSize.zw; + const vec2 dxdy_scale = vec2(1.0);//params.SourceSize.xy * params.OutputSize.zw; const vec2 dxdy = dxdy_scale * params.SourceSize.zw; // This blur is vertical-only, so zero out the vertical offset: blur_dxdy = vec2(0.0, dxdy.y); diff --git a/crt/shaders/crt-royale/src/crt-royale-bloom-approx.slang b/crt/shaders/crt-royale/src/crt-royale-bloom-approx.slang index 01ffd21..ed20598 100644 --- a/crt/shaders/crt-royale/src/crt-royale-bloom-approx.slang +++ b/crt/shaders/crt-royale/src/crt-royale-bloom-approx.slang @@ -188,8 +188,8 @@ void main() // "true" too. The blur will be much more accurate if a true 4x4 Gaussian // resize is used instead of tex2Dblur3x3_resize (which samples between // texels even for upsizing). - const vec2 dxdy_min_scale = registers.ORIG_LINEARIZEDSize.xy / registers.OutputSize.xy; - texture_size_inv = vec2(1.0) * registers.ORIG_LINEARIZEDSize.zw; + const vec2 dxdy_min_scale = registers.ORIG_LINEARIZEDSize.xy * registers.OutputSize.zw; + texture_size_inv = registers.ORIG_LINEARIZEDSize.zw; if(bloom_approx_filter > 1.5) // 4x4 true Gaussian resize { // For upsizing, we'll snap to texels and sample the nearest 4. @@ -268,7 +268,7 @@ void main() const vec2 texture_size = registers.ORIG_LINEARIZEDSize.xy; vec2 tex_uv_r, tex_uv_g, tex_uv_b; - if(beam_misconvergence) + if(beam_misconvergence = true) { const vec2 convergence_offsets_r = get_convergence_offsets_r_vector(); const vec2 convergence_offsets_g = get_convergence_offsets_g_vector(); @@ -288,7 +288,7 @@ void main() if(bloom_approx_filter > 1.5) { // Use a 4x4 Gaussian resize. This is slower but technically correct. - if(beam_misconvergence) + if(beam_misconvergence = true) { color_r = tex2Dresize_gaussian4x4(ORIG_LINEARIZED, tex_uv_r, blur_dxdy, texture_size, texture_size_inv, @@ -312,7 +312,7 @@ void main() // Use a 3x3 resize blur. This is the softest option, because we're // blurring already blurry bilinear samples. It doesn't play quite as // nicely with convergence offsets, but it has its charms. - if(beam_misconvergence) + if(beam_misconvergence = true) { color_r = tex2Dblur3x3resize(ORIG_LINEARIZED, tex_uv_r, blur_dxdy, bloom_approx_sigma); @@ -334,7 +334,7 @@ void main() // too sharp above ~400x300, but the blurs break down above that // resolution too, unless min_allowed_viewport_triads is high enough to // keep bloom_approx_scale_x/min_allowed_viewport_triads < ~1.1658025.) - if(beam_misconvergence) + if(beam_misconvergence = true) { color_r = tex2D_linearize(ORIG_LINEARIZED, tex_uv_r).rgb; color_g = tex2D_linearize(ORIG_LINEARIZED, tex_uv_g).rgb; @@ -346,7 +346,7 @@ void main() } } // Pack the colors from the red/green/blue beams into a single vector: - if(beam_misconvergence) + if(beam_misconvergence = true) { color = vec3(color_r.r, color_g.g, color_b.b); } diff --git a/crt/shaders/crt-royale/src/crt-royale-geometry-aa-last-pass-backup.slang b/crt/shaders/crt-royale/src/crt-royale-geometry-aa-last-pass-backup.slang new file mode 100644 index 0000000..06f730a --- /dev/null +++ b/crt/shaders/crt-royale/src/crt-royale-geometry-aa-last-pass-backup.slang @@ -0,0 +1,245 @@ +#version 450 + +layout(push_constant) uniform Push +{ + vec4 SourceSize; + vec4 OriginalSize; + vec4 OutputSize; + uint FrameCount; +} registers; + +#include "params.inc" + +///////////////////////////// GPL LICENSE NOTICE ///////////////////////////// + +// crt-royale: A full-featured CRT shader, with cheese. +// Copyright (C) 2014 TroggleMonkey +// +// This program is free software; you can redistribute it and/or modify it +// under the terms of the GNU General Public License as published by the Free +// Software Foundation; either version 2 of the License, or any later version. +// +// This program is distributed in the hope that it will be useful, but WITHOUT +// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or +// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for +// more details. +// +// You should have received a copy of the GNU General Public License along with +// this program; if not, write to the Free Software Foundation, Inc., 59 Temple +// Place, Suite 330, Boston, MA 02111-1307 USA + + +///////////////////////////// SETTINGS MANAGEMENT //////////////////////////// + +#define LAST_PASS +#define SIMULATE_CRT_ON_LCD +#include "../user-settings.h" +#include "derived-settings-and-constants.h" +#include "bind-shader-params.h" + +#ifndef DONT_DEFINE //RUNTIME_GEOMETRY_TILT + // Create a local-to-global rotation matrix for the CRT's coordinate frame + // and its global-to-local inverse. See the vertex shader for details. + // It's faster to compute these statically if possible. + const vec2 sin_tilt = sin(geom_tilt_angle_static); + const vec2 cos_tilt = cos(geom_tilt_angle_static); + const mat3x3 geom_local_to_global_static = mat3x3( + cos_tilt.x, sin_tilt.y*sin_tilt.x, cos_tilt.y*sin_tilt.x, + 0.0, cos_tilt.y, -sin_tilt.y, + -sin_tilt.x, sin_tilt.y*cos_tilt.x, cos_tilt.y*cos_tilt.x); + const mat3x3 geom_global_to_local_static = mat3x3( + cos_tilt.x, 0.0, -sin_tilt.x, + sin_tilt.y*sin_tilt.x, cos_tilt.y, sin_tilt.y*cos_tilt.x, + cos_tilt.y*sin_tilt.x, -sin_tilt.y, cos_tilt.y*cos_tilt.x); +#endif + +////////////////////////////////// INCLUDES ////////////////////////////////// + +#include "../../../../include/gamma-management.h" +#include "tex2Dantialias.h" +#include "geometry-functions.h" + +/////////////////////////////////// HELPERS ////////////////////////////////// + +mat2x2 mul_scale(vec2 scale, mat2x2 matrix) +{ + //mat2x2 scale_matrix = mat2x2(scale.x, 0.0, 0.0, scale.y); + //return (matrix * scale_matrix); + return mat2x2(vec4(matrix[0].xy, matrix[1].xy) * scale.xxyy); +} + +#pragma stage vertex +layout(location = 0) in vec4 Position; +layout(location = 1) in vec2 TexCoord; +layout(location = 0) out vec2 tex_uv; +layout(location = 1) out vec4 video_and_texture_size_inv; +layout(location = 2) out vec2 output_size_inv; +layout(location = 3) out vec3 eye_pos_local; +layout(location = 4) out vec4 geom_aspect_and_overscan; +#ifdef RUNTIME_GEOMETRY_TILT +layout(location = 5) out vec3 global_to_local_row0; +layout(location = 6) out vec3 global_to_local_row1; +layout(location = 7) out vec3 global_to_local_row2; +#endif + +void main() +{ + gl_Position = params.MVP * Position; + tex_uv = TexCoord; + + video_and_texture_size_inv = vec4(registers.SourceSize.zw, registers.SourceSize.zw); + output_size_inv = registers.OutputSize.zw; + + // Get aspect/overscan vectors from scalar parameters (likely uniforms): + const float viewport_aspect_ratio = registers.OutputSize.x * registers.OutputSize.w; + const vec2 geom_aspect = get_aspect_vector(viewport_aspect_ratio); + const vec2 geom_overscan = get_geom_overscan_vector(); + geom_aspect_and_overscan = vec4(geom_aspect, geom_overscan); + + #ifdef DONT_DEFINE //RUNTIME_GEOMETRY_TILT + // Create a local-to-global rotation matrix for the CRT's coordinate + // frame and its global-to-local inverse. Rotate around the x axis + // first (pitch) and then the y axis (yaw) with yucky Euler angles. + // Positive angles go clockwise around the right-vec and up-vec. + // Runtime shader parameters prevent us from computing these globally, + // but we can still combine the pitch/yaw matrices by hand to cut a + // few instructions. Note that cg matrices fill row1 first, then row2, + // etc. (row-major order). + const vec2 geom_tilt_angle = get_geom_tilt_angle_vector(); + const vec2 sin_tilt = sin(geom_tilt_angle); + const vec2 cos_tilt = cos(geom_tilt_angle); + // Conceptual breakdown: + // const mat3x3 rot_x_matrix = mat3x3( + // 1.0, 0.0, 0.0, + // 0.0, cos_tilt.y, -sin_tilt.y, + // 0.0, sin_tilt.y, cos_tilt.y); + // const mat3x3 rot_y_matrix = mat3x3( + // cos_tilt.x, 0.0, sin_tilt.x, + // 0.0, 1.0, 0.0, + // -sin_tilt.x, 0.0, cos_tilt.x); + // const mat3x3 local_to_global = + // rot_x_matrix * rot_y_matrix; + // const mat3x3 global_to_local = + // transpose(local_to_global); + mat3x3 local_to_global = mat3x3( + cos_tilt.x, sin_tilt.y*sin_tilt.x, cos_tilt.y*sin_tilt.x, + 0.0, cos_tilt.y, -sin_tilt.y, + -sin_tilt.x, sin_tilt.y*cos_tilt.x, cos_tilt.y*cos_tilt.x); + // This is a pure rotation, so transpose = inverse: + mat3x3 global_to_local = transpose(local_to_global); + // Decompose the matrix into 3 vec3's for output: + global_to_local_row0 = vec3(global_to_local[0].xyz); + global_to_local_row1 = vec3(global_to_local[1].xyz); + global_to_local_row2 = vec3(global_to_local[2].xyz); + #else + const mat3x3 global_to_local = geom_global_to_local_static; + const mat3x3 local_to_global = geom_local_to_global_static; + #endif + + // Get an optimal eye position based on geom_view_dist, viewport_aspect, + // and CRT radius/rotation: + #ifdef RUNTIME_GEOMETRY_MODE + geom_mode = params.geom_mode_runtime; + #else + const float geom_mode = geom_mode_static; + #endif + + const vec3 eye_pos_global = get_ideal_global_eye_pos(local_to_global, geom_aspect, geom_mode); + eye_pos_local = eye_pos_global, global_to_local; +} + +#pragma stage fragment +layout(location = 0) in vec2 tex_uv; +layout(location = 1) in vec4 video_and_texture_size_inv; +layout(location = 2) in vec2 output_size_inv; +layout(location = 3) in vec3 eye_pos_local; +layout(location = 4) in vec4 geom_aspect_and_overscan; +#ifdef RUNTIME_GEOMETRY_TILT +layout(location = 5) in vec3 global_to_local_row0; +layout(location = 6) in vec3 global_to_local_row1; +layout(location = 7) in vec3 global_to_local_row2; +#endif +layout(location = 0) out vec4 FragColor; +layout(set = 0, binding = 2) uniform sampler2D Source; + +void main() +{ + // Localize some parameters: + const vec2 geom_aspect = geom_aspect_and_overscan.xy; + const vec2 geom_overscan = geom_aspect_and_overscan.zw; + const vec2 video_size_inv = video_and_texture_size_inv.xy; + const vec2 texture_size_inv = video_and_texture_size_inv.zw; + + #ifdef RUNTIME_GEOMETRY_TILT + const mat3x3 global_to_local = mat3x3(global_to_local_row0, + global_to_local_row1, global_to_local_row2); + #else + const mat3x3 global_to_local = geom_global_to_local_static; + #endif + #ifdef RUNTIME_GEOMETRY_MODE + geom_mode = params.geom_mode_runtime; + #else + const float geom_mode = geom_mode_static; + #endif + + // Get flat and curved texture coords for the current fragment point sample + // and a pixel_to_tangent_video_uv matrix for transforming pixel offsets: + // video_uv = relative position in video frame, mapped to [0.0, 1.0] range + // tex_uv = relative position in padded texture, mapped to [0.0, 1.0] range + const vec2 flat_video_uv = tex_uv * (registers.SourceSize.xy * video_size_inv); + mat2x2 pixel_to_video_uv; + vec2 video_uv_no_geom_overscan; + if(geom_mode > 0.5) + { + video_uv_no_geom_overscan = + get_curved_video_uv_coords_and_tangent_matrix(flat_video_uv, + eye_pos_local, output_size_inv, geom_aspect, + geom_mode, global_to_local, pixel_to_video_uv); + } + else + { + video_uv_no_geom_overscan = flat_video_uv; + pixel_to_video_uv = mat2x2( + output_size_inv.x, 0.0, 0.0, output_size_inv.y); + } + + // Correct for overscan here (not in curvature code): + const vec2 video_uv = + (video_uv_no_geom_overscan - vec2(0.5))/geom_overscan + vec2(0.5); + const vec2 tex_uv = video_uv * (registers.SourceSize.xy * texture_size_inv); + + // Get a matrix transforming pixel vectors to tex_uv vectors: + const mat2x2 pixel_to_tex_uv = + mul_scale(registers.SourceSize.xy * texture_size_inv / + geom_aspect_and_overscan.zw, pixel_to_video_uv); + + // Sample! Skip antialiasing if aa_level < 0.5 or both of these hold: + // 1.) Geometry/curvature isn't used + // 2.) Overscan == vec2(1.0) + // Skipping AA is sharper, but it's only faster with dynamic branches. + const vec2 abs_aa_r_offset = abs(get_aa_subpixel_r_offset()); + bool need_subpixel_aa = true; + if(abs_aa_r_offset.x + abs_aa_r_offset.y < 0.0) need_subpixel_aa = false; + vec3 color; + if(aa_level > 0.5 && (geom_mode > 0.5 || any(notEqual(geom_overscan , vec2(1.0))))) + { + // Sample the input with antialiasing (due to sharp phosphors, etc.): + color = tex2Daa(Source, tex_uv, pixel_to_tex_uv, registers.FrameCount); + } + else if(aa_level > 0.5 && need_subpixel_aa == true) + { + // Sample at each subpixel location: + color = tex2Daa_subpixel_weights_only( + Source, tex_uv, pixel_to_tex_uv); + } + else + { + color = tex2D_linearize(Source, tex_uv).rgb; + } + + // Dim borders and output the final result: + const float border_dim_factor = get_border_dim_factor(video_uv, geom_aspect); + const vec3 final_color = color * border_dim_factor; + + FragColor = encode_output(vec4(final_color, 1.0)); +} \ No newline at end of file diff --git a/crt/shaders/crt-royale/src/crt-royale-geometry-aa-last-pass.slang b/crt/shaders/crt-royale/src/crt-royale-geometry-aa-last-pass.slang index ad7844f..1a0fef1 100644 --- a/crt/shaders/crt-royale/src/crt-royale-geometry-aa-last-pass.slang +++ b/crt/shaders/crt-royale/src/crt-royale-geometry-aa-last-pass.slang @@ -6,30 +6,12 @@ layout(push_constant) uniform Push vec4 OriginalSize; vec4 OutputSize; uint FrameCount; -} registers; +} params; -#include "params.inc" - -///////////////////////////// GPL LICENSE NOTICE ///////////////////////////// - -// crt-royale: A full-featured CRT shader, with cheese. -// Copyright (C) 2014 TroggleMonkey -// -// This program is free software; you can redistribute it and/or modify it -// under the terms of the GNU General Public License as published by the Free -// Software Foundation; either version 2 of the License, or any later version. -// -// This program