add initial, broken first pass of crt-royale
After Width: | Height: | Size: 194 KiB |
After Width: | Height: | Size: 4.1 KiB |
BIN
crt/shaders/crt-royale/TileableLinearShadowMask.png
Normal file
After Width: | Height: | Size: 214 KiB |
BIN
crt/shaders/crt-royale/TileableLinearShadowMaskEDP.png
Normal file
After Width: | Height: | Size: 202 KiB |
BIN
crt/shaders/crt-royale/TileableLinearShadowMaskEDPResizeTo64.png
Normal file
After Width: | Height: | Size: 5.2 KiB |
BIN
crt/shaders/crt-royale/TileableLinearShadowMaskResizeTo64.png
Normal file
After Width: | Height: | Size: 5.9 KiB |
After Width: | Height: | Size: 200 KiB |
After Width: | Height: | Size: 6.8 KiB |
12
crt/shaders/crt-royale/crt-royale-settings-files/README.TXT
Normal file
|
@ -0,0 +1,12 @@
|
|||
These files aren't nearly as good as canned .cgp presets with all of your
|
||||
favorite settings, and there aren't nearly enough, but they're a start.
|
||||
|
||||
The nVidia settings files will only work on nVidia cards.
|
||||
The ATI settings files will work on both AMD/ATI and nVidia cards.
|
||||
The Intel settings files should additionally work on Intel HD 4000 Graphics, but
|
||||
they disable manual phosphor mask resizing, so the phosphor mask will be softer.
|
||||
|
||||
For compatibility with Intel integrated graphics, you can either use the Intel-
|
||||
specific .cgp files or use the Intel settings files. These are the same as the
|
||||
ATI settings, except the following line is also uncommented:
|
||||
#define INTEGRATED_GRAPHICS_COMPATIBILITY_MODE
|
|
@ -0,0 +1,92 @@
|
|||
#ifndef USER_SETTINGS_H
|
||||
#define USER_SETTINGS_H
|
||||
|
||||
///////////////////////////// DRIVER CAPABILITIES ////////////////////////////
|
||||
|
||||
//#define DRIVERS_ALLOW_DERIVATIVES
|
||||
#ifdef DRIVERS_ALLOW_DERIVATIVES
|
||||
#define DRIVERS_ALLOW_FINE_DERIVATIVES
|
||||
#endif
|
||||
//#define DRIVERS_ALLOW_DYNAMIC_BRANCHES
|
||||
//#define ACCOMODATE_POSSIBLE_DYNAMIC_LOOPS
|
||||
//#define DRIVERS_ALLOW_TEX2DLOD
|
||||
//#define DRIVERS_ALLOW_TEX2DBIAS
|
||||
//#define INTEGRATED_GRAPHICS_COMPATIBILITY_MODE
|
||||
|
||||
|
||||
//////////////////////////// USER CODEPATH OPTIONS ///////////////////////////
|
||||
|
||||
#define RUNTIME_SHADER_PARAMS_ENABLE
|
||||
#define RUNTIME_PHOSPHOR_BLOOM_SIGMA
|
||||
#define RUNTIME_ANTIALIAS_WEIGHTS
|
||||
//#define RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS
|
||||
#define RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE
|
||||
#define RUNTIME_GEOMETRY_TILT
|
||||
#define RUNTIME_GEOMETRY_MODE
|
||||
#define FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
|
||||
#define PHOSPHOR_MASK_MANUALLY_RESIZE
|
||||
#define PHOSPHOR_MASK_RESIZE_LANCZOS_WINDOW
|
||||
#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_3_PIXELS
|
||||
//#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_6_PIXELS
|
||||
//#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_9_PIXELS
|
||||
//#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_12_PIXELS
|
||||
|
||||
|
||||
/////////////////////////////// USER PARAMETERS //////////////////////////////
|
||||
|
||||
static const float crt_gamma_static = 2.5; // range [1, 5]
|
||||
static const float lcd_gamma_static = 2.2; // range [1, 5]
|
||||
static const float levels_contrast_static = 1.0; // range [0, 4)
|
||||
static const float levels_autodim_temp = 0.5; // range (0, 1]
|
||||
static const float halation_weight_static = 0.0; // range [0, 1]
|
||||
static const float diffusion_weight_static = 0.075; // range [0, 1]
|
||||
static const float bloom_underestimate_levels_static = 0.8; // range [0, 5]
|
||||
static const float bloom_excess_static = 0.0; // range [0, 1]
|
||||
static const float bloom_approx_filter_static = 2.0;
|
||||
static const float beam_num_scanlines = 3.0; // range [2, 6]
|
||||
static const bool beam_generalized_gaussian = true;
|
||||
static const float beam_antialias_level = 1.0; // range [0, 2]
|
||||
static const float beam_min_sigma_static = 0.02; // range (0, 1]
|
||||
static const float beam_max_sigma_static = 0.3; // range (0, 1]
|
||||
static const float beam_spot_shape_function = 0.0;
|
||||
static const float beam_spot_power_static = 1.0/3.0; // range (0, 16]
|
||||
static const float beam_min_shape_static = 2.0; // range [2, 32]
|
||||
static const float beam_max_shape_static = 4.0; // range [2, 32]
|
||||
static const float beam_shape_power_static = 1.0/4.0; // range (0, 16]
|
||||
static const float beam_horiz_filter_static = 0.0;
|
||||
static const float beam_horiz_sigma_static = 0.35; // range (0, 2/3]
|
||||
static const float beam_horiz_linear_rgb_weight_static = 1.0; // range [0, 1]
|
||||
static const bool beam_misconvergence = true;
|
||||
static const float2 convergence_offsets_r_static = float2(0.1, 0.2);
|
||||
static const float2 convergence_offsets_g_static = float2(0.3, 0.4);
|
||||
static const float2 convergence_offsets_b_static = float2(0.5, 0.6);
|
||||
static const bool interlace_detect = true;
|
||||
static const bool interlace_1080i_static = false;
|
||||
static const bool interlace_bff_static = false;
|
||||
static const float aa_level = 12.0; // range [0, 24]
|
||||
static const float aa_filter = 6.0; // range [0, 9]
|
||||
static const bool aa_temporal = false;
|
||||
static const float2 aa_subpixel_r_offset_static = float2(-1.0/3.0, 0.0);//float2(0.0);
|
||||
static const float aa_cubic_c_static = 0.5; // range [0, 4]
|
||||
static const float aa_gauss_sigma_static = 0.5; // range [0.0625, 1.0]
|
||||
static const float mask_type_static = 1.0; // range [0, 2]
|
||||
static const float mask_sample_mode_static = 0.0; // range [0, 2]
|
||||
static const float mask_specify_num_triads_static = 0.0; // range [0, 1]
|
||||
static const float mask_triad_size_desired_static = 24.0 / 8.0;
|
||||
static const float mask_num_triads_desired_static = 480.0;
|
||||
static const float mask_sinc_lobes = 3.0; // range [2, 4]
|
||||
static const float mask_min_allowed_triad_size = 2.0;
|
||||
static const float geom_mode_static = 0.0; // range [0, 3]
|
||||
static const float geom_radius_static = 2.0; // range [1/(2*pi), 1024]
|
||||
static const float geom_view_dist_static = 2.0; // range [0.5, 1024]
|
||||
static const float2 geom_tilt_angle_static = float2(0.0, 0.0); // range [-pi, pi]
|
||||
static const float geom_aspect_ratio_static = 1.313069909;
|
||||
static const float2 geom_overscan_static = float2(1.0, 1.0);// * 1.005 * (1.0, 240/224.0)
|
||||
static const bool geom_force_correct_tangent_matrix = true;
|
||||
static const float border_size_static = 0.015; // range [0, 0.5]
|
||||
static const float border_darkness_static = 2.0; // range [0, inf)
|
||||
static const float border_compress_static = 2.5; // range [1, inf)
|
||||
|
||||
|
||||
#endif // USER_SETTINGS_H
|
||||
|
|
@ -0,0 +1,359 @@
|
|||
#ifndef USER_SETTINGS_H
|
||||
#define USER_SETTINGS_H
|
||||
|
||||
///////////////////////////// DRIVER CAPABILITIES ////////////////////////////
|
||||
|
||||
// The Cg compiler uses different "profiles" with different capabilities.
|
||||
// This shader requires a Cg compilation profile >= arbfp1, but a few options
|
||||
// require higher profiles like fp30 or fp40. The shader can't detect profile
|
||||
// or driver capabilities, so instead you must comment or uncomment the lines
|
||||
// below with "//" before "#define." Disable an option if you get compilation
|
||||
// errors resembling those listed. Generally speaking, all of these options
|
||||
// will run on nVidia cards, but only DRIVERS_ALLOW_TEX2DBIAS (if that) is
|
||||
// likely to run on ATI/AMD, due to the Cg compiler's profile limitations.
|
||||
|
||||
// Derivatives: Unsupported on fp20, ps_1_1, ps_1_2, ps_1_3, and arbfp1.
|
||||
// Among other things, derivatives help us fix anisotropic filtering artifacts
|
||||
// with curved manually tiled phosphor mask coords. Related errors:
|
||||
// error C3004: function "float2 ddx(float2);" not supported in this profile
|
||||
// error C3004: function "float2 ddy(float2);" not supported in this profile
|
||||
//#define DRIVERS_ALLOW_DERIVATIVES
|
||||
|
||||
// Fine derivatives: Unsupported on older ATI cards.
|
||||
// Fine derivatives enable 2x2 fragment block communication, letting us perform
|
||||
// fast single-pass blur operations. If your card uses coarse derivatives and
|
||||
// these are enabled, blurs could look broken. Derivatives are a prerequisite.
|
||||
#ifdef DRIVERS_ALLOW_DERIVATIVES
|
||||
#define DRIVERS_ALLOW_FINE_DERIVATIVES
|
||||
#endif
|
||||
|
||||
// Dynamic looping: Requires an fp30 or newer profile.
|
||||
// This makes phosphor mask resampling faster in some cases. Related errors:
|
||||
// error C5013: profile does not support "for" statements and "for" could not
|
||||
// be unrolled
|
||||
//#define DRIVERS_ALLOW_DYNAMIC_BRANCHES
|
||||
|
||||
// Without DRIVERS_ALLOW_DYNAMIC_BRANCHES, we need to use unrollable loops.
|
||||
// Using one static loop avoids overhead if the user is right, but if the user
|
||||
// is wrong (loops are allowed), breaking a loop into if-blocked pieces with a
|
||||
// binary search can potentially save some iterations. However, it may fail:
|
||||
// error C6001: Temporary register limit of 32 exceeded; 35 registers
|
||||
// needed to compile program
|
||||
//#define ACCOMODATE_POSSIBLE_DYNAMIC_LOOPS
|
||||
|
||||
// tex2Dlod: Requires an fp40 or newer profile. This can be used to disable
|
||||
// anisotropic filtering, thereby fixing related artifacts. Related errors:
|
||||
// error C3004: function "float4 tex2Dlod(sampler2D, float4);" not supported in
|
||||
// this profile
|
||||
//#define DRIVERS_ALLOW_TEX2DLOD
|
||||
|
||||
// tex2Dbias: Requires an fp30 or newer profile. This can be used to alleviate
|
||||
// artifacts from anisotropic filtering and mipmapping. Related errors:
|
||||
// error C3004: function "float4 tex2Dbias(sampler2D, float4);" not supported
|
||||
// in this profile
|
||||
//#define DRIVERS_ALLOW_TEX2DBIAS
|
||||
|
||||
// Integrated graphics compatibility: Integrated graphics like Intel HD 4000
|
||||
// impose stricter limitations on register counts and instructions. Enable
|
||||
// INTEGRATED_GRAPHICS_COMPATIBILITY_MODE if you still see error C6001 or:
|
||||
// error C6002: Instruction limit of 1024 exceeded: 1523 instructions needed
|
||||
// to compile program.
|
||||
// Enabling integrated graphics compatibility mode will automatically disable:
|
||||
// 1.) PHOSPHOR_MASK_MANUALLY_RESIZE: The phosphor mask will be softer.
|
||||
// (This may be reenabled in a later release.)
|
||||
// 2.) RUNTIME_GEOMETRY_MODE
|
||||
// 3.) The high-quality 4x4 Gaussian resize for the bloom approximation
|
||||
//#define INTEGRATED_GRAPHICS_COMPATIBILITY_MODE
|
||||
|
||||
|
||||
//////////////////////////// USER CODEPATH OPTIONS ///////////////////////////
|
||||
|
||||
// To disable a #define option, turn its line into a comment with "//."