is distributed in the hope that it will be useful, but WITHOUT -// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or -// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for -// more details. -// -// You should have received a copy of the GNU General Public License along with -// this program; if not, write to the Free Software Foundation, Inc., 59 Temple -// Place, Suite 330, Boston, MA 02111-1307 USA - - -///////////////////////////// SETTINGS MANAGEMENT //////////////////////////// +layout(std140, set = 0, binding = 0) uniform UBO +{ + mat4 MVP; +} global; #define LAST_PASS #define SIMULATE_CRT_ON_LCD @@ -37,210 +19,25 @@ layout(push_constant) uniform Push #include "derived-settings-and-constants.h" #include "bind-shader-params.h" -#ifndef DONT_DEFINE //RUNTIME_GEOMETRY_TILT - // Create a local-to-global rotation matrix for the CRT's coordinate frame - // and its global-to-local inverse. See the vertex shader for details. - // It's faster to compute these statically if possible. - const vec2 sin_tilt = sin(geom_tilt_angle_static); - const vec2 cos_tilt = cos(geom_tilt_angle_static); - const mat3x3 geom_local_to_global_static = mat3x3( - cos_tilt.x, sin_tilt.y*sin_tilt.x, cos_tilt.y*sin_tilt.x, - 0.0, cos_tilt.y, -sin_tilt.y, - -sin_tilt.x, sin_tilt.y*cos_tilt.x, cos_tilt.y*cos_tilt.x); - const mat3x3 geom_global_to_local_static = mat3x3( - cos_tilt.x, 0.0, -sin_tilt.x, - sin_tilt.y*sin_tilt.x, cos_tilt.y, sin_tilt.y*cos_tilt.x, - cos_tilt.y*sin_tilt.x, -sin_tilt.y, cos_tilt.y*cos_tilt.x); -#endif - -////////////////////////////////// INCLUDES ////////////////////////////////// - -//#include "../../../../include/gamma-management.h" -#include "tex2Dantialias.h" -#include "geometry-functions.h" -#include "includes.h" - -/////////////////////////////////// HELPERS ////////////////////////////////// - -mat2x2 mul_scale(vec2 scale, mat2x2 matrix) -{ - //mat2x2 scale_matrix = mat2x2(scale.x, 0.0, 0.0, scale.y); - //return (matrix * scale_matrix); - return mat2x2(vec4(matrix[0].xy, matrix[1].xy) * scale.xxyy); -} +#include "../../../../include/gamma-management.h" #pragma stage vertex layout(location = 0) in vec4 Position; layout(location = 1) in vec2 TexCoord; -layout(location = 0) out vec2 tex_uv; -layout(location = 1) out vec4 video_and_texture_size_inv; -layout(location = 2) out vec2 output_size_inv; -layout(location = 3) out vec3 eye_pos_local; -layout(location = 4) out vec4 geom_aspect_and_overscan; -#ifdef RUNTIME_GEOMETRY_TILT -layout(location = 5) out vec3 global_to_local_row0; -layout(location = 6) out vec3 global_to_local_row1; -layout(location = 7) out vec3 global_to_local_row2; -#endif +layout(location = 0) out vec2 vTexCoord; void main() { - gl_Position = params.MVP * Position; - tex_uv = TexCoord; - - video_and_texture_size_inv = vec4(registers.SourceSize.zw, registers.SourceSize.zw); - output_size_inv = registers.OutputSize.zw; - - // Get aspect/overscan vectors from scalar parameters (likely uniforms): - const float viewport_aspect_ratio = registers.OutputSize.x * registers.OutputSize.w; - const vec2 geom_aspect = get_aspect_vector(viewport_aspect_ratio); - const vec2 geom_overscan = get_geom_overscan_vector(); - geom_aspect_and_overscan = vec4(geom_aspect, geom_overscan); - - #ifdef DONT_DEFINE //RUNTIME_GEOMETRY_TILT - // Create a local-to-global rotation matrix for the CRT's coordinate - // frame and its global-to-local inverse. Rotate around the x axis - // first (pitch) and then the y axis (yaw) with yucky Euler angles. - // Positive angles go clockwise around the right-vec and up-vec. - // Runtime shader parameters prevent us from computing these globally, - // but we can still combine the pitch/yaw matrices by hand to cut a - // few instructions. Note that cg matrices fill row1 first, then row2, - // etc. (row-major order). - const vec2 geom_tilt_angle = get_geom_tilt_angle_vector(); - const vec2 sin_tilt = sin(geom_tilt_angle); - const vec2 cos_tilt = cos(geom_tilt_angle); - // Conceptual breakdown: - // const mat3x3 rot_x_matrix = mat3x3( - // 1.0, 0.0, 0.0, - // 0.0, cos_tilt.y, -sin_tilt.y, - // 0.0, sin_tilt.y, cos_tilt.y); - // const mat3x3 rot_y_matrix = mat3x3( - // cos_tilt.x, 0.0, sin_tilt.x, - // 0.0, 1.0, 0.0, - // -sin_tilt.x, 0.0, cos_tilt.x); - // const mat3x3 local_to_global = - // rot_x_matrix * rot_y_matrix; - // const mat3x3 global_to_local = - // transpose(local_to_global); - mat3x3 local_to_global = mat3x3( - cos_tilt.x, sin_tilt.y*sin_tilt.x, cos_tilt.y*sin_tilt.x, - 0.0, cos_tilt.y, -sin_tilt.y, - -sin_tilt.x, sin_tilt.y*cos_tilt.x, cos_tilt.y*cos_tilt.x); - // This is a pure rotation, so transpose = inverse: - mat3x3 global_to_local = transpose(local_to_global); - // Decompose the matrix into 3 vec3's for output: - global_to_local_row0 = vec3(global_to_local[0].xyz); - global_to_local_row1 = vec3(global_to_local[1].xyz); - global_to_local_row2 = vec3(global_to_local[2].xyz); - #else - const mat3x3 global_to_local = geom_global_to_local_static; - const mat3x3 local_to_global = geom_local_to_global_static; - #endif - - // Get an optimal eye position based on geom_view_dist, viewport_aspect, - // and CRT radius/rotation: - #ifdef RUNTIME_GEOMETRY_MODE - geom_mode = params.geom_mode_runtime; - #else - const float geom_mode = geom_mode_static; - #endif - - const vec3 eye_pos_global = get_ideal_global_eye_pos(local_to_global, geom_aspect, geom_mode); - eye_pos_local = eye_pos_global, global_to_local; + gl_Position = global.MVP * Position; + vTexCoord = TexCoord; } #pragma stage fragment -layout(location = 0) in vec2 tex_uv; -layout(location = 1) in vec4 video_and_texture_size_inv; -layout(location = 2) in vec2 output_size_inv; -layout(location = 3) in vec3 eye_pos_local; -layout(location = 4) in vec4 geom_aspect_and_overscan; -#ifdef RUNTIME_GEOMETRY_TILT -layout(location = 5) in vec3 global_to_local_row0; -layout(location = 6) in vec3 global_to_local_row1; -layout(location = 7) in vec3 global_to_local_row2; -#endif +layout(location = 0) in vec2 vTexCoord; layout(location = 0) out vec4 FragColor; layout(set = 0, binding = 2) uniform sampler2D Source; void main() { - // Localize some parameters: - const vec2 geom_aspect = geom_aspect_and_overscan.xy; - const vec2 geom_overscan = geom_aspect_and_overscan.zw; - const vec2 video_size_inv = video_and_texture_size_inv.xy; - const vec2 texture_size_inv = video_and_texture_size_inv.zw; - - #ifdef RUNTIME_GEOMETRY_TILT - const mat3x3 global_to_local = mat3x3(global_to_local_row0, - global_to_local_row1, global_to_local_row2); - #else - const mat3x3 global_to_local = geom_global_to_local_static; - #endif - #ifdef RUNTIME_GEOMETRY_MODE - geom_mode = params.geom_mode_runtime; - #else - const float geom_mode = geom_mode_static; - #endif - - // Get flat and curved texture coords for the current fragment point sample - // and a pixel_to_tangent_video_uv matrix for transforming pixel offsets: - // video_uv = relative position in video frame, mapped to [0.0, 1.0] range - // tex_uv = relative position in padded texture, mapped to [0.0, 1.0] range - const vec2 flat_video_uv = tex_uv * (registers.SourceSize.xy * video_size_inv); - mat2x2 pixel_to_video_uv; - vec2 video_uv_no_geom_overscan; - if(geom_mode > 0.5) - { - video_uv_no_geom_overscan = - get_curved_video_uv_coords_and_tangent_matrix(flat_video_uv, - eye_pos_local, output_size_inv, geom_aspect, - geom_mode, global_to_local, pixel_to_video_uv); - } - else - { - video_uv_no_geom_overscan = flat_video_uv; - pixel_to_video_uv = mat2x2( - output_size_inv.x, 0.0, 0.0, output_size_inv.y); - } - - // Correct for overscan here (not in curvature code): - const vec2 video_uv = - (video_uv_no_geom_overscan - vec2(0.5))/geom_overscan + vec2(0.5); - const vec2 tex_uv = video_uv * (registers.SourceSize.xy * texture_size_inv); - - // Get a matrix transforming pixel vectors to tex_uv vectors: - const mat2x2 pixel_to_tex_uv = - mul_scale(registers.SourceSize.xy * texture_size_inv / - geom_aspect_and_overscan.zw, pixel_to_video_uv); - - // Sample! Skip antialiasing if aa_level < 0.5 or both of these hold: - // 1.) Geometry/curvature isn't used - // 2.) Overscan == vec2(1.0) - // Skipping AA is sharper, but it's only faster with dynamic branches. - const vec2 abs_aa_r_offset = abs(get_aa_subpixel_r_offset()); - bool need_subpixel_aa = true; - if(abs_aa_r_offset.x + abs_aa_r_offset.y < 0.0) need_subpixel_aa = false; - vec3 color; - if(aa_level > 0.5 && (geom_mode > 0.5 || any(notEqual(geom_overscan , vec2(1.0))))) - { - // Sample the input with antialiasing (due to sharp phosphors, etc.): - color = tex2Daa(Source, tex_uv, pixel_to_tex_uv, registers.FrameCount); - } - else if(aa_level > 0.5 && need_subpixel_aa == true) - { - // Sample at each subpixel location: - color = tex2Daa_subpixel_weights_only( - Source, tex_uv, pixel_to_tex_uv); - } - else - { - color = tex2D_linearize(Source, tex_uv).rgb; - } - - // Dim borders and output the final result: - const float border_dim_factor = get_border_dim_factor(video_uv, geom_aspect); - const vec3 final_color = color * border_dim_factor; - - FragColor = encode_output(vec4(final_color, 1.0)); + FragColor = encode_output(vec4(texture(Source, vTexCoord).rgb, 1.0)); } \ No newline at end of file diff --git a/crt/shaders/crt-royale/src/crt-royale-mask-resize-horizontal.slang b/crt/shaders/crt-royale/src/crt-royale-mask-resize-horizontal.slang index 0f36ed6..d5b6fcb 100644 --- a/crt/shaders/crt-royale/src/crt-royale-mask-resize-horizontal.slang +++ b/crt/shaders/crt-royale/src/crt-royale-mask-resize-horizontal.slang @@ -109,7 +109,7 @@ void main() #ifdef PHOSPHOR_MASK_MANUALLY_RESIZE // Discard unneeded fragments in case our profile allows real branches. const vec2 tile_uv_wrap = tile_uv_wrap; - if(get_mask_sample_mode() < 0.5 && + if(params.mask_sample_mode_desired < 0.5 && max(tile_uv_wrap.x, tile_uv_wrap.y) <= mask_resize_num_tiles) { const float src_dx = src_dxdy.x; diff --git a/crt/shaders/crt-royale/src/crt-royale-mask-resize-vertical.slang b/crt/shaders/crt-royale/src/crt-royale-mask-resize-vertical.slang index 1a9b269..4946536 100644 --- a/crt/shaders/crt-royale/src/crt-royale-mask-resize-vertical.slang +++ b/crt/shaders/crt-royale/src/crt-royale-mask-resize-vertical.slang @@ -108,7 +108,7 @@ void main() #ifdef PHOSPHOR_MASK_MANUALLY_RESIZE // Discard unneeded fragments in case our profile allows real branches. const vec2 tile_uv_wrap = src_tex_uv_wrap; - if(get_mask_sample_mode() < 0.5 && + if(params.mask_sample_mode_desired < 0.5 && tile_uv_wrap.y <= mask_resize_num_tiles) { const float src_dy = 1.0/mask_resize_src_lut_size.y; @@ -162,7 +162,7 @@ void main() #ifdef PHOSPHOR_MASK_MANUALLY_RESIZE // Discard unneeded fragments in case our profile allows real branches. const vec2 tile_uv_wrap = src_tex_uv_wrap; - if(get_mask_sample_mode() < 0.5 && + if(params.mask_sample_mode_desired < 0.5 && tile_uv_wrap.y <= mask_resize_num_tiles) { const float src_dy = 1.0/mask_resize_src_lut_size.y; diff --git a/crt/shaders/crt-royale/src/crt-royale-scanlines-horizontal-apply-mask.slang b/crt/shaders/crt-royale/src/crt-royale-scanlines-horizontal-apply-mask.slang index a557be9..2dd4f17 100644 --- a/crt/shaders/crt-royale/src/crt-royale-scanlines-horizontal-apply-mask.slang +++ b/crt/shaders/crt-royale/src/crt-royale-scanlines-horizontal-apply-mask.slang @@ -86,7 +86,7 @@ void main() // Our various input textures use different coords. video_uv = TexCoord; - const vec2 scanline_texture_size_inv = + scanline_texture_size_inv = registers.VERTICAL_SCANLINESSize.zw; scanline_tex_uv = video_uv;// * registers.VERTICAL_SCANLINESSize.xy * scanline_texture_size_inv; @@ -98,15 +98,16 @@ void main() // Get a consistent name for the final mask texture size. Sample mode 0 // uses the manually resized mask, but ignore it if we never resized. #ifdef PHOSPHOR_MASK_MANUALLY_RESIZE - const float mask_sample_mode = get_mask_sample_mode(); + const float mask_sample_mode = params.mask_sample_mode_desired;//get_mask_sample_mode(); vec2 mask_resize_texture_size = registers.MASK_RESIZESize.xy; - if(mask_sample_mode < 0.5) mask_resize_texture_size = mask_texture_large_size; + if(mask_sample_mode > 0.5) mask_resize_texture_size = mask_texture_large_size; vec2 mask_resize_video_size = registers.MASK_RESIZESize.xy; - if(mask_sample_mode < 0.5) mask_resize_video_size = mask_texture_large_size; + if(mask_sample_mode > 0.5) mask_resize_video_size = mask_texture_large_size; #else const vec2 mask_resize_texture_size = mask_texture_large_size; const vec2 mask_resize_video_size = mask_texture_large_size; #endif +// mask_tiles_per_screen = vec2(1280.0, 480.0); // Compute mask tile dimensions, starting points, etc.: mask_tile_start_uv_and_size = get_mask_sampling_parameters( @@ -155,12 +156,12 @@ void main() vec3 phosphor_mask_sample; #ifdef PHOSPHOR_MASK_MANUALLY_RESIZE bool sample_orig_luts = true; - if (get_mask_sample_mode() > 0.5) sample_orig_luts = false; + if (params.mask_sample_mode_desired > 0.5) sample_orig_luts = false; #else const bool sample_orig_luts = true; #endif - if(sample_orig_luts) + if(sample_orig_luts = true) { // If mask_type is static, this branch will be resolved statically. if(params.mask_type < 0.5) diff --git a/crt/shaders/crt-royale/src/crt-royale-scanlines-vertical-interlacing.slang b/crt/shaders/crt-royale/src/crt-royale-scanlines-vertical-interlacing.slang index 6487caf..6209870 100644 --- a/crt/shaders/crt-royale/src/crt-royale-scanlines-vertical-interlacing.slang +++ b/crt/shaders/crt-royale/src/crt-royale-scanlines-vertical-interlacing.slang @@ -99,7 +99,7 @@ void main() texture_size_inv, il_step_multiple, frame_count, dist); // Consider 2, 3, 4, or 6 scanlines numbered 0-5: The previous and next // scanlines are numbered 2 and 3. Get scanline colors colors (ignore - // horizontal sampling, since since registers.OutputSize.x = video_size.x). + // horizontal sampling, since registers.OutputSize.x = video_size.x). // NOTE: Anisotropic filtering creates interlacing artifacts, which is why // ORIG_LINEARIZED bobbed any interlaced input before this pass. const vec2 v_step = vec2(0.0, uv_step.y); @@ -160,7 +160,7 @@ void main() // Vertical convergence offsets are in units of current-field scanlines. // dist2 means "positive sample distance from scanline 2, in scanlines:" vec3 dist2 = vec3(dist); - if(beam_misconvergence) + if(beam_misconvergence = true) { const vec3 convergence_offsets_vert_rgb = get_convergence_offsets_y_vector(); diff --git a/crt/shaders/crt-royale/src/gamma-management.h b/crt/shaders/crt-royale/src/gamma-management.h deleted file mode 100644 index 0843122..0000000 --- a/crt/shaders/crt-royale/src/gamma-management.h +++ /dev/null @@ -1,165 +0,0 @@ -#ifndef GAMMA_MANAGEMENT_H -#define GAMMA_MANAGEMENT_H - -/////////////////////////////// BASE CONSTANTS /////////////////////////////// - -// Set standard gamma constants, but allow users to override them: -#ifndef OVERRIDE_STANDARD_GAMMA - // Standard encoding gammas: - const float ntsc_gamma = 2.2; // Best to use NTSC for PAL too? - const float pal_gamma = 2.8; // Never actually 2.8 in practice - // Typical device decoding gammas (only use for emulating devices): - // CRT/LCD reference gammas are higher than NTSC and Rec.709 video standard - // gammas: The standards purposely undercorrected for an analog CRT's - // assumed 2.5 reference display gamma to maintain contrast in assumed - // [dark] viewing conditions: http://www.poynton.com/PDFs/GammaFAQ.pdf - // These unstated assumptions about display gamma and perceptual rendering - // intent caused a lot of confusion, and more modern CRT's seemed to target - // NTSC 2.2 gamma with circuitry. LCD displays seem to have followed suit - // (they struggle near black with 2.5 gamma anyway), especially PC/laptop - // displays designed to view sRGB in bright environments. (Standards are - // also in flux again with BT.1886, but it's underspecified for displays.) - const float crt_reference_gamma_high = 2.5; // In (2.35, 2.55) - const float crt_reference_gamma_low = 2.35; // In (2.35, 2.55) - const float lcd_reference_gamma = 2.5; // To match CRT - const float crt_office_gamma = 2.2; // Circuitry-adjusted for NTSC - const float lcd_office_gamma = 2.2; // Approximates sRGB -#endif // OVERRIDE_STANDARD_GAMMA - -// Assuming alpha == 1.0 might make it easier for users to avoid some bugs, -// but only if they're aware of it. -#ifndef OVERRIDE_ALPHA_ASSUMPTIONS - const bool assume_opaque_alpha = false; -#endif - - -/////////////////////// DERIVED CONSTANTS AS FUNCTIONS /////////////////////// - -// gamma-management.h should be compatible with overriding gamma values with -// runtime user parameters, but we can only define other global constants in -// terms of static constants, not uniform user parameters. To get around this -// limitation, we need to define derived constants using functions. - -// Set device gamma constants, but allow users to override them: -#ifdef OVERRIDE_DEVICE_GAMMA - // The user promises to globally define the appropriate constants: - float get_crt_gamma() { return crt_gamma; } - float get_gba_gamma() { return gba_gamma; } - float get_lcd_gamma() { return lcd_gamma; } -#else - float get_crt_gamma() { return crt_reference_gamma_high; } - float get_gba_gamma() { return 3.5; } // Game Boy Advance; in (3.0, 4.0) - float get_lcd_gamma() { return lcd_office_gamma; } -#endif // OVERRIDE_DEVICE_GAMMA - -// Set decoding/encoding gammas for the first/lass passes, but allow overrides: -#ifdef OVERRIDE_FINAL_GAMMA - // The user promises to globally define the appropriate constants: - float get_intermediate_gamma() { return intermediate_gamma; } - float get_input_gamma() { return input_gamma; } - float get_output_gamma() { return output_gamma; } -#else - // If we gamma-correct every pass, always use ntsc_gamma between passes to - // ensure middle passes don't need to care if anything is being simulated: - float get_intermediate_gamma() { return ntsc_gamma; } - #ifdef SIMULATE_CRT_ON_LCD - float get_input_gamma() { return get_crt_gamma(); } - float get_output_gamma() { return get_lcd_gamma(); } - #else - #ifdef SIMULATE_GBA_ON_LCD - float get_input_gamma() { return get_gba_gamma(); } - float get_output_gamma() { return get_lcd_gamma(); } - #else - #ifdef SIMULATE_LCD_ON_CRT - float get_input_gamma() { return get_lcd_gamma(); } - float get_output_gamma() { return get_crt_gamma(); } - #else - #ifdef SIMULATE_GBA_ON_CRT - float get_input_gamma() { return get_gba_gamma(); } - float get_output_gamma() { return get_crt_gamma(); } - #else // Don't simulate anything: - float get_input_gamma() { return ntsc_gamma; } - float get_output_gamma() { return ntsc_gamma; } - #endif // SIMULATE_GBA_ON_CRT - #endif // SIMULATE_LCD_ON_CRT - #endif // SIMULATE_GBA_ON_LCD - #endif // SIMULATE_CRT_ON_LCD -#endif // OVERRIDE_FINAL_GAMMA - -#ifndef GAMMA_ENCODE_EVERY_FBO - #ifdef FIRST_PASS - const bool linearize_input = true; - float get_pass_input_gamma() { return get_input_gamma(); } - #else - const bool linearize_input = false; - float get_pass_input_gamma() { return 1.0; } - #endif - #ifdef LAST_PASS - const bool gamma_encode_output = true; - float get_pass_output_gamma() { return get_output_gamma(); } - #else - const bool gamma_encode_output = false; - float get_pass_output_gamma() { return 1.0; } - #endif -#else - const bool linearize_input = true; - const bool gamma_encode_output = true; - #ifdef FIRST_PASS - float get_pass_input_gamma() { return get_input_gamma(); } - #else - float get_pass_input_gamma() { return get_intermediate_gamma(); } - #endif - #ifdef LAST_PASS - float get_pass_output_gamma() { return get_output_gamma(); } - #else - float get_pass_output_gamma() { return get_intermediate_gamma(); } - #endif -#endif - -vec4 decode_input(const vec4 color) -{ - if(linearize_input) - { - if(assume_opaque_alpha) - { - return vec4(pow(color.rgb, vec3(get_pass_input_gamma())), 1.0); - } - else - { - return vec4(pow(color.rgb, vec3(get_pass_input_gamma())), color.a); - } - } - else - { - return color; - } -} - -vec4 encode_output(const vec4 color) -{ - if(gamma_encode_output) - { - if(assume_opaque_alpha) - { - return vec4(pow(color.rgb, vec3(1.0/get_pass_output_gamma())), 1.0); - } - else - { - return