|
||||
|
||||
// RUNTIME VS. COMPILE-TIME OPTIONS (Major Performance Implications):
|
||||
// Enable runtime shader parameters in the Retroarch (etc.) GUI? They override
|
||||
// many of the options in this file and allow real-time tuning, but many of
|
||||
// them are slower. Disabling them and using this text file will boost FPS.
|
||||
#define RUNTIME_SHADER_PARAMS_ENABLE
|
||||
// Specify the phosphor bloom sigma at runtime? This option is 10% slower, but
|
||||
// it's the only way to do a wide-enough full bloom with a runtime dot pitch.
|
||||
#define RUNTIME_PHOSPHOR_BLOOM_SIGMA
|
||||
// Specify antialiasing weight parameters at runtime? (Costs ~20% with cubics)
|
||||
#define RUNTIME_ANTIALIAS_WEIGHTS
|
||||
// Specify subpixel offsets at runtime? (WARNING: EXTREMELY EXPENSIVE!)
|
||||
//#define RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS
|
||||
// Make beam_horiz_filter and beam_horiz_linear_rgb_weight into runtime shader
|
||||
// parameters? This will require more math or dynamic branching.
|
||||
#define RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE
|
||||
// Specify the tilt at runtime? This makes things about 3% slower.
|
||||
#define RUNTIME_GEOMETRY_TILT
|
||||
// Specify the geometry mode at runtime?
|
||||
#define RUNTIME_GEOMETRY_MODE
|
||||
// Specify the phosphor mask type (aperture grille, slot mask, shadow mask) and
|
||||
// mode (Lanczos-resize, hardware resize, or tile 1:1) at runtime, even without
|
||||
// dynamic branches? This is cheap if mask_resize_viewport_scale is small.
|
||||
#define FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
|
||||
|
||||
// PHOSPHOR MASK:
|
||||
// Manually resize the phosphor mask for best results (slower)? Disabling this
|
||||
// removes the option to do so, but it may be faster without dynamic branches.
|
||||
#define PHOSPHOR_MASK_MANUALLY_RESIZE
|
||||
// If we sinc-resize the mask, should we Lanczos-window it (slower but better)?
|
||||
#define PHOSPHOR_MASK_RESIZE_LANCZOS_WINDOW
|
||||
// Larger blurs are expensive, but we need them to blur larger triads. We can
|
||||
// detect the right blur if the triad size is static or our profile allows
|
||||
// dynamic branches, but otherwise we use the largest blur the user indicates
|
||||
// they might need:
|
||||
#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_3_PIXELS
|
||||
//#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_6_PIXELS
|
||||
//#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_9_PIXELS
|
||||
//#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_12_PIXELS
|
||||
// Here's a helpful chart:
|
||||
// MaxTriadSize BlurSize MinTriadCountsByResolution
|
||||
// 3.0 9.0 480/640/960/1920 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
|
||||
// 6.0 17.0 240/320/480/960 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
|
||||
// 9.0 25.0 160/213/320/640 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
|
||||
// 12.0 31.0 120/160/240/480 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
|
||||
// 18.0 43.0 80/107/160/320 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
|
||||
|
||||
|
||||
/////////////////////////////// USER PARAMETERS //////////////////////////////
|
||||
|
||||
// Note: Many of these static parameters are overridden by runtime shader
|
||||
// parameters when those are enabled. However, many others are static codepath
|
||||
// options that were cleaner or more convert to code as static constants.
|
||||
|
||||
// GAMMA:
|
||||
static const float crt_gamma_static = 2.5; // range [1, 5]
|
||||
static const float lcd_gamma_static = 2.2; // range [1, 5]
|
||||
|
||||
// LEVELS MANAGEMENT:
|
||||
// Control the final multiplicative image contrast:
|
||||
static const float levels_contrast_static = 1.0; // range [0, 4)
|
||||
// We auto-dim to avoid clipping between passes and restore brightness
|
||||
// later. Control the dim factor here: Lower values clip less but crush
|
||||
// blacks more (static only for now).
|
||||
static const float levels_autodim_temp = 0.5; // range (0, 1]
|
||||
|
||||
// HALATION/DIFFUSION/BLOOM:
|
||||
// Halation weight: How much energy should be lost to electrons bounding
|
||||
// around under the CRT glass and exciting random phosphors?
|
||||
static const float halation_weight_static = 0.0; // range [0, 1]
|
||||
// Refractive diffusion weight: How much light should spread/diffuse from
|
||||
// refracting through the CRT glass?
|
||||
static const float diffusion_weight_static = 0.075; // range [0, 1]
|
||||
// Underestimate brightness: Bright areas bloom more, but we can base the
|
||||
// bloom brightpass on a lower brightness to sharpen phosphors, or a higher
|
||||
// brightness to soften them. Low values clip, but >= 0.8 looks okay.
|
||||
static const float bloom_underestimate_levels_static = 0.8; // range [0, 5]
|
||||
// Blur all colors more than necessary for a softer phosphor bloom?
|
||||
static const float bloom_excess_static = 0.0; // range [0, 1]
|
||||
// The BLOOM_APPROX pass approximates a phosphor blur early on with a small
|
||||
// blurred resize of the input (convergence offsets are applied as well).
|
||||
// There are three filter options (static option only for now):
|
||||
// 0.) Bilinear resize: A fast, close approximation to a 4x4 resize
|
||||
// if min_allowed_viewport_triads and the BLOOM_APPROX resolution are sane
|
||||
// and beam_max_sigma is low.
|
||||
// 1.) 3x3 resize blur: Medium speed, soft/smeared from bilinear blurring,
|
||||
// always uses a static sigma regardless of beam_max_sigma or
|
||||
// mask_num_triads_desired.
|
||||
// 2.) True 4x4 Gaussian resize: Slowest, technically correct.
|
||||
// These options are more pronounced for the fast, unbloomed shader version.
|
||||
static const float bloom_approx_filter_static = 2.0;
|
||||
|
||||
// ELECTRON BEAM SCANLINE DISTRIBUTION:
|
||||
// How many scanlines should contribute light to each pixel? Using more
|
||||
// scanlines is slower (especially for a generalized Gaussian) but less
|
||||
// distorted with larger beam sigmas (especially for a pure Gaussian). The
|
||||
// max_beam_sigma at which the closest unused weight is guaranteed <
|
||||
// 1.0/255.0 (for a 3x antialiased pure Gaussian) is:
|
||||
// 2 scanlines: max_beam_sigma = 0.2089; distortions begin ~0.34; 141.7 FPS pure, 131.9 FPS generalized
|
||||
// 3 scanlines, max_beam_sigma = 0.3879; distortions begin ~0.52; 137.5 FPS pure; 123.8 FPS generalized
|
||||
// 4 scanlines, max_beam_sigma = 0.5723; distortions begin ~0.70; 134.7 FPS pure; 117.2 FPS generalized
|
||||
// 5 scanlines, max_beam_sigma = 0.7591; distortions begin ~0.89; 131.6 FPS pure; 112.1 FPS generalized
|
||||
// 6 scanlines, max_beam_sigma = 0.9483; distortions begin ~1.08; 127.9 FPS pure; 105.6 FPS generalized
|
||||
static const float beam_num_scanlines = 3.0; // range [2, 6]
|
||||
// A generalized Gaussian beam varies shape with color too, now just width.
|
||||
// It's slower but more flexible (static option only for now).
|
||||
static const bool beam_generalized_gaussian = true;
|
||||
// What kind of scanline antialiasing do you want?
|
||||
// 0: Sample weights at 1x; 1: Sample weights at 3x; 2: Compute an integral
|
||||
// Integrals are slow (especially for generalized Gaussians) and rarely any
|
||||
// better than 3x antialiasing (static option only for now).
|
||||
static const float beam_antialias_level = 1.0; // range [0, 2]
|
||||
// Min/max standard deviations for scanline beams: Higher values widen and
|
||||
// soften scanlines. Depending on other options, low min sigmas can alias.
|
||||
static const float beam_min_sigma_static = 0.02; // range (0, 1]
|
||||
static const float beam_max_sigma_static = 0.3; // range (0, 1]
|
||||
// Beam width varies as a function of color: A power function (0) is more
|
||||
// configurable, but a spherical function (1) gives the widest beam
|
||||
// variability without aliasing (static option only for now).
|
||||
static const float beam_spot_shape_function = 0.0;
|
||||
// Spot shape power: Powers <= 1 give smoother spot shapes but lower
|
||||
// sharpness. Powers >= 1.0 are awful unless mix/max sigmas are close.
|
||||
static const float beam_spot_power_static = 1.0/3.0; // range (0, 16]
|
||||
// Generalized Gaussian max shape parameters: Higher values give flatter
|
||||
// scanline plateaus and steeper dropoffs, simultaneously widening and
|
||||
// sharpening scanlines at the cost of aliasing. 2.0 is pure Gaussian, and
|
||||
// values > ~40.0 cause artifacts with integrals.
|
||||
static const float beam_min_shape_static = 2.0; // range [2, 32]
|
||||
static const float beam_max_shape_static = 4.0; // range [2, 32]
|
||||
// Generalized Gaussian shape power: Affects how quickly the distribution
|
||||
// changes shape from Gaussian to steep/plateaued as color increases from 0
|
||||
// to 1.0. Higher powers appear softer for most colors, and lower powers
|
||||
// appear sharper for most colors.
|
||||
static const float beam_shape_power_static = 1.0/4.0; // range (0, 16]
|
||||
// What filter should be used to sample scanlines horizontally?
|
||||
// 0: Quilez (fast), 1: Gaussian (configurable), 2: Lanczos2 (sharp)
|
||||
static const float beam_horiz_filter_static = 0.0;
|
||||
// Standard deviation for horizontal Gaussian resampling:
|
||||
static const float beam_horiz_sigma_static = 0.35; // range (0, 2/3]
|
||||
// Do horizontal scanline sampling in linear RGB (correct light mixing),
|
||||
// gamma-encoded RGB (darker, hard spot shape, may better match bandwidth-
|
||||
// limiting circuitry in some CRT's), or a weighted avg.?
|
||||
static const float beam_horiz_linear_rgb_weight_static = 1.0; // range [0, 1]
|
||||
// Simulate scanline misconvergence? This needs 3x horizontal texture
|
||||
// samples and 3x texture samples of BLOOM_APPROX and HALATION_BLUR in
|
||||
// later passes (static option only for now).
|
||||
static const bool beam_misconvergence = true;
|
||||
// Convergence offsets in x/y directions for R/G/B scanline beams in units
|
||||
// of scanlines. Positive offsets go right/down; ranges [-2, 2]
|
||||
static const float2 convergence_offsets_r_static = float2(0.1, 0.2);
|
||||
static const float2 convergence_offsets_g_static = float2(0.3, 0.4);
|
||||
static const float2 convergence_offsets_b_static = float2(0.5, 0.6);
|
||||
// Detect interlacing (static option only for now)?
|
||||
static const bool interlace_detect = true;
|
||||
// Assume 1080-line sources are interlaced?
|
||||
static const bool interlace_1080i_static = false;
|
||||
// For interlaced sources, assume TFF (top-field first) or BFF order?
|
||||
// (Whether this matters depends on the nature of the interlaced input.)
|
||||
static const bool interlace_bff_static = false;
|
||||
|
||||
// ANTIALIASING:
|
||||
// What AA level do you want for curvature/overscan/subpixels? Options:
|
||||
// 0x (none), 1x (sample subpixels), 4x, 5x, 6x, 7x, 8x, 12x, 16x, 20x, 24x
|
||||
// (Static option only for now)
|
||||
static const float aa_level = 12.0; // range [0, 24]
|
||||
// What antialiasing filter do you want (static option only)? Options:
|
||||
// 0: Box (separable), 1: Box (cylindrical),
|
||||
// 2: Tent (separable), 3: Tent (cylindrical),
|
||||
// 4: Gaussian (separable), 5: Gaussian (cylindrical),
|
||||
// 6: Cubic* (separable), 7: Cubic* (cylindrical, poor)
|
||||
// 8: Lanczos Sinc (separable), 9: Lanczos Jinc (cylindrical, poor)
|
||||
// * = Especially slow with RUNTIME_ANTIALIAS_WEIGHTS
|
||||
static const float aa_filter = 6.0; // range [0, 9]
|
||||
// Flip the sample grid on odd/even frames (static option only for now)?