vec4(pow(color.rgb, vec3(1.0/get_pass_output_gamma())), color.a); - } - } - else - { - return color; - } -} - -#define tex2D_linearize(C, D) decode_input(vec4(texture(C, D))) -//vec4 tex2D_linearize(const sampler2D tex, const vec2 tex_coords) -//{ return decode_input(vec4(texture(tex, tex_coords))); } - -//#define tex2D_linearize(C, D, E) decode_input(vec4(texture(C, D, E))) -//vec4 tex2D_linearize(const sampler2D tex, const vec2 tex_coords, const int texel_off) -//{ return decode_input(vec4(texture(tex, tex_coords, texel_off))); } - -#endif // GAMMA_MANAGEMENT_H \ No newline at end of file diff --git a/crt/shaders/crt-royale/src/phosphor-mask-resizing.h b/crt/shaders/crt-royale/src/phosphor-mask-resizing.h index cad367e..8508688 100644 --- a/crt/shaders/crt-royale/src/phosphor-mask-resizing.h +++ b/crt/shaders/crt-royale/src/phosphor-mask-resizing.h @@ -240,7 +240,7 @@ vec2 get_resized_mask_tile_size(const vec2 estimated_viewport_size, params.mask_triad_size_desired, estimated_viewport_size.x / params.mask_num_triads_desired, params.mask_specify_num_triads); - if(get_mask_sample_mode() > 0.5) + if(params.mask_sample_mode_desired > 0.5) { // We don't need constraints unless we're sampling MASK_RESIZE. return desired_tile_size_x * tile_aspect; @@ -319,7 +319,7 @@ vec4 get_mask_sampling_parameters(const vec2 mask_resize_texture_size, // (We can better ensure a correct tile aspect ratio if the parameters are // guaranteed correct in all passes...but if we lie, we'll get inconsistent // sizes across passes, resulting in broken texture coordinates.) - const float mask_sample_mode = get_mask_sample_mode(); + const float mask_sample_mode = params.mask_sample_mode_desired;//get_mask_sample_mode(); const vec2 mask_resize_tile_size = get_resized_mask_tile_size( true_viewport_size, mask_resize_video_size, false); if(mask_sample_mode < 0.5) @@ -586,7 +586,7 @@ vec2 convert_phosphor_tile_uv_wrap_to_tex_uv(const vec2 tile_uv_wrap, // tex_uv size of the embedded tile in the full texture. // Returns: Return tex_uv coords (used for texture sampling) // corresponding to tile_uv_wrap. - if(get_mask_sample_mode() < 0.5) + if(params.mask_sample_mode_desired < 0.5) { // Manually repeat the resized mask tile to fill the screen: // First get fracttional tile_uv coords. Using fract/fmod on coords diff --git a/crt/shaders/crt-royale/src/scanline-functions.h b/crt/shaders/crt-royale/src/scanline-functions.h index cb47c9f..0f6612e 100644 --- a/crt/shaders/crt-royale/src/scanline-functions.h +++ b/crt/shaders/crt-royale/src/scanline-functions.h @@ -214,7 +214,7 @@ vec3 sample_single_scanline_horizontal(const sampler2D texture, bool is_interlaced(float num_lines) { // Detect interlacing based on the number of lines in the source. - if(interlace_detect) + if(interlace_detect = true) { // NTSC: 525 lines, 262.5/field; 486 active (2 half-lines), 243/field // NTSC Emulators: Typically 224 or 240 lines @@ -252,7 +252,7 @@ vec3 sample_rgb_scanline_horizontal(const sampler2D tex, { // TODO: Add function requirements. // Rely on a helper to make convergence easier. - if(beam_misconvergence) + if(beam_misconvergence = true) { const vec3 convergence_offsets_rgb = get_convergence_offsets_x_vector(); @@ -539,7 +539,7 @@ vec3 scanline_contrib(vec3 dist, vec3 color, // Returns: Return a scanline's light output over a given pixel, using // a generalized or pure Gaussian distribution and sampling or // integrals as desired by user codepath choices. - if(beam_generalized_gaussian) + if(beam_generalized_gaussian = true) { if(beam_antialias_level > 1.5) { diff --git a/crt/shaders/crt-royale/user-settings.h b/crt/shaders/crt-royale/user-settings.h index d6bd75f..4014dae 100644 --- a/crt/shaders/crt-royale/user-settings.h +++ b/crt/shaders/crt-royale/user-settings.h @@ -175,7 +175,7 @@ const float beam_num_scanlines = 3.0; // range [2, 6] // A generalized Gaussian beam varies shape with color too, now just width. // It's slower but more flexible (static option only for now). - const bool beam_generalized_gaussian = true; + bool beam_generalized_gaussian = true; // What kind of scanline antialiasing do you want? // 0: Sample weights at 1x; 1: Sample weights at 3x; 2: Compute an integral // Integrals are slow (especially for generalized Gaussians) and rarely any @@ -215,14 +215,14 @@ // Simulate scanline misconvergence? This needs 3x horizontal texture // samples and 3x texture samples of BLOOM_APPROX and HALATION_BLUR in // later passes (static option only for now). - const bool beam_misconvergence = true; + bool beam_misconvergence = true; // Convergence offsets in x/y directions for R/G/B scanline beams in units // of scanlines. Positive offsets go right/down; ranges [-2, 2] const vec2 convergence_offsets_r_static = vec2(0.1, 0.2); const vec2 convergence_offsets_g_static = vec2(0.3, 0.4); const vec2 convergence_offsets_b_static = vec2(0.5, 0.6); // Detect interlacing (static option only for now)? - const bool interlace_detect = true; + bool interlace_detect = true; // Assume 1080-line sources are interlaced? const bool interlace_1080i_static = false; // For interlaced sources, assume TFF (top-field first) or BFF order? diff --git a/include/gamma-management.h b/include/gamma-management.h index 0843122..a89bc2a 100644 --- a/include/gamma-management.h +++ b/include/gamma-management.h @@ -29,7 +29,7 @@ // Assuming alpha == 1.0 might make it easier for users to avoid some bugs, // but only if they're aware of it. #ifndef OVERRIDE_ALPHA_ASSUMPTIONS - const bool assume_opaque_alpha = false; + bool assume_opaque_alpha = false; #endif @@ -88,22 +88,22 @@ #ifndef GAMMA_ENCODE_EVERY_FBO #ifdef FIRST_PASS - const bool linearize_input = true; + bool linearize_input = true; float get_pass_input_gamma() { return get_input_gamma(); } #else - const bool linearize_input = false; + bool linearize_input = false; float get_pass_input_gamma() { return 1.0; } #endif #ifdef LAST_PASS - const bool gamma_encode_output = true; + bool gamma_encode_output = true; float get_pass_output_gamma() { return get_output_gamma(); } #else - const bool gamma_encode_output = false; + bool gamma_encode_output = false; float get_pass_output_gamma() { return 1.0; } #endif #else - const bool linearize_input = true; - const bool gamma_encode_output = true; + bool linearize_input = true; + bool gamma_encode_output = true; #ifdef FIRST_PASS float get_pass_input_gamma() { return get_input_gamma(); } #else @@ -118,9 +118,9 @@ vec4 decode_input(const vec4 color) { - if(linearize_input) + if(linearize_input = true) { - if(assume_opaque_alpha) + if(assume_opaque_alpha = true) { return vec4(pow(color.rgb, vec3(get_pass_input_gamma())), 1.0); } @@ -137,9 +137,9 @@ vec4 decode_input(const vec4 color) vec4 encode_output(const vec4 