|
||||
static const bool aa_temporal = false;
|
||||
// Use RGB subpixel offsets for antialiasing? The pixel is at green, and
|
||||
// the blue offset is the negative r offset; range [0, 0.5]
|
||||
static const float2 aa_subpixel_r_offset_static = float2(-1.0/3.0, 0.0);//float2(0.0);
|
||||
// Cubics: See http://www.imagemagick.org/Usage/filter/#mitchell
|
||||
// 1.) "Keys cubics" with B = 1 - 2C are considered the highest quality.
|
||||
// 2.) C = 0.5 (default) is Catmull-Rom; higher C's apply sharpening.
|
||||
// 3.) C = 1.0/3.0 is the Mitchell-Netravali filter.
|
||||
// 4.) C = 0.0 is a soft spline filter.
|
||||
static const float aa_cubic_c_static = 0.5; // range [0, 4]
|
||||
// Standard deviation for Gaussian antialiasing: Try 0.5/aa_pixel_diameter.
|
||||
static const float aa_gauss_sigma_static = 0.5; // range [0.0625, 1.0]
|
||||
|
||||
// PHOSPHOR MASK:
|
||||
// Mask type: 0 = aperture grille, 1 = slot mask, 2 = EDP shadow mask
|
||||
static const float mask_type_static = 1.0; // range [0, 2]
|
||||
// We can sample the mask three ways. Pick 2/3 from: Pretty/Fast/Flexible.
|
||||
// 0.) Sinc-resize to the desired dot pitch manually (pretty/slow/flexible).
|
||||
// This requires PHOSPHOR_MASK_MANUALLY_RESIZE to be #defined.
|
||||
// 1.) Hardware-resize to the desired dot pitch (ugly/fast/flexible). This
|
||||
// is halfway decent with LUT mipmapping but atrocious without it.
|
||||
// 2.) Tile it without resizing at a 1:1 texel:pixel ratio for flat coords
|
||||
// (pretty/fast/inflexible). Each input LUT has a fixed dot pitch.
|
||||
// This mode reuses the same masks, so triads will be enormous unless
|
||||
// you change the mask LUT filenames in your .cgp file.
|
||||
static const float mask_sample_mode_static = 0.0; // range [0, 2]
|
||||
// Prefer setting the triad size (0.0) or number on the screen (1.0)?
|
||||
// If RUNTIME_PHOSPHOR_BLOOM_SIGMA isn't #defined, the specified triad size
|
||||
// will always be used to calculate the full bloom sigma statically.
|
||||
static const float mask_specify_num_triads_static = 0.0; // range [0, 1]
|
||||
// Specify the phosphor triad size, in pixels. Each tile (usually with 8
|
||||
// triads) will be rounded to the nearest integer tile size and clamped to
|
||||
// obey minimum size constraints (imposed to reduce downsize taps) and
|
||||
// maximum size constraints (imposed to have a sane MASK_RESIZE FBO size).
|
||||
// To increase the size limit, double the viewport-relative scales for the
|
||||
// two MASK_RESIZE passes in crt-royale.cgp and user-cgp-contants.h.
|
||||
// range [1, mask_texture_small_size/mask_triads_per_tile]
|
||||
static const float mask_triad_size_desired_static = 24.0 / 8.0;
|
||||
// If mask_specify_num_triads is 1.0/true, we'll go by this instead (the
|
||||
// final size will be rounded and constrained as above); default 480.0
|
||||
static const float mask_num_triads_desired_static = 480.0;
|
||||
// How many lobes should the sinc/Lanczos resizer use? More lobes require
|
||||
// more samples and avoid moire a bit better, but some is unavoidable
|
||||
// depending on the destination size (static option for now).
|
||||
static const float mask_sinc_lobes = 3.0; // range [2, 4]
|
||||
// The mask is resized using a variable number of taps in each dimension,
|
||||
// but some Cg profiles always fetch a constant number of taps no matter
|
||||
// what (no dynamic branching). We can limit the maximum number of taps if
|
||||
// we statically limit the minimum phosphor triad size. Larger values are
|
||||
// faster, but the limit IS enforced (static option only, forever);
|
||||
// range [1, mask_texture_small_size/mask_triads_per_tile]
|
||||
// TODO: Make this 1.0 and compensate with smarter sampling!
|
||||
static const float mask_min_allowed_triad_size = 2.0;
|
||||
|
||||
// GEOMETRY:
|
||||
// Geometry mode:
|
||||
// 0: Off (default), 1: Spherical mapping (like cgwg's),
|
||||
// 2: Alt. spherical mapping (more bulbous), 3: Cylindrical/Trinitron
|
||||
static const float geom_mode_static = 0.0; // range [0, 3]
|
||||
// Radius of curvature: Measured in units of your viewport's diagonal size.
|
||||
static const float geom_radius_static = 2.0; // range [1/(2*pi), 1024]
|
||||
// View dist is the distance from the player to their physical screen, in
|
||||
// units of the viewport's diagonal size. It controls the field of view.
|
||||
static const float geom_view_dist_static = 2.0; // range [0.5, 1024]
|
||||
// Tilt angle in radians (clockwise around up and right vectors):
|
||||
static const float2 geom_tilt_angle_static = float2(0.0, 0.0); // range [-pi, pi]
|
||||
// Aspect ratio: When the true viewport size is unknown, this value is used
|
||||
// to help convert between the phosphor triad size and count, along with
|
||||
// the mask_resize_viewport_scale constant from user-cgp-constants.h. Set
|
||||
// this equal to Retroarch's display aspect ratio (DAR) for best results;
|
||||
// range [1, geom_max_aspect_ratio from user-cgp-constants.h];
|
||||
// default (256/224)*(54/47) = 1.313069909 (see below)
|
||||
static const float geom_aspect_ratio_static = 1.313069909;
|
||||
// Before getting into overscan, here's some general aspect ratio info:
|
||||
// - DAR = display aspect ratio = SAR * PAR; as in your Retroarch setting
|
||||
// - SAR = storage aspect ratio = DAR / PAR; square pixel emulator frame AR
|
||||
// - PAR = pixel aspect ratio = DAR / SAR; holds regardless of cropping
|
||||
// Geometry processing has to "undo" the screen-space 2D DAR to calculate
|
||||
// 3D view vectors, then reapplies the aspect ratio to the simulated CRT in
|
||||
// uv-space. To ensure the source SAR is intended for a ~4:3 DAR, either:
|
||||
// a.) Enable Retroarch's "Crop Overscan"
|
||||
// b.) Readd horizontal padding: Set overscan to e.g. N*(1.0, 240.0/224.0)
|
||||
// Real consoles use horizontal black padding in the signal, but emulators
|
||||
// often crop this without cropping the vertical padding; a 256x224 [S]NES
|
||||
// frame (8:7 SAR) is intended for a ~4:3 DAR, but a 256x240 frame is not.
|
||||
// The correct [S]NES PAR is 54:47, found by blargg and NewRisingSun:
|
||||
// http://board.zsnes.com/phpBB3/viewtopic.php?f=22&t=11928&start=50
|
||||
// http://forums.nesdev.com/viewtopic.php?p=24815#p24815
|
||||
// For flat output, it's okay to set DAR = [existing] SAR * [correct] PAR
|
||||
// without doing a. or b., but horizontal image borders will be tighter
|
||||
// than vertical ones, messing up curvature and overscan. Fixing the
|
||||
// padding first corrects this.
|
||||
// Overscan: Amount to "zoom in" before cropping. You can zoom uniformly
|
||||
// or adjust x/y independently to e.g. readd horizontal padding, as noted
|
||||
// above: Values < 1.0 zoom out; range (0, inf)
|
||||
static const float2 geom_overscan_static = float2(1.0, 1.0);// * 1.005 * (1.0, 240/224.0)
|
||||
// Compute a proper pixel-space to texture-space matrix even without ddx()/
|
||||
// ddy()? This is ~8.5% slower but improves antialiasing/subpixel filtering
|
||||
// with strong curvature (static option only for now).
|
||||
static const bool geom_force_correct_tangent_matrix = true;
|
||||
|
||||
// BORDERS:
|
||||
// Rounded border size in texture uv coords:
|
||||
static const float border_size_static = 0.015; // range [0, 0.5]
|
||||
// Border darkness: Moderate values darken the border smoothly, and high
|
||||
// values make the image very dark just inside the border:
|
||||
static const float border_darkness_static = 2.0; // range [0, inf)
|
||||
// Border compression: High numbers compress border transitions, narrowing
|
||||
// the dark border area.
|
||||
static const float border_compress_static = 2.5; // range [1, inf)
|
||||
|
||||
|
||||
#endif // USER_SETTINGS_H
|
||||
|
|
@ -0,0 +1,92 @@
|
|||
#ifndef USER_SETTINGS_H
|
||||
#define USER_SETTINGS_H
|
||||
|
||||
///////////////////////////// DRIVER CAPABILITIES ////////////////////////////
|
||||
|
||||
//#define DRIVERS_ALLOW_DERIVATIVES
|
||||
#ifdef DRIVERS_ALLOW_DERIVATIVES
|
||||
#define DRIVERS_ALLOW_FINE_DERIVATIVES
|
||||
#endif
|
||||
//#define DRIVERS_ALLOW_DYNAMIC_BRANCHES
|
||||
//#define ACCOMODATE_POSSIBLE_DYNAMIC_LOOPS
|
||||
//#define DRIVERS_ALLOW_TEX2DLOD
|
||||
//#define DRIVERS_ALLOW_TEX2DBIAS
|
||||
#define INTEGRATED_GRAPHICS_COMPATIBILITY_MODE
|
||||
|
||||
|
||||
//////////////////////////// USER CODEPATH OPTIONS ///////////////////////////
|
||||
|
||||
#define RUNTIME_SHADER_PARAMS_ENABLE
|
||||
#define RUNTIME_PHOSPHOR_BLOOM_SIGMA
|
||||
#define RUNTIME_ANTIALIAS_WEIGHTS
|
||||
//#define RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS
|
||||
#define RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE
|
||||
#define RUNTIME_GEOMETRY_TILT
|
||||
#define RUNTIME_GEOMETRY_MODE
|
||||
#define FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
|
||||
#define PHOSPHOR_MASK_MANUALLY_RESIZE
|
||||
#define PHOSPHOR_MASK_RESIZE_LANCZOS_WINDOW
|
||||
#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_3_PIXELS
|
||||
//#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_6_PIXELS
|
||||
//#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_9_PIXELS
|
||||
//#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_12_PIXELS
|
||||
|
||||
|
||||
/////////////////////////////// USER PARAMETERS //////////////////////////////
|
||||
|
||||
static const float crt_gamma_static = 2.5; // range [1, 5]
|
||||
static const float lcd_gamma_static = 2.2; // range [1, 5]
|
||||
static const float levels_contrast_static = 1.0; // range [0, 4)
|
||||
static const float levels_autodim_temp = 0.5; // range (0, 1]
|
||||
static const float halation_weight_static = 0.0; // range [0, 1]
|
||||
static const float diffusion_weight_static = 0.075; // range [0, 1]
|
||||
static const float bloom_underestimate_levels_static = 0.8; // range [0, 5]
|
||||
static const float bloom_excess_static = 0.0; // range [0, 1]
|
||||
static const float bloom_approx_filter_static = 0.0;
|
||||
static const float beam_num_scanlines = 3.0; // range [2, 6]
|
||||
static const bool beam_generalized_gaussian = true;
|
||||
static const float beam_antialias_level = 1.0; // range [0, 2]
|
||||
static const float beam_min_sigma_static = 0.02; // range (0, 1]
|
||||
static const float beam_max_sigma_static = 0.3; // range (0, 1]
|
||||
static const float beam_spot_shape_function = 0.0;
|
||||
static const float beam_spot_power_static = 1.0/3.0; // range (0, 16]
|
||||
static const float beam_min_shape_static = 2.0; // range [2, 32]
|
||||
static const float beam_max_shape_static = 4.0; // range [2, 32]
|
||||
static const float beam_shape_power_static = 1.0/4.0; // range (0, 16]
|
||||
static const float beam_horiz_filter_static = 0.0;
|
||||
static const float beam_horiz_sigma_static = 0.35; // range (0, 2/3]
|
||||
static const float beam_horiz_linear_rgb_weight_static = 1.0; // range [0, 1]
|
||||
static const bool beam_misconvergence = true;
|
||||
static const float2 convergence_offsets_r_static = float2(0.1, 0.2);
|
||||
static const float2 convergence_offsets_g_static = float2(0.3, 0.4);
|
||||
static const float2 convergence_offsets_b_static = float2(0.5, 0.6);
|
||||
static const bool interlace_detect = true;
|
||||
static const bool interlace_1080i_static = false;
|
||||
static const bool interlace_bff_static = false;
|
||||
static const float aa_level = 12.0; // range [0, 24]
|
||||
static const float aa_filter = 6.0; // range [0, 9]
|
||||
static const bool aa_temporal = false;
|
||||
static const float2 aa_subpixel_r_offset_static = float2(-1.0/3.0, 0.0);//float2(0.0);
|
||||
static const float aa_cubic_c_static = 0.5; // range [0, 4]
|
||||
static const float aa_gauss_sigma_static = 0.5; // range [0.0625, 1.0]
|
||||
static const float mask_type_static = 1.0; // range [0, 2]
|
||||
static const float mask_sample_mode_static = 0.0; // range [0, 2]
|
||||
static const float mask_specify_num_triads_static = 0.0; // range [0, 1]
|
||||
static const float mask_triad_size_desired_static = 24.0 / 8.0;
|
||||
static const float mask_num_triads_desired_static = 480.0;
|
||||
static const float mask_sinc_lobes = 3.0; // range [2, 4]
|
||||
static const float mask_min_allowed_triad_size = 2.0;
|
||||
static const float geom_mode_static = 0.0; // range [0, 3]
|
||||
static const float geom_radius_static = 2.0; // range [1/(2*pi), 1024]
|
||||
static const float geom_view_dist_static = 2.0; // range [0.5, 1024]
|
||||
static const float2 geom_tilt_angle_static = float2(0.0, 0.0); // range [-pi, pi]
|
||||
static const float geom_aspect_ratio_static = 1.313069909;
|
||||
static const float2 geom_overscan_static = float2(1.0, 1.0);// * 1.005 * (1.0, 240/224.0)
|
||||
static const bool geom_force_correct_tangent_matrix = true;
|
||||
static const float border_size_static = 0.015; // range [0, 0.5]
|
||||
static const float border_darkness_static = 2.0; // range [0, inf)
|
||||
static const float border_compress_static = 2.5; // range [1, inf)
|
||||
|
||||
|
||||
#endif // USER_SETTINGS_H
|
||||
|
|
@ -0,0 +1,359 @@
|
|||
#ifndef USER_SETTINGS_H
|
||||
#define USER_SETTINGS_H
|
||||
|
||||
///////////////////////////// DRIVER CAPABILITIES ////////////////////////////
|
||||
|
||||
// The Cg compiler uses different "profiles" with different capabilities.
|
||||
// This shader requires a Cg compilation profile >= arbfp1, but a few options
|
||||
// require higher profiles like fp30 or fp40. The shader can't detect profile
|
||||
// or driver capabilities, so instead you must comment or uncomment the lines
|
||||
// below with "//" before "#define." Disable an option if you get compilation
|
||||
// errors resembling those listed. Generally speaking, all of these options
|
||||
// will run on nVidia cards, but only DRIVERS_ALLOW_TEX2DBIAS (if that) is
|
||||
// likely to run on ATI/AMD, due to the Cg compiler's profile limitations.
|
||||
|
||||
// Derivatives: Unsupported on fp20, ps_1_1, ps_1_2, ps_1_3, and arbfp1.
|
||||
// Among other things, derivatives help us fix anisotropic filtering artifacts
|
||||
// with curved manually tiled phosphor mask coords. Related errors:
|
||||
// error C3004: function "float2 ddx(float2);" not supported in this profile
|
||||
// error C3004: function "float2 ddy(float2);" not supported in this profile
|
||||
//#define DRIVERS_ALLOW_DERIVATIVES
|
||||
|
||||
// Fine derivatives: Unsupported on older ATI cards.
|
||||
// Fine derivatives enable 2x2 fragment block communication, letting us perform
|
||||
// fast single-pass blur operations. If your card uses coarse derivatives and
|
||||
// these are enabled, blurs could look broken. Derivatives are a prerequisite.
|
||||
#ifdef DRIVERS_ALLOW_DERIVATIVES
|
||||
#define DRIVERS_ALLOW_FINE_DERIVATIVES
|
||||
#endif
|
||||
|
||||
// Dynamic looping: Requires an fp30 or newer profile.
|
||||
// This makes phosphor mask resampling faster in some cases. Related errors:
|
||||
// error C5013: profile does not support "for" statements and "for" could not
|
||||
// be unrolled
|
||||
//#define DRIVERS_ALLOW_DYNAMIC_BRANCHES
|
||||
|
||||
// Without DRIVERS_ALLOW_DYNAMIC_BRANCHES, we need to use unrollable loops.
|
||||
// Using one static loop avoids overhead if the user is right, but if the user
|
||||
// is wrong (loops are allowed), breaking a loop into if-blocked pieces with a
|
||||
// binary search can potentially save some iterations. However, it may fail:
|
||||
// error C6001: Temporary register limit of 32 exceeded; 35 registers
|
||||
// needed to compile program
|
||||
//#define ACCOMODATE_POSSIBLE_DYNAMIC_LOOPS
|
||||
|
||||
// tex2Dlod: Requires an fp40 or newer profile. This can be used to disable
|
||||
// anisotropic filtering, thereby fixing related artifacts. Related errors:
|
||||
// error C3004: function "float4 tex2Dlod(sampler2D, float4);" not supported in
|
||||
// this profile
|
||||
//#define DRIVERS_ALLOW_TEX2DLOD
|
||||
|
||||
// tex2Dbias: Requires an fp30 or newer profile. This can be used to alleviate
|
||||
// artifacts from anisotropic filtering and mipmapping. Related errors:
|
||||
// error C3004: function "float4 tex2Dbias(sampler2D, float4);" not supported
|
||||
// in this profile
|
||||
//#define DRIVERS_ALLOW_TEX2DBIAS
|
||||
|
||||
// Integrated graphics compatibility: Integrated graphics like Intel HD 4000
|
||||
// impose stricter limitations on register counts and instructions. Enable
|
||||
// INTEGRATED_GRAPHICS_COMPATIBILITY_MODE if you still see error C6001 or:
|
||||
// error C6002: Instruction limit of 1024 exceeded: 1523 instructions needed
|
||||
// to compile program.
|
||||
// Enabling integrated graphics compatibility mode will automatically disable:
|
||||
// 1.) PHOSPHOR_MASK_MANUALLY_RESIZE: The phosphor mask will be softer.
|
||||
// (This may be reenabled in a later release.)
|
||||
// 2.) RUNTIME_GEOMETRY_MODE
|
||||
// 3.) The high-quality 4x4 Gaussian resize for the bloom approximation
|
||||
#define INTEGRATED_GRAPHICS_COMPATIBILITY_MODE
|
||||
|
||||
|
||||
//////////////////////////// USER CODEPATH OPTIONS ///////////////////////////
|
||||
|
||||
// To disable a #define option, turn its line into a comment with "//."
|
||||
|
||||
// RUNTIME VS. COMPILE-TIME OPTIONS (Major Performance Implications):
|
||||
// Enable runtime shader parameters in the Retroarch (etc.) GUI? They override
|
||||
// many of the options in this file and allow real-time tuning, but many of
|
||||
// them are slower. Disabling them and using this text file will boost FPS.
|
||||
#define RUNTIME_SHADER_PARAMS_ENABLE
|
||||
// Specify the phosphor bloom sigma at runtime? This option is 10% slower, but
|
||||
// it's the only way to do a wide-enough full bloom with a runtime dot pitch.
|
||||
#define RUNTIME_PHOSPHOR_BLOOM_SIGMA
|
||||
// Specify antialiasing weight parameters at runtime? (Costs ~20% with cubics)
|
||||
#define RUNTIME_ANTIALIAS_WEIGHTS
|
||||
// Specify subpixel offsets at runtime? (WARNING: EXTREMELY EXPENSIVE!)
|
||||
//#define RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS
|
||||
// Make beam_horiz_filter and beam_horiz_linear_rgb_weight into runtime shader
|
||||
// parameters? This will require more math or dynamic branching.
|
||||
#define RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE
|
||||
// Specify the tilt at runtime? This makes things about 3% slower.
|
||||
#define RUNTIME_GEOMETRY_TILT
|
||||
// Specify the geometry mode at runtime?
|
||||
#define RUNTIME_GEOMETRY_MODE
|
||||
// Specify the phosphor mask type (aperture grille, slot mask, shadow mask) and
|
||||
// mode (Lanczos-resize, hardware resize, or tile 1:1) at runtime, even without
|
||||
// dynamic branches? This is cheap if mask_resize_viewport_scale is small.
|
||||
#define FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
|
||||
|
||||
// PHOSPHOR MASK:
|
||||
// Manually resize the phosphor mask for best results (slower)? Disabling this
|
||||
// removes the option to do so, but it may be faster without dynamic branches.
|
||||
#define PHOSPHOR_MASK_MANUALLY_RESIZE
|
||||
// If we sinc-resize the mask, should we Lanczos-window it (slower but better)?
|
||||
#define PHOSPHOR_MASK_RESIZE_LANCZOS_WINDOW
|
||||
// Larger blurs are expensive, but we need them to blur larger triads. We can
|
||||
// detect the right blur if the triad size is static or our profile allows
|
||||
// dynamic branches, but otherwise we use the largest blur the user indicates
|
||||
// they might need:
|
||||
#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_3_PIXELS
|
||||
//#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_6_PIXELS
|
||||
//#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_9_PIXELS
|
||||
//#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_12_PIXELS
|
||||
// Here's a helpful chart:
|
||||
// MaxTriadSize BlurSize MinTriadCountsByResolution
|
||||
// 3.0 9.0 480/640/960/1920 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
|
||||
// 6.0 17.0 240/320/480/960 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
|
||||
// 9.0 25.0 160/213/320/640 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
|
||||
// 12.0 31.0 120/160/240/480 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
|
||||
// 18.0 43.0 80/107/160/320 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
|
||||
|
||||
|
||||
/////////////////////////////// USER PARAMETERS //////////////////////////////
|
||||
|
||||
// Note: Many of these static parameters are overridden by runtime shader
|
||||
// parameters when those are enabled. However, many others are static codepath
|
||||
// options that were cleaner or more convert to code as static constants.
|
||||
|
||||
// GAMMA:
|
||||
static const float crt_gamma_static = 2.5; // range [1, 5]
|
||||
static const float lcd_gamma_static = 2.2; // range [1, 5]
|
||||
|
||||
// LEVELS MANAGEMENT:
|
||||
// Control the final multiplicative image contrast:
|
||||
static const float levels_contrast_static = 1.0; // range [0, 4)
|
||||
// We auto-dim to avoid clipping between passes and restore brightness
|
||||
// later. Control the dim factor here: Lower values clip less but crush
|
||||
// blacks more (static only for now).
|
||||
static const float levels_autodim_temp = 0.5; // range (0, 1]
|
||||
|
||||
// HALATION/DIFFUSION/BLOOM:
|
||||
// Halation weight: How much energy should be lost to electrons bounding
|
||||
// around under the CRT glass and exciting random phosphors?
|
||||
static const float halation_weight_static = 0.0; // range [0, 1]
|
||||
// Refractive diffusion weight: How much light should spread/diffuse from
|
||||
// refracting through the CRT glass?
|
||||
static const float diffusion_weight_static = 0.075; // range [0, 1]
|
||||
// Underestimate brightness: Bright areas bloom more, but we can base the
|
||||
// bloom brightpass on a lower brightness to sharpen phosphors, or a higher
|
||||
// brightness to soften them. Low values clip, but >= 0.8 looks okay.
|
||||
static const float bloom_underestimate_levels_static = 0.8; // range [0, 5]
|
||||
// Blur all colors more than necessary for a softer phosphor bloom?
|
||||
static const float bloom_excess_static = 0.0; // range [0, 1]
|
||||
// The BLOOM_APPROX pass approximates a phosphor blur early on with a small
|
||||
// blurred resize of the input (convergence offsets are applied as well).