color) { - if(gamma_encode_output) + if(gamma_encode_output = true) { - if(assume_opaque_alpha) + if(assume_opaque_alpha = true) { return vec4(pow(color.rgb, vec3(1.0/get_pass_output_gamma())), 1.0); } diff --git a/presets/crt-royale-kurozumi.slangp b/presets/crt-royale-kurozumi.slangp new file mode 100644 index 0000000..a7a9763 --- /dev/null +++ b/presets/crt-royale-kurozumi.slangp @@ -0,0 +1,252 @@ +# IMPORTANT: +# Shader passes need to know details about the image in the mask_texture LUT +# files, so set the following constants in user-preset-constants.h accordingly: +# 1.) mask_triads_per_tile = (number of horizontal triads in mask texture LUT's) +# 2.) mask_texture_small_size = (texture size of mask*texture_small LUT's) +# 3.) mask_texture_large_size = (texture size of mask*texture_large LUT's) +# 4.) mask_grille_avg_color = (avg. brightness of mask_grille_texture* LUT's, in [0, 1]) +# 5.) mask_slot_avg_color = (avg. brightness of mask_slot_texture* LUT's, in [0, 1]) +# 6.) mask_shadow_avg_color = (avg. brightness of mask_shadow_texture* LUT's, in [0, 1]) +# Shader passes also need to know certain scales set in this preset, but their +# compilation model doesn't currently allow the preset file to tell them. Make +# sure to set the following constants in user-preset-constants.h accordingly too: +# 1.) bloom_approx_scale_x = scale_x2 +# 2.) mask_resize_viewport_scale = vec2(scale_x6, scale_y5) +# Finally, shader passes need to know the value of geom_max_aspect_ratio used to +# calculate scale_y5 (among other values): +# 1.) geom_max_aspect_ratio = (geom_max_aspect_ratio used to calculate scale_y5) + +shaders = "11"//"12" + +# Set an identifier, filename, and sampling traits for the phosphor mask texture. +# Load an aperture grille, slot mask, and an EDP shadow mask, and load a small +# non-mipmapped version and a large mipmapped version. +# TODO: Test masks in other directories. +textures = "mask_grille_texture_small;mask_grille_texture_large;mask_slot_texture_small;mask_slot_texture_large;mask_shadow_texture_small;mask_shadow_texture_large" +mask_grille_texture_small = "../crt/shaders/crt-royale/TileableLinearApertureGrille15Wide8And5d5SpacingResizeTo64.png" +mask_grille_texture_large = "../crt/shaders/crt-royale/TileableLinearApertureGrille15Wide8And5d5Spacing.png" +mask_slot_texture_small = "../crt/shaders/crt-royale/TileableLinearSlotMaskTall15Wide9And4d5Horizontal9d14VerticalSpacingResizeTo64.png" +mask_slot_texture_large = "../crt/shaders/crt-royale/TileableLinearSlotMaskTall15Wide9And4d5Horizontal9d14VerticalSpacing.png" +mask_shadow_texture_small = "../crt/shaders/crt-royale/TileableLinearShadowMaskEDPResizeTo64.png" +mask_shadow_texture_large = "../crt/shaders/crt-royale/TileableLinearShadowMaskEDP.png" +mask_grille_texture_small_wrap_mode = "repeat" +mask_grille_texture_large_wrap_mode = "repeat" +mask_slot_texture_small_wrap_mode = "repeat" +mask_slot_texture_large_wrap_mode = "repeat" +mask_shadow_texture_small_wrap_mode = "repeat" +mask_shadow_texture_large_wrap_mode = "repeat" +mask_grille_texture_small_linear = "true" +mask_grille_texture_large_linear = "true" +mask_slot_texture_small_linear = "true" +mask_slot_texture_large_linear = "true" +mask_shadow_texture_small_linear = "true" +mask_shadow_texture_large_linear = "true" +mask_grille_texture_small_mipmap = "false" # Mipmapping causes artifacts with manually resized masks without tex2Dlod +mask_grille_texture_large_mipmap = "true" # Essential for hardware-resized masks +mask_slot_texture_small_mipmap = "false" # Mipmapping causes artifacts with manually resized masks without tex2Dlod +mask_slot_texture_large_mipmap = "true" # Essential for hardware-resized masks +mask_shadow_texture_small_mipmap = "false" # Mipmapping causes artifacts with manually resized masks without tex2Dlod +mask_shadow_texture_large_mipmap = "true" # Essential for hardware-resized masks + + +# Pass0: Linearize the input based on CRT gamma and bob interlaced fields. +# (Bobbing ensures we can immediately blur without getting artifacts.) +shader0 = "../crt/shaders/crt-royale/src/crt-royale-first-pass-linearize-crt-gamma-bob-fields.slang" +alias0 = "ORIG_LINEARIZED" +filter_linear0 = "false" +scale_type0 = "source" +scale0 = "1.0" +srgb_framebuffer0 = "true" + +# Pass1: Resample interlaced (and misconverged) scanlines vertically. +# Separating vertical/horizontal scanline sampling is faster: It lets us +# consider more scanlines while calculating weights for fewer pixels, and +# it reduces our samples from vertical*horizontal to vertical+horizontal. +# This has to come right after ORIG_LINEARIZED, because there's no +# "original_source" scale_type we can use later. +shader1 = "../crt/shaders/crt-royale/src/crt-royale-scanlines-vertical-interlacing.slang" +alias1 = "VERTICAL_SCANLINES" +filter_linear1 = "true" +scale_type_x1 = "source" +scale_x1 = "1.0" +scale_type_y1 = "viewport" +scale_y1 = "1.0" +#float_framebuffer1 = "true" +srgb_framebuffer1 = "true" + +# Pass2: Do a small resize blur of ORIG_LINEARIZED at an absolute size, and +# account for convergence offsets. We want to blur a predictable portion of the +# screen to match the phosphor bloom, and absolute scale works best for +# reliable results with a fixed-size bloom. Picking a scale is tricky: +# a.) 400x300 is a good compromise for the "fake-bloom" version: It's low enough +# to blur high-res/interlaced sources but high enough that resampling +# doesn't smear low-res sources too much. +# b.) 320x240 works well for the "real bloom" version: It's 1-1.5% faster, and +# the only noticeable visual difference is a larger halation spread (which +# may be a good thing for people who like to crank it up). +# Note the 4:3 aspect ratio assumes the input has cropped geom_overscan (so it's +# *intended* for an ~4:3 aspect ratio). +shader2 = "../crt/shaders/crt-royale/src/crt-royale-bloom-approx.slang" +alias2 = "BLOOM_APPROX" +filter_linear2 = "true" +scale_type2 = "absolute" +scale_x2 = "320" +scale_y2 = "240" +srgb_framebuffer2 = "true" + +# Pass3: Vertically blur the input for halation and refractive diffusion. +# Base this on BLOOM_APPROX: This blur should be small and fast, and blurring +# a constant portion of the screen is probably physically correct if the +# viewport resolution is proportional to the simulated CRT size. +shader3 = "../blurs/blur9fast-vertical.slang" +filter_linear3 = "true" +scale_type3 = "source" +scale3 = "1.0" +srgb_framebuffer3 = "true" + +# Pass4: Horizontally blur the input for halation and refractive diffusion. +# Note: Using a one-pass 9x9 blur is about 1% slower. +shader4 = "../blurs/blur9fast-horizontal.slang" +alias4 = "HALATION_BLUR" +filter_linear4 = "true" +scale_type4 = "source" +scale4 = "1.0" +srgb_framebuffer4 = "true" + +# Pass5: Lanczos-resize the phosphor mask vertically. Set the absolute +# scale_x5 == mask_texture_small_size.x (see IMPORTANT above). Larger scales +# will blur, and smaller scales could get nasty. The vertical size must be +# based on the viewport size and calculated carefully to avoid artifacts later. +# First calculate the minimum number of mask tiles we need to draw. +# Since curvature is computed after the scanline masking pass: +# num_resized_mask_tiles = 2.0; +# If curvature were computed in the scanline masking pass (it's not): +# max_mask_texel_border = ~3.0 * (1/3.0 + 4.0*sqrt(2.0) + 0.5 + 1.0); +# max_mask_tile_border = max_mask_texel_border/ +# (min_resized_phosphor_triad_size * mask_triads_per_tile); +# num_resized_mask_tiles = max(2.0, 1.0 + max_mask_tile_border * 2.0); +# At typical values (triad_size >= 2.0, mask_triads_per_tile == 8): +# num_resized_mask_tiles = ~3.8 +# Triad sizes are given in horizontal terms, so we need geom_max_aspect_ratio +# to relate them to vertical resolution. The widest we expect is: +# geom_max_aspect_ratio = 4.0/3.0 # Note: Shader passes need to know this! +# The fewer triads we tile across the screen, the larger each triad will be as a +# fraction of the viewport size, and the larger scale_y5 must be to draw a full +# num_resized_mask_tiles. Therefore, we must decide the smallest number of +# triads we'll guarantee can be displayed on screen. We'll set this according +# to 3-pixel triads at 768p resolution (the lowest anyone's likely to use): +# min_allowed_viewport_triads = 768.0*geom_max_aspect_ratio / 3.0 = 341.333333 +# Now calculate the viewport scale that ensures we can draw resized_mask_tiles: +# min_scale_x = resized_mask_tiles * mask_triads_per_tile / +# min_allowed_viewport_triads +# scale_y5 = geom_max_aspect_ratio * min_scale_x +# # Some code might depend on equal scales: +# scale_x6 = scale_y5 +# Given our default geom_max_aspect_ratio and min_allowed_viewport_triads: +# scale_y5 = 4.0/3.0 * 2.0/(341.33333 / 8.0) = 0.0625 +# IMPORTANT: The scales MUST be calculated in this way. If you wish to change +# geom_max_aspect_ratio, update that constant in user-preset-constants.h! +shader5 = "../crt/shaders/crt-royale/src/crt-royale-mask-resize-vertical.slang" +filter_linear5 = "true" +scale_type_x5 = "absolute" +scale_x5 = "64" +scale_type_y5 = "viewport" +scale_y5 = "0.0625" # Safe for >= 341.333 horizontal triads at viewport size +#srgb_framebuffer5 = "false" # mask_texture is already assumed linear + +# Pass6: Lanczos-resize the phosphor mask horizontally. scale_x6 = scale_y5. +# TODO: Check again if the shaders actually require equal scales. +shader6 = "../crt/shaders/crt-royale/src/crt-royale-mask-resize-horizontal.slang" +alias6 = "MASK_RESIZE" +filter_linear6 = "false" +scale_type_x6 = "viewport" +scale_x6 = "0.0625" +scale_type_y6 = "source" +scale_y6 = "1.0" +#srgb_framebuffer6 = "false" # mask_texture is already assumed linear + +# Pass7: Resample (misconverged) scanlines horizontally, apply halation, and +# apply the phosphor mask. +shader7 = "../crt/shaders/crt-royale/src/crt-royale-scanlines-horizontal-apply-mask.slang" +alias7 = "MASKED_SCANLINES" +filter_linear7 = "true" # This could just as easily be nearest neighbor. +scale_type7 = "viewport" +scale7 = "1.0" +#float_framebuffer7 = "true" +srgb_framebuffer7 = "true" + +# Pass 8: Compute a brightpass. This will require reading the final mask. +shader8 = "../crt/shaders/crt-royale/src/crt-royale-brightpass.slang" +alias8 = "BRIGHTPASS" +filter_linear8 = "true" # This could just as easily be nearest neighbor. +scale_type8 = "viewport" +scale8 = "1.0" +srgb_framebuffer8 = "true" + +# Pass 9: Blur the brightpass vertically +shader9 = "../crt/shaders/crt-royale/src/crt-royale-bloom-vertical.slang" +filter_linear9 = "true" # This could just as easily be nearest neighbor. +scale_type9 = "source" +scale9 = "1.0" +srgb_framebuffer9 = "true" + +# Pass 10: Blur the brightpass horizontally and combine it with the dimpass: +shader10 = "../crt/shaders/crt-royale/src/crt-royale-bloom-horizontal-reconstitute.slang" +filter_linear10 = "true" +scale_type10 = "source" +scale10 = "1.0" +srgb_framebuffer10 = "true" + +# Pass 11: Compute curvature/AA: +shader11 = "../crt/shaders/crt-royale/src/crt-royale-geometry-aa-last-pass.slang" +filter_linear11 = "true" +scale_type11 = "viewport" +mipmap_input11 = "true" +texture_wrap_mode11 = "clamp_to_edge" + +parameters = "crt_gamma;lcd_gamma;levels_contrast;halation_weight;diffusion_weight;bloom_underestimate_levels;bloom_excess;beam_min_sigma;beam_max_sigma;beam_spot_power;beam_min_shape;beam_max_shape;beam_shape_power;beam_horiz_filter;beam_horiz_sigma;beam_horiz_linear_rgb_weight;convergence_offset_x_r;convergence_offset_x_g;convergence_offset_x_b;convergence_offset_y_r;convergence_offset_y_g;convergence_offset_y_b;mask_type;mask_sample_mode_desired;mask_specify_num_triads;mask_triad_size_desired;mask_num_triads_desired;aa_subpixel_r_offset_x_runtime;aa_subpixel_r_offset_y_runtime;aa_cubic_c;aa_gauss_sigma;geom_mode_runtime;geom_radius;geom_view_dist;geom_tilt_angle_x;geom_tilt_angle_y;geom_aspect_ratio_x;geom_aspect_ratio_y;geom_overscan_x;geom_overscan_y;border_size;border_darkness;border_compress;interlace_bff;interlace_1080i" +crt_gamma = "2.500000" +lcd_gamma = "2.400000" +levels_contrast = "0.840000" +halation_weight = "0.000000" +diffusion_weight = "0.010000" +bloom_underestimate_levels = "0.800000" +bloom_excess = "0.000000" +beam_min_sigma = "0.02000" +beam_max_sigma = "0.200000" +beam_spot_power = "0.370000" +beam_min_shape = "2.000000" +beam_max_shape = "4.000000" +beam_shape_power = "0.250000" +beam_horiz_filter = "0.000000" +beam_horiz_sigma = "0.545000" +beam_horiz_linear_rgb_weight = "1.000000" +convergence_offset_x_r = "0.000000" +convergence_offset_x_g = "0.000000" +convergence_offset_x_b = "0.000000" +convergence_offset_y_r = "0.100000" +convergence_offset_y_g = "-0.100000" +convergence_offset_y_b = "0.100000" +mask_type = "0.000000" +mask_sample_mode_desired = "1.000000" +mask_specify_num_triads = "1.000000" +mask_triad_size_desired = "3.000000" +mask_num_triads_desired = "900.000000" +aa_subpixel_r_offset_x_runtime = "-0.333333" +aa_subpixel_r_offset_y_runtime = "0.000000" +aa_cubic_c = "0.500000" +aa_gauss_sigma = "0.500000" +geom_mode = "3.000000" +geom_radius = "3.000000" +geom_view_dist = "2.000000" +geom_tilt_angle_x = "0.000000" +geom_tilt_angle_y = "0.000000" +geom_aspect_ratio_x = "432.000000" +geom_aspect_ratio_y = "329.000000" +geom_overscan_x = "1.000000" +geom_overscan_y = "1.000000" +border_size = "0.005000" +border_darkness = "0.000000" +border_compress = "2.500000" +interlace_bff = "0.000000" +interlace_1080i = "0.000000"