|
||||
// There are three filter options (static option only for now):
|
||||
// 0.) Bilinear resize: A fast, close approximation to a 4x4 resize
|
||||
// if min_allowed_viewport_triads and the BLOOM_APPROX resolution are sane
|
||||
// and beam_max_sigma is low.
|
||||
// 1.) 3x3 resize blur: Medium speed, soft/smeared from bilinear blurring,
|
||||
// always uses a static sigma regardless of beam_max_sigma or
|
||||
// mask_num_triads_desired.
|
||||
// 2.) True 4x4 Gaussian resize: Slowest, technically correct.
|
||||
// These options are more pronounced for the fast, unbloomed shader version.
|
||||
static const float bloom_approx_filter_static = 0.0;
|
||||
|
||||
// ELECTRON BEAM SCANLINE DISTRIBUTION:
|
||||
// How many scanlines should contribute light to each pixel? Using more
|
||||
// scanlines is slower (especially for a generalized Gaussian) but less
|
||||
// distorted with larger beam sigmas (especially for a pure Gaussian). The
|
||||
// max_beam_sigma at which the closest unused weight is guaranteed <
|
||||
// 1.0/255.0 (for a 3x antialiased pure Gaussian) is:
|
||||
// 2 scanlines: max_beam_sigma = 0.2089; distortions begin ~0.34; 141.7 FPS pure, 131.9 FPS generalized
|
||||
// 3 scanlines, max_beam_sigma = 0.3879; distortions begin ~0.52; 137.5 FPS pure; 123.8 FPS generalized
|
||||
// 4 scanlines, max_beam_sigma = 0.5723; distortions begin ~0.70; 134.7 FPS pure; 117.2 FPS generalized
|
||||
// 5 scanlines, max_beam_sigma = 0.7591; distortions begin ~0.89; 131.6 FPS pure; 112.1 FPS generalized
|
||||
// 6 scanlines, max_beam_sigma = 0.9483; distortions begin ~1.08; 127.9 FPS pure; 105.6 FPS generalized
|
||||
static const float beam_num_scanlines = 3.0; // range [2, 6]
|
||||
// A generalized Gaussian beam varies shape with color too, now just width.
|
||||
// It's slower but more flexible (static option only for now).
|
||||
static const bool beam_generalized_gaussian = true;
|
||||
// What kind of scanline antialiasing do you want?
|
||||
// 0: Sample weights at 1x; 1: Sample weights at 3x; 2: Compute an integral
|
||||
// Integrals are slow (especially for generalized Gaussians) and rarely any
|
||||
// better than 3x antialiasing (static option only for now).
|
||||
static const float beam_antialias_level = 1.0; // range [0, 2]
|
||||
// Min/max standard deviations for scanline beams: Higher values widen and
|
||||
// soften scanlines. Depending on other options, low min sigmas can alias.
|
||||
static const float beam_min_sigma_static = 0.02; // range (0, 1]
|
||||
static const float beam_max_sigma_static = 0.3; // range (0, 1]
|
||||
// Beam width varies as a function of color: A power function (0) is more
|
||||
// configurable, but a spherical function (1) gives the widest beam
|
||||
// variability without aliasing (static option only for now).
|
||||
static const float beam_spot_shape_function = 0.0;
|
||||
// Spot shape power: Powers <= 1 give smoother spot shapes but lower
|
||||
// sharpness. Powers >= 1.0 are awful unless mix/max sigmas are close.
|
||||
static const float beam_spot_power_static = 1.0/3.0; // range (0, 16]
|
||||
// Generalized Gaussian max shape parameters: Higher values give flatter
|
||||
// scanline plateaus and steeper dropoffs, simultaneously widening and
|
||||
// sharpening scanlines at the cost of aliasing. 2.0 is pure Gaussian, and
|
||||
// values > ~40.0 cause artifacts with integrals.
|
||||
static const float beam_min_shape_static = 2.0; // range [2, 32]
|
||||
static const float beam_max_shape_static = 4.0; // range [2, 32]
|
||||
// Generalized Gaussian shape power: Affects how quickly the distribution
|
||||
// changes shape from Gaussian to steep/plateaued as color increases from 0
|
||||
// to 1.0. Higher powers appear softer for most colors, and lower powers
|
||||
// appear sharper for most colors.
|
||||
static const float beam_shape_power_static = 1.0/4.0; // range (0, 16]
|
||||
// What filter should be used to sample scanlines horizontally?
|
||||
// 0: Quilez (fast), 1: Gaussian (configurable), 2: Lanczos2 (sharp)
|
||||
static const float beam_horiz_filter_static = 0.0;
|
||||
// Standard deviation for horizontal Gaussian resampling:
|
||||
static const float beam_horiz_sigma_static = 0.35; // range (0, 2/3]
|
||||
// Do horizontal scanline sampling in linear RGB (correct light mixing),
|
||||
// gamma-encoded RGB (darker, hard spot shape, may better match bandwidth-
|
||||
// limiting circuitry in some CRT's), or a weighted avg.?
|
||||
static const float beam_horiz_linear_rgb_weight_static = 1.0; // range [0, 1]
|
||||
// Simulate scanline misconvergence? This needs 3x horizontal texture
|
||||
// samples and 3x texture samples of BLOOM_APPROX and HALATION_BLUR in
|
||||
// later passes (static option only for now).
|
||||
static const bool beam_misconvergence = true;
|
||||
// Convergence offsets in x/y directions for R/G/B scanline beams in units
|
||||
// of scanlines. Positive offsets go right/down; ranges [-2, 2]
|
||||
static const float2 convergence_offsets_r_static = float2(0.1, 0.2);
|
||||
static const float2 convergence_offsets_g_static = float2(0.3, 0.4);
|
||||
static const float2 convergence_offsets_b_static = float2(0.5, 0.6);
|
||||
// Detect interlacing (static option only for now)?
|
||||
static const bool interlace_detect = true;
|
||||
// Assume 1080-line sources are interlaced?
|
||||
static const bool interlace_1080i_static = false;
|
||||
// For interlaced sources, assume TFF (top-field first) or BFF order?
|
||||
// (Whether this matters depends on the nature of the interlaced input.)
|
||||
static const bool interlace_bff_static = false;
|
||||
|
||||
// ANTIALIASING:
|
||||
// What AA level do you want for curvature/overscan/subpixels? Options:
|
||||
// 0x (none), 1x (sample subpixels), 4x, 5x, 6x, 7x, 8x, 12x, 16x, 20x, 24x
|
||||
// (Static option only for now)
|
||||
static const float aa_level = 12.0; // range [0, 24]
|
||||
// What antialiasing filter do you want (static option only)? Options:
|
||||
// 0: Box (separable), 1: Box (cylindrical),
|
||||
// 2: Tent (separable), 3: Tent (cylindrical),
|
||||
// 4: Gaussian (separable), 5: Gaussian (cylindrical),
|
||||
// 6: Cubic* (separable), 7: Cubic* (cylindrical, poor)
|
||||
// 8: Lanczos Sinc (separable), 9: Lanczos Jinc (cylindrical, poor)
|
||||
// * = Especially slow with RUNTIME_ANTIALIAS_WEIGHTS
|
||||
static const float aa_filter = 6.0; // range [0, 9]
|
||||
// Flip the sample grid on odd/even frames (static option only for now)?
|
||||
static const bool aa_temporal = false;
|
||||
// Use RGB subpixel offsets for antialiasing? The pixel is at green, and
|
||||
// the blue offset is the negative r offset; range [0, 0.5]
|
||||
static const float2 aa_subpixel_r_offset_static = float2(-1.0/3.0, 0.0);//float2(0.0);
|
||||
// Cubics: See http://www.imagemagick.org/Usage/filter/#mitchell
|
||||
// 1.) "Keys cubics" with B = 1 - 2C are considered the highest quality.
|
||||
// 2.) C = 0.5 (default) is Catmull-Rom; higher C's apply sharpening.
|
||||
// 3.) C = 1.0/3.0 is the Mitchell-Netravali filter.
|
||||
// 4.) C = 0.0 is a soft spline filter.
|
||||
static const float aa_cubic_c_static = 0.5; // range [0, 4]
|
||||
// Standard deviation for Gaussian antialiasing: Try 0.5/aa_pixel_diameter.
|
||||
static const float aa_gauss_sigma_static = 0.5; // range [0.0625, 1.0]
|
||||
|
||||
// PHOSPHOR MASK:
|
||||
// Mask type: 0 = aperture grille, 1 = slot mask, 2 = EDP shadow mask
|
||||
static const float mask_type_static = 1.0; // range [0, 2]
|
||||
// We can sample the mask three ways. Pick 2/3 from: Pretty/Fast/Flexible.
|
||||
// 0.) Sinc-resize to the desired dot pitch manually (pretty/slow/flexible).
|
||||
// This requires PHOSPHOR_MASK_MANUALLY_RESIZE to be #defined.
|
||||
// 1.) Hardware-resize to the desired dot pitch (ugly/fast/flexible). This
|
||||
// is halfway decent with LUT mipmapping but atrocious without it.
|
||||
// 2.) Tile it without resizing at a 1:1 texel:pixel ratio for flat coords
|
||||
// (pretty/fast/inflexible). Each input LUT has a fixed dot pitch.
|
||||
// This mode reuses the same masks, so triads will be enormous unless
|
||||
// you change the mask LUT filenames in your .cgp file.
|
||||
static const float mask_sample_mode_static = 0.0; // range [0, 2]
|
||||
// Prefer setting the triad size (0.0) or number on the screen (1.0)?
|
||||
// If RUNTIME_PHOSPHOR_BLOOM_SIGMA isn't #defined, the specified triad size
|
||||
// will always be used to calculate the full bloom sigma statically.
|
||||
static const float mask_specify_num_triads_static = 0.0; // range [0, 1]
|
||||
// Specify the phosphor triad size, in pixels. Each tile (usually with 8
|
||||
// triads) will be rounded to the nearest integer tile size and clamped to
|
||||
// obey minimum size constraints (imposed to reduce downsize taps) and
|
||||
// maximum size constraints (imposed to have a sane MASK_RESIZE FBO size).
|
||||
// To increase the size limit, double the viewport-relative scales for the
|
||||
// two MASK_RESIZE passes in crt-royale.cgp and user-cgp-contants.h.
|
||||
// range [1, mask_texture_small_size/mask_triads_per_tile]
|
||||
static const float mask_triad_size_desired_static = 24.0 / 8.0;
|
||||
// If mask_specify_num_triads is 1.0/true, we'll go by this instead (the
|
||||
// final size will be rounded and constrained as above); default 480.0
|
||||
static const float mask_num_triads_desired_static = 480.0;
|
||||
// How many lobes should the sinc/Lanczos resizer use? More lobes require
|
||||
// more samples and avoid moire a bit better, but some is unavoidable
|
||||
// depending on the destination size (static option for now).
|
||||
static const float mask_sinc_lobes = 3.0; // range [2, 4]
|
||||
// The mask is resized using a variable number of taps in each dimension,
|
||||
// but some Cg profiles always fetch a constant number of taps no matter
|
||||
// what (no dynamic branching). We can limit the maximum number of taps if
|
||||
// we statically limit the minimum phosphor triad size. Larger values are
|
||||
// faster, but the limit IS enforced (static option only, forever);
|
||||
// range [1, mask_texture_small_size/mask_triads_per_tile]
|
||||
// TODO: Make this 1.0 and compensate with smarter sampling!
|
||||
static const float mask_min_allowed_triad_size = 2.0;
|
||||
|
||||
// GEOMETRY:
|
||||
// Geometry mode:
|
||||
// 0: Off (default), 1: Spherical mapping (like cgwg's),
|
||||
// 2: Alt. spherical mapping (more bulbous), 3: Cylindrical/Trinitron
|
||||
static const float geom_mode_static = 0.0; // range [0, 3]
|
||||
// Radius of curvature: Measured in units of your viewport's diagonal size.
|
||||
static const float geom_radius_static = 2.0; // range [1/(2*pi), 1024]
|
||||
// View dist is the distance from the player to their physical screen, in
|
||||
// units of the viewport's diagonal size. It controls the field of view.
|
||||
static const float geom_view_dist_static = 2.0; // range [0.5, 1024]
|
||||
// Tilt angle in radians (clockwise around up and right vectors):
|
||||
static const float2 geom_tilt_angle_static = float2(0.0, 0.0); // range [-pi, pi]
|
||||
// Aspect ratio: When the true viewport size is unknown, this value is used
|
||||
// to help convert between the phosphor triad size and count, along with
|
||||
// the mask_resize_viewport_scale constant from user-cgp-constants.h. Set
|
||||
// this equal to Retroarch's display aspect ratio (DAR) for best results;
|
||||
// range [1, geom_max_aspect_ratio from user-cgp-constants.h];
|
||||
// default (256/224)*(54/47) = 1.313069909 (see below)
|
||||
static const float geom_aspect_ratio_static = 1.313069909;
|
||||
// Before getting into overscan, here's some general aspect ratio info:
|
||||
// - DAR = display aspect ratio = SAR * PAR; as in your Retroarch setting
|
||||
// - SAR = storage aspect ratio = DAR / PAR; square pixel emulator frame AR
|
||||
// - PAR = pixel aspect ratio = DAR / SAR; holds regardless of cropping
|
||||
// Geometry processing has to "undo" the screen-space 2D DAR to calculate
|
||||
// 3D view vectors, then reapplies the aspect ratio to the simulated CRT in
|
||||
// uv-space. To ensure the source SAR is intended for a ~4:3 DAR, either:
|
||||
// a.) Enable Retroarch's "Crop Overscan"
|
||||
// b.) Readd horizontal padding: Set overscan to e.g. N*(1.0, 240.0/224.0)
|
||||
// Real consoles use horizontal black padding in the signal, but emulators
|
||||
// often crop this without cropping the vertical padding; a 256x224 [S]NES
|
||||
// frame (8:7 SAR) is intended for a ~4:3 DAR, but a 256x240 frame is not.
|
||||
// The correct [S]NES PAR is 54:47, found by blargg and NewRisingSun:
|
||||
// http://board.zsnes.com/phpBB3/viewtopic.php?f=22&t=11928&start=50
|
||||
// http://forums.nesdev.com/viewtopic.php?p=24815#p24815
|
||||
// For flat output, it's okay to set DAR = [existing] SAR * [correct] PAR
|
||||
// without doing a. or b., but horizontal image borders will be tighter
|
||||
// than vertical ones, messing up curvature and overscan. Fixing the
|
||||
// padding first corrects this.
|
||||
// Overscan: Amount to "zoom in" before cropping. You can zoom uniformly
|
||||
// or adjust x/y independently to e.g. readd horizontal padding, as noted
|
||||
// above: Values < 1.0 zoom out; range (0, inf)
|
||||
static const float2 geom_overscan_static = float2(1.0, 1.0);// * 1.005 * (1.0, 240/224.0)
|
||||
// Compute a proper pixel-space to texture-space matrix even without ddx()/
|
||||
// ddy()? This is ~8.5% slower but improves antialiasing/subpixel filtering
|
||||
// with strong curvature (static option only for now).
|
||||
static const bool geom_force_correct_tangent_matrix = true;
|
||||
|
||||
// BORDERS:
|
||||
// Rounded border size in texture uv coords:
|
||||
static const float border_size_static = 0.015; // range [0, 0.5]
|
||||
// Border darkness: Moderate values darken the border smoothly, and high
|
||||
// values make the image very dark just inside the border:
|
||||
static const float border_darkness_static = 2.0; // range [0, inf)
|
||||
// Border compression: High numbers compress border transitions, narrowing
|
||||
// the dark border area.
|
||||
static const float border_compress_static = 2.5; // range [1, inf)
|
||||
|
||||
|
||||
#endif // USER_SETTINGS_H
|
||||
|
|
@ -0,0 +1,92 @@
|
|||
#ifndef USER_SETTINGS_H
|
||||
#define USER_SETTINGS_H
|
||||
|
||||
///////////////////////////// DRIVER CAPABILITIES ////////////////////////////
|
||||
|
||||
#define DRIVERS_ALLOW_DERIVATIVES
|
||||
#ifdef DRIVERS_ALLOW_DERIVATIVES
|
||||
#define DRIVERS_ALLOW_FINE_DERIVATIVES
|
||||
#endif
|
||||
#define DRIVERS_ALLOW_DYNAMIC_BRANCHES
|
||||
#define ACCOMODATE_POSSIBLE_DYNAMIC_LOOPS
|
||||
#define DRIVERS_ALLOW_TEX2DLOD
|
||||
#define DRIVERS_ALLOW_TEX2DBIAS
|
||||
//#define INTEGRATED_GRAPHICS_COMPATIBILITY_MODE
|
||||
|
||||
|
||||
//////////////////////////// USER CODEPATH OPTIONS ///////////////////////////
|
||||
|
||||
#define RUNTIME_SHADER_PARAMS_ENABLE
|
||||
#define RUNTIME_PHOSPHOR_BLOOM_SIGMA
|
||||
#define RUNTIME_ANTIALIAS_WEIGHTS
|
||||
//#define RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS
|
||||
#define RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE
|
||||
#define RUNTIME_GEOMETRY_TILT
|
||||
#define RUNTIME_GEOMETRY_MODE
|
||||
#define FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
|
||||
#define PHOSPHOR_MASK_MANUALLY_RESIZE
|
||||
#define PHOSPHOR_MASK_RESIZE_LANCZOS_WINDOW
|
||||
#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_3_PIXELS
|
||||
//#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_6_PIXELS
|
||||
//#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_9_PIXELS
|
||||
//#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_12_PIXELS
|
||||
|
||||
|
||||
/////////////////////////////// USER PARAMETERS //////////////////////////////
|
||||
|
||||
static const float crt_gamma_static = 2.5; // range [1, 5]
|
||||
static const float lcd_gamma_static = 2.2; // range [1, 5]
|
||||
static const float levels_contrast_static = 1.0; // range [0, 4)
|
||||
static const float levels_autodim_temp = 0.5; // range (0, 1]
|
||||
static const float halation_weight_static = 0.0; // range [0, 1]
|
||||
static const float diffusion_weight_static = 0.075; // range [0, 1]
|
||||
static const float bloom_underestimate_levels_static = 0.8; // range [0, 5]
|
||||
static const float bloom_excess_static = 0.0; // range [0, 1]
|
||||
static const float bloom_approx_filter_static = 2.0;
|
||||
static const float beam_num_scanlines = 3.0; // range [2, 6]
|
||||
static const bool beam_generalized_gaussian = true;
|
||||
static const float beam_antialias_level = 1.0; // range [0, 2]
|
||||
static const float beam_min_sigma_static = 0.02; // range (0, 1]
|
||||
static const float beam_max_sigma_static = 0.3; // range (0, 1]
|
||||
static const float beam_spot_shape_function = 0.0;
|
||||
static const float beam_spot_power_static = 1.0/3.0; // range (0, 16]
|
||||
static const float beam_min_shape_static = 2.0; // range [2, 32]
|
||||
static const float beam_max_shape_static = 4.0; // range [2, 32]
|
||||
static const float beam_shape_power_static = 1.0/4.0; // range (0, 16]
|
||||
static const float beam_horiz_filter_static = 0.0;
|
||||
static const float beam_horiz_sigma_static = 0.35; // range (0, 2/3]
|
||||
static const float beam_horiz_linear_rgb_weight_static = 1.0; // range [0, 1]
|
||||
static const bool beam_misconvergence = true;
|
||||
static const float2 convergence_offsets_r_static = float2(0.1, 0.2);
|
||||
static const float2 convergence_offsets_g_static = float2(0.3, 0.4);
|
||||
static const float2 convergence_offsets_b_static = float2(0.5, 0.6);
|
||||
static const bool interlace_detect = true;
|
||||
static const bool interlace_1080i_static = false;
|
||||
static const bool interlace_bff_static = false;
|
||||
static const float aa_level = 12.0; // range [0, 24]
|
||||
static const float aa_filter = 6.0; // range [0, 9]
|
||||
static const bool aa_temporal = false;
|
||||
static const float2 aa_subpixel_r_offset_static = float2(-1.0/3.0, 0.0);//float2(0.0);
|
||||
static const float aa_cubic_c_static = 0.5; // range [0, 4]
|
||||
static const float aa_gauss_sigma_static = 0.5; // range [0.0625, 1.0]
|
||||
static const float mask_type_static = 1.0; // range [0, 2]
|
||||
static const float mask_sample_mode_static = 0.0; // range [0, 2]
|
||||
static const float mask_specify_num_triads_static = 0.0; // range [0, 1]
|
||||
static const float mask_triad_size_desired_static = 24.0 / 8.0;
|
||||
static const float mask_num_triads_desired_static = 480.0;
|
||||
static const float mask_sinc_lobes = 3.0; // range [2, 4]
|
||||
static const float mask_min_allowed_triad_size = 2.0;
|
||||
static const float geom_mode_static = 0.0; // range [0, 3]
|
||||
static const float geom_radius_static = 2.0; // range [1/(2*pi), 1024]
|
||||
static const float geom_view_dist_static = 2.0; // range [0.5, 1024]
|
||||
static const float2 geom_tilt_angle_static = float2(0.0, 0.0); // range [-pi, pi]
|
||||
static const float geom_aspect_ratio_static = 1.313069909;
|
||||
static const float2 geom_overscan_static = float2(1.0, 1.0);// * 1.005 * (1.0, 240/224.0)
|
||||
static const bool geom_force_correct_tangent_matrix = true;
|
||||
static const float border_size_static = 0.015; // range [0, 0.5]
|
||||
static const float border_darkness_static = 2.0; // range [0, inf)
|
||||
static const float border_compress_static = 2.5; // range [1, inf)
|
||||
|
||||
|
||||
#endif // USER_SETTINGS_H
|
||||
|
|
@ -0,0 +1,359 @@
|
|||
#ifndef USER_SETTINGS_H
|
||||
#define USER_SETTINGS_H
|
||||
|
||||
///////////////////////////// DRIVER CAPABILITIES ////////////////////////////
|
||||
|
||||
// The Cg compiler uses different "profiles" with different capabilities.
|
||||
// This shader requires a Cg compilation profile >= arbfp1, but a few options
|
||||
// require higher profiles like fp30 or fp40. The shader can't detect profile
|
||||
// or driver capabilities, so instead you must comment or uncomment the lines
|
||||
// below with "//" before "#define." Disable an option if you get compilation
|
||||
// errors resembling those listed. Generally speaking, all of these options
|
||||
// will run on nVidia cards, but only DRIVERS_ALLOW_TEX2DBIAS (if that) is
|
||||
// likely to run on ATI/AMD, due to the Cg compiler's profile limitations.
|
||||
|
||||
// Derivatives: Unsupported on fp20, ps_1_1, ps_1_2, ps_1_3, and arbfp1.
|
||||
// Among other things, derivatives help us fix anisotropic filtering artifacts
|
||||
// with curved manually tiled phosphor mask coords. Related errors:
|
||||
// error C3004: function "float2 ddx(float2);" not supported in this profile
|
||||
// error C3004: function "float2 ddy(float2);" not supported in this profile
|
||||
#define DRIVERS_ALLOW_DERIVATIVES
|
||||
|
||||
// Fine derivatives: Unsupported on older ATI cards.
|
||||
// Fine derivatives enable 2x2 fragment block communication, letting us perform
|
||||
// fast single-pass blur operations. If your card uses coarse derivatives and
|
||||
// these are enabled, blurs could look broken. Derivatives are a prerequisite.
|
||||
#ifdef DRIVERS_ALLOW_DERIVATIVES
|
||||
#define DRIVERS_ALLOW_FINE_DERIVATIVES
|
||||
#endif
|
||||
|
||||
// Dynamic looping: Requires an fp30 or newer profile.
|
||||
// This makes phosphor mask resampling faster in some cases. Related errors:
|
||||
// error C5013: profile does not support "for" statements and "for" could not
|
||||
// be unrolled
|
||||
#define DRIVERS_ALLOW_DYNAMIC_BRANCHES
|
||||
|
||||
// Without DRIVERS_ALLOW_DYNAMIC_BRANCHES, we need to use unrollable loops.
|
||||
// Using one static loop avoids overhead if the user is right, but if the user
|
||||
// is wrong (loops are allowed), breaking a loop into if-blocked pieces with a
|
||||
// binary search can potentially save some iterations. However, it may fail:
|
||||
// error C6001: Temporary register limit of 32 exceeded; 35 registers
|
||||
// needed to compile program
|
||||
#define ACCOMODATE_POSSIBLE_DYNAMIC_LOOPS
|
||||
|
||||
// tex2Dlod: Requires an fp40 or newer profile. This can be used to disable
|
||||
// anisotropic filtering, thereby fixing related artifacts. Related errors:
|
||||
// error C3004: function "float4 tex2Dlod(sampler2D, float4);" not supported in
|
||||
// this profile
|
||||
#define DRIVERS_ALLOW_TEX2DLOD
|
||||
|
||||
// tex2Dbias: Requires an fp30 or newer profile. This can be used to alleviate
|
||||
// artifacts from anisotropic filtering and mipmapping. Related errors:
|
||||
// error C3004: function "float4 tex2Dbias(sampler2D, float4);" not supported
|
||||
// in this profile
|
||||
#define DRIVERS_ALLOW_TEX2DBIAS
|
||||
|
||||
// Integrated graphics compatibility: Integrated graphics like Intel HD 4000
|
||||
// impose stricter limitations on register counts and instructions. Enable
|
||||
// INTEGRATED_GRAPHICS_COMPATIBILITY_MODE if you still see error C6001 or:
|
||||
// error C6002: Instruction limit of 1024 exceeded: 1523 instructions needed
|
||||
// to compile program.
|
||||
// Enabling integrated graphics compatibility mode will automatically disable:
|
||||
// 1.) PHOSPHOR_MASK_MANUALLY_RESIZE: The phosphor mask will be softer.
|
||||
// (This may be reenabled in a later release.)
|
||||
// 2.) RUNTIME_GEOMETRY_MODE
|
||||
// 3.) The high-quality 4x4 Gaussian resize for the bloom approximation
|
||||
//#define INTEGRATED_GRAPHICS_COMPATIBILITY_MODE
|
||||
|
||||
|
||||
//////////////////////////// USER CODEPATH OPTIONS ///////////////////////////
|
||||
|
||||
// To disable a #define option, turn its line into a comment with "//."
|
||||
|
||||
// RUNTIME VS. COMPILE-TIME OPTIONS (Major Performance Implications):
|
||||
// Enable runtime shader parameters in the Retroarch (etc.) GUI? They override
|
||||
// many of the options in this file and allow real-time tuning, but many of
|
||||
// them are slower. Disabling them and using this text file will boost FPS.
|
||||
#define RUNTIME_SHADER_PARAMS_ENABLE
|
||||
// Specify the phosphor bloom sigma at runtime? This option is 10% slower, but
|
||||
// it's the only way to do a wide-enough full bloom with a runtime dot pitch.
|
||||
#define RUNTIME_PHOSPHOR_BLOOM_SIGMA
|
||||
// Specify antialiasing weight parameters at runtime? (Costs ~20% with cubics)
|
||||
#define RUNTIME_ANTIALIAS_WEIGHTS
|
||||
// Specify subpixel offsets at runtime? (WARNING: EXTREMELY EXPENSIVE!)
|
||||
//#define RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS
|
||||
// Make beam_horiz_filter and beam_horiz_linear_rgb_weight into runtime shader
|
||||
// parameters? This will require more math or dynamic branching.
|
||||
#define RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE
|
||||
// Specify the tilt at runtime? This makes things about 3% slower.
|
||||
#define RUNTIME_GEOMETRY_TILT
|
||||
// Specify the geometry mode at runtime?
|
||||
#define RUNTIME_GEOMETRY_MODE
|
||||
// Specify the phosphor mask type (aperture grille, slot mask, shadow mask) and
|
||||
// mode (Lanczos-resize, hardware resize, or tile 1:1) at runtime, even without
|
||||
// dynamic branches? This is cheap if mask_resize_viewport_scale is small.
|
||||
#define FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
|
||||
|
||||
// PHOSPHOR MASK:
|
||||
// Manually resize the phosphor mask for best results (slower)? Disabling this
|
||||
// removes the option to do so, but it may be faster without dynamic branches.
|
||||
#define PHOSPHOR_MASK_MANUALLY_RESIZE
|
||||
// If we sinc-resize the mask, should we Lanczos-window it (slower but better)?
|
||||
#define PHOSPHOR_MASK_RESIZE_LANCZOS_WINDOW
|
||||
// Larger blurs are expensive, but we need them to blur larger triads. We can
|
||||
// detect the right blur if the triad size is static or our profile allows
|
||||
// dynamic branches, but otherwise we use the largest blur the user indicates
|
||||
// they might need:
|
||||
#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_3_PIXELS
|
||||
//#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_6_PIXELS
|
||||
//#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_9_PIXELS
|
||||
//#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_12_PIXELS
|
||||
// Here's a helpful chart:
|
||||
// MaxTriadSize BlurSize MinTriadCountsByResolution
|
||||
// 3.0 9.0 480/640/960/1920 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
|
||||
// 6.0 17.0 240/320/480/960 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
|
||||
// 9.0 25.0 160/213/320/640 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
|
||||
// 12.0 31.0 120/160/240/480 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
|
||||
// 18.0 43.0 80/107/160/320 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
|
||||
|
||||
|
||||
/////////////////////////////// USER PARAMETERS //////////////////////////////
|
||||
|
||||
// Note: Many of these static parameters are overridden by runtime shader
|
||||
// parameters when those are enabled. However, many others are static codepath
|
||||
// options that were cleaner or more convert to code as static constants.
|
||||
|
||||
// GAMMA:
|
||||
static const float crt_gamma_static = 2.5; // range [1, 5]
|
||||
static const float lcd_gamma_static = 2.2; // range [1, 5]
|
||||
|
||||
// LEVELS MANAGEMENT:
|
||||
// Control the final multiplicative image contrast:
|
||||
static const float levels_contrast_static = 1.0; // range [0, 4)
|
||||
// We auto-dim to avoid clipping between passes and restore brightness
|
||||
// later. Control the dim factor here: Lower values clip less but crush
|
||||
// blacks more (static only for now).
|
||||
static const float levels_autodim_temp = 0.5; // range (0, 1]
|
||||
|
||||
// HALATION/DIFFUSION/BLOOM:
|
||||
// Halation weight: How much energy should be lost to electrons bounding
|
||||
// around under the CRT glass and exciting random phosphors?
|
||||
static const float halation_weight_static = 0.0; // range [0, 1]
|
||||
// Refractive diffusion weight: How much light should spread/diffuse from
|
||||
// refracting through the CRT glass?
|
||||
static const float diffusion_weight_static = 0.075; // range [0, 1]
|
||||
// Underestimate brightness: Bright areas bloom more, but we can base the
|
||||
// bloom brightpass on a lower brightness to sharpen phosphors, or a higher
|
||||
// brightness to soften them. Low values clip, but >= 0.8 looks okay.
|
||||
static const float bloom_underestimate_levels_static = 0.8; // range [0, 5]
|
||||
// Blur all colors more than necessary for a softer phosphor bloom?
|
||||
static const float bloom_excess_static = 0.0; // range [0, 1]
|
||||
// The BLOOM_APPROX pass approximates a phosphor blur early on with a small
|
||||
// blurred resize of the input (convergence offsets are applied as well).
|
||||
// There are three filter options (static option only for now):
|
||||
// 0.) Bilinear resize: A fast, close approximation to a 4x4 resize
|
||||
// if min_allowed_viewport_triads and the BLOOM_APPROX resolution are sane
|
||||
// and beam_max_sigma is low.
|
||||
// 1.) 3x3 resize blur: Medium speed, soft/smeared from bilinear blurring,
|
||||
// always uses a static sigma regardless of beam_max_sigma or
|
||||
// mask_num_triads_desired.
|
||||
// 2.) True 4x4 Gaussian resize: Slowest, technically correct.
|
||||
// These options are more pronounced for the fast, unbloomed shader version.
|
||||
static const float bloom_approx_filter_static = 2.0;
|
||||
|
||||
// ELECTRON BEAM SCANLINE DISTRIBUTION:
|
||||
// How many scanlines should contribute light to each pixel? Using more
|
||||
// scanlines is slower (especially for a generalized Gaussian) but less
|
||||
// distorted with larger beam sigmas (especially for a pure Gaussian). The
|
||||
// max_beam_sigma at which the closest unused weight is guaranteed <
|
||||
// 1.0/255.0 (for a 3x antialiased pure Gaussian) is:
|
||||
// 2 scanlines: max_beam_sigma = 0.2089; distortions begin ~0.34; 141.7 FPS pure, 131.9 FPS generalized
|
||||
// 3 scanlines, max_beam_sigma = 0.3879; distortions begin ~0.52; 137.5 FPS pure; 123.8 FPS generalized
|
||||
// 4 scanlines, max_beam_sigma = 0.5723; distortions begin ~0.70; 134.7 FPS pure; 117.2 FPS generalized
|
||||
// 5 scanlines, max_beam_sigma = 0.7591; distortions begin ~0.89; 131.6 FPS pure; 112.1 FPS generalized
|
||||
// 6 scanlines, max_beam_sigma = 0.9483; distortions begin ~1.08; 127.9 FPS pure; 105.6 FPS generalized
|
||||
static const float beam_num_scanlines = 3.0; // range [2, 6]
|
||||
// A generalized Gaussian beam varies shape with color too, now just width.
|
||||
// It's slower but more flexible (static option only for now).
|
||||
static const bool beam_generalized_gaussian = true;
|
||||
// What kind of scanline antialiasing do you want?
|
||||
// 0: Sample weights at 1x; 1: Sample weights at 3x; 2: Compute an integral
|
||||
// Integrals are slow (especially for generalized Gaussians) and rarely any
|
||||
// better than 3x antialiasing (static option only for now).
|
||||
static const float beam_antialias_level = 1.0; // range [0, 2]
|
||||
// Min/max standard deviations for scanline beams: Higher values widen and
|
||||
// soften scanlines. Depending on other options, low min sigmas can alias.
|
||||
static const float beam_min_sigma_static = 0.02; // range (0, 1]
|
||||
static const float beam_max_sigma_static = 0.3; // range (0, 1]
|
||||
// Beam width varies as a function of color: A power function (0) is more
|
||||
// configurable, but a spherical function (1) gives the widest beam
|
||||
// variability without aliasing (static option only for now).
|
||||
static const float beam_spot_shape_function = 0.0;
|
||||
// Spot shape power: Powers <= 1 give smoother spot shapes but lower
|
||||
// sharpness. Powers >= 1.0 are awful unless mix/max sigmas are close.
|
||||
static const float beam_spot_power_static = 1.0/3.0; // range (0, 16]
|
||||
// Generalized Gaussian max shape parameters: Higher values give flatter
|
||||
// scanline plateaus and steeper dropoffs, simultaneously widening and
|
||||
// sharpening scanlines at the cost of aliasing. 2.0 is pure Gaussian, and
|
||||
// values > ~40.0 cause artifacts with integrals.
|
||||
static const float beam_min_shape_static = 2.0; // range [2, 32]
|
||||
static const float beam_max_shape_static = 4.0; // range [2, 32]
|
||||
// Generalized Gaussian shape power: Affects how quickly the distribution
|
||||
// changes shape from Gaussian to steep/plateaued as color increases from 0
|
||||
// to 1.0. Higher powers appear softer for most colors, and lower powers
|
||||
// appear sharper for most colors.
|
||||
static const float beam_shape_power_static = 1.0/4.0; // range (0, 16]
|
||||
// What filter should be used to sample scanlines horizontally?
|
||||
// 0: Quilez (fast), 1: Gaussian (configurable), 2: Lanczos2 (sharp)
|
||||
static const float beam_horiz_filter_static = 0.0;
|
||||
// Standard deviation for horizontal Gaussian resampling:
|
||||
static const float beam_horiz_sigma_static = 0.35; // range (0, 2/3]
|
||||
// Do horizontal scanline sampling in linear RGB (correct light mixing),
|
||||
// gamma-encoded RGB (darker, hard spot shape, may better match bandwidth-
|
||||
// limiting circuitry in some CRT's), or a weighted avg.?
|
||||
static const float beam_horiz_linear_rgb_weight_static = 1.0; // range [0, 1]
|
||||
// Simulate scanline misconvergence? This needs 3x horizontal texture
|
||||
// samples and 3x texture samples of BLOOM_APPROX and HALATION_BLUR in
|
||||
// later passes (static option only for now).
|
||||
static const bool beam_misconvergence = true;
|
||||
// Convergence offsets in x/y directions for R/G/B scanline beams in units
|
||||
// of scanlines. Positive offsets go right/down; ranges [-2, 2]
|
||||
static const float2 convergence_offsets_r_static = float2(0.1, 0.2);
|
||||
static const float2 convergence_offsets_g_static = float2(0.3, 0.4);
|
||||
static const float2 convergence_offsets_b_static = float2(0.5, 0.6);
|
||||
// Detect interlacing (static option only for now)?
|
||||
static const bool interlace_detect = true;
|
||||
// Assume 1080-line sources are interlaced?
|
||||
static const bool interlace_1080i_static = false;
|
||||
// For interlaced sources, assume TFF (top-field first) or BFF order?
|
||||
// (Whether this matters depends on the nature of the interlaced input.)
|
||||
static const bool interlace_bff_static = false;
|
||||
|
||||
// ANTIALIASING:
|
||||
// What AA level do you want for curvature/overscan/subpixels? Options:
|
||||
// 0x (none), 1x (sample subpixels), 4x, 5x, 6x, 7x, 8x, 12x, 16x, 20x, 24x
|
||||
// (Static option only for now)
|
||||
static const float aa_level = 12.0; // range [0, 24]
|
||||
// What antialiasing filter do you want (static option only)? Options:
|
||||
// 0: Box (separable), 1: Box (cylindrical),
|
||||
// 2: Tent (separable), 3: Tent (cylindrical),
|
||||
// 4: Gaussian (separable), 5: Gaussian (cylindrical),
|
||||
// 6: Cubic* (separable), 7: Cubic* (cylindrical, poor)
|
||||
// 8: Lanczos Sinc (separable), 9: Lanczos Jinc (cylindrical, poor)
|
||||
// * = Especially slow with RUNTIME_ANTIALIAS_WEIGHTS
|
||||
static const float aa_filter = 6.0; // range [0, 9]
|
||||
// Flip the sample grid on odd/even frames (static option only for now)?
|
||||
static const bool aa_temporal = false;
|
||||
// Use RGB subpixel offsets for antialiasing? The pixel is at green, and
|
||||
// the blue offset is the negative r offset; range [0, 0.5]
|
||||
static const float2 aa_subpixel_r_offset_static = float2(-1.0/3.0, 0.0);//float2(0.0);
|
||||
// Cubics: See http://www.imagemagick.org/Usage/filter/#mitchell
|
||||
// 1.) "Keys cubics" with B = 1 - 2C are considered the highest quality.
|
||||
// 2.) C = 0.5 (default) is Catmull-Rom; higher C's apply sharpening.
|
||||
// 3.) C = 1.0/3.0 is the Mitchell-Netravali filter.
|
||||
// 4.) C = 0.0 is a soft spline filter.
|
||||
static const float aa_cubic_c_static = 0.5; // range [0, 4]
|
||||
// Standard deviation for Gaussian antialiasing: Try 0.5/aa_pixel_diameter.
|
||||
static const float aa_gauss_sigma_static = 0.5; // range [0.0625, 1.0]
|
||||
|
||||
// PHOSPHOR MASK:
|
||||
// Mask type: 0 = aperture grille, 1 = slot mask, 2 = EDP shadow mask
|
||||
static const float mask_type_static = 1.0; // range [0, 2]
|
||||
// We can sample the mask three ways. Pick 2/3 from: Pretty/Fast/Flexible.
|
||||
// 0.) Sinc-resize to the desired dot pitch manually (pretty/slow/flexible).
|
||||
// This requires PHOSPHOR_MASK_MANUALLY_RESIZE to be #defined.
|
||||
// 1.) Hardware-resize to the desired dot pitch (ugly/fast/flexible). This
|
||||
// is halfway decent with LUT mipmapping but atrocious without it.
|
||||
// 2.) Tile it without resizing at a 1:1 texel:pixel ratio for flat coords
|
||||
// (pretty/fast/inflexible). Each input LUT has a fixed dot pitch.
|
||||
// This mode reuses the same masks, so triads will be enormous unless
|
||||
// you change the mask LUT filenames in your .cgp file.
|
||||
static const float mask_sample_mode_static = 0.0; // range [0, 2]
|
||||
// Prefer setting the triad size (0.0) or number on the screen (1.0)?
|
||||
// If RUNTIME_PHOSPHOR_BLOOM_SIGMA isn't #defined, the specified triad size
|
||||
// will always be used to calculate the full bloom sigma statically.
|
||||
static const float mask_specify_num_triads_static = 0.0; // range [0, 1]
|
||||
// Specify the phosphor triad size, in pixels. Each tile (usually with 8
|
||||
// triads) will be rounded to the nearest integer tile size and clamped to
|
||||
// obey minimum size constraints (imposed to reduce downsize taps) and
|
||||
// maximum size constraints (imposed to have a sane MASK_RESIZE FBO size).
|
||||
// To increase the size limit, double the viewport-relative scales for the
|
||||
// two MASK_RESIZE passes in crt-royale.cgp and user-cgp-contants.h.
|
||||
// range [1, mask_texture_small_size/mask_triads_per_tile]
|
||||
static const float mask_triad_size_desired_static = 24.0 / 8.0;
|
||||
// If mask_specify_num_triads is 1.0/true, we'll go by this instead (the
|
||||
// final size will be rounded and constrained as above); default 480.0
|
||||
static const float mask_num_triads_desired_static = 480.0;
|
||||
// How many lobes should the sinc/Lanczos resizer use? More lobes require
|
||||
// more samples and avoid moire a bit better, but some is unavoidable
|
||||
// depending on the destination size (static option for now).
|
||||
static const float mask_sinc_lobes = 3.0; // range [2, 4]
|
||||
// The mask is resized using a variable number of taps in each dimension,
|
||||
// but some Cg profiles always fetch a constant number of taps no matter
|
||||
// what (no dynamic branching). We can limit the maximum number of taps if
|
||||
// we statically limit the minimum phosphor triad size. Larger values are
|
||||
// faster, but the limit IS enforced (static option only, forever);
|
||||
// range [1, mask_texture_small_size/mask_triads_per_tile]
|
||||
// TODO: Make this 1.0 and compensate with smarter sampling!
|
||||
static const float mask_min_allowed_triad_size = 2.0;
|
||||
|
||||
// GEOMETRY:
|
||||
// Geometry mode:
|
||||
// 0: Off (default), 1: Spherical mapping (like cgwg's),
|
||||
// 2: Alt. spherical mapping (more bulbous), 3: Cylindrical/Trinitron
|
||||
static const float geom_mode_static = 0.0; // range [0, 3]
|
||||
// Radius of curvature: Measured in units of your viewport's diagonal size.
|
||||
static const float geom_radius_static = 2.0; // range [1/(2*pi), 1024]
|
||||
// View dist is the distance from the player to their physical screen, in
|
||||
// units of the viewport's diagonal size. It controls the field of view.
|
||||
static const float geom_view_dist_static = 2.0; // range [0.5, 1024]
|
||||
// Tilt angle in radians (clockwise around up and right vectors):
|
||||
static const float2 geom_tilt_angle_static = float2(0.0, 0.0); // range [-pi, pi]
|
||||
// Aspect ratio: When the true viewport size is unknown, this value is used
|
||||
// to help convert between the phosphor triad size and count, along with
|
||||
// the mask_resize_viewport_scale constant from user-cgp-constants.h. Set
|
||||
// this equal to Retroarch's display aspect ratio (DAR) for best results;
|
||||
// range [1, geom_max_aspect_ratio from user-cgp-constants.h];
|
||||
// default (256/224)*(54/47) = 1.313069909 (see below)
|
||||
static const float geom_aspect_ratio_static = 1.313069909;
|
||||
// Before getting into overscan, here's some general aspect ratio info:
|
||||
// - DAR = display aspect ratio = SAR * PAR; as in your Retroarch setting
|
||||
// - SAR = storage aspect ratio = DAR / PAR; square pixel emulator frame AR
|
||||
// - PAR = pixel aspect ratio = DAR / SAR; holds regardless of cropping
|
||||
// Geometry processing has to "undo" the screen-space 2D DAR to calculate
|
||||
// 3D view vectors, then reapplies the aspect ratio to the simulated CRT in
|
||||
// uv-space. To ensure the source SAR is intended for a ~4:3 DAR, either:
|
||||
// a.) Enable Retroarch's "Crop Overscan"
|
||||
// b.) Readd horizontal padding: Set overscan to e.g. N*(1.0, 240.0/224.0)
|
||||
// Real consoles use horizontal black padding in the signal, but emulators
|
||||
// often crop this without cropping the vertical padding; a 256x224 [S]NES
|
||||
// frame (8:7 SAR) is intended for a ~4:3 DAR, but a 256x240 frame is not.
|
||||
// The correct [S]NES PAR is 54:47, found by blargg and NewRisingSun:
|
||||
// http://board.zsnes.com/phpBB3/viewtopic.php?f=22&t=11928&start=50
|
||||
// http://forums.nesdev.com/viewtopic.php?p=24815#p24815
|
||||
// For flat output, it's okay to set DAR = [existing] SAR * [correct] PAR
|
||||
// without doing a. or b., but horizontal image borders will be tighter
|
||||
// than vertical ones, messing up curvature and overscan. Fixing the
|
||||
// padding first corrects this.
|
||||
// Overscan: Amount to "zoom in" before cropping. You can zoom uniformly
|
||||
// or adjust x/y independently to e.g. readd horizontal padding, as noted
|
||||
// above: Values < 1.0 zoom out; range (0, inf)
|
||||
static const float2 geom_overscan_static = float2(1.0, 1.0);// * 1.005 * (1.0, 240/224.0)
|
||||
// Compute a proper pixel-space to texture-space matrix even without ddx()/
|
||||
// ddy()? This is ~8.5% slower but improves antialiasing/subpixel filtering
|
||||
// with strong curvature (static option only for now).
|
||||
static const bool geom_force_correct_tangent_matrix = true;
|
||||
|
||||
// BORDERS:
|
||||
// Rounded border size in texture uv coords:
|
||||
static const float border_size_static = 0.015; // range [0, 0.5]
|
||||
// Border darkness: Moderate values darken the border smoothly, and high
|
||||
// values make the image very dark just inside the border:
|
||||
static const float border_darkness_static = 2.0; // range [0, inf)
|
||||
// Border compression: High numbers compress border transitions, narrowing
|
||||
// the dark border area.
|
||||
static const float border_compress_static = 2.5; // range [1, inf)
|
||||
|
||||
|
||||
#endif // USER_SETTINGS_H
|
||||
|
|
@ -0,0 +1,359 @@
|
|||
#ifndef USER_SETTINGS_H
|
||||
#define USER_SETTINGS_H
|
||||
|
||||
///////////////////////////// DRIVER CAPABILITIES ////////////////////////////
|
||||
|
||||
// The Cg compiler uses different "profiles" with different capabilities.
|
||||
// This shader requires a Cg compilation profile >= arbfp1, but a few options
|
||||
// require higher profiles like fp30 or fp40. The shader can't detect profile
|
||||
// or driver capabilities, so instead you must comment or uncomment the lines
|
||||
// below with "//" before "#define." Disable an option if you get compilation
|
||||
// errors resembling those listed. Generally speaking, all of these options
|
||||
// will run on nVidia cards, but only DRIVERS_ALLOW_TEX2DBIAS (if that) is
|
||||
// likely to run on ATI/AMD, due to the Cg compiler's profile limitations.
|
||||
|
||||
// Derivatives: Unsupported on fp20, ps_1_1, ps_1_2, ps_1_3, and arbfp1.
|
||||
// Among other things, derivatives help us fix anisotropic filtering artifacts
|
||||
// with curved manually tiled phosphor mask coords. Related errors:
|
||||
// error C3004: function "float2 ddx(float2);" not supported in this profile
|
||||
// error C3004: function "float2 ddy(float2);" not supported in this profile
|
||||
//#define DRIVERS_ALLOW_DERIVATIVES
|
||||
|
||||
// Fine derivatives: Unsupported on older ATI cards.
|
||||
// Fine derivatives enable 2x2 fragment block communication, letting us perform
|
||||
// fast single-pass blur operations. If your card uses coarse derivatives and
|
||||
// these are enabled, blurs could look broken. Derivatives are a prerequisite.
|
||||
#ifdef DRIVERS_ALLOW_DERIVATIVES
|
||||
#define DRIVERS_ALLOW_FINE_DERIVATIVES
|
||||
#endif
|
||||
|
||||
// Dynamic looping: Requires an fp30 or newer profile.
|
||||
// This makes phosphor mask resampling faster in some cases. Related errors:
|
||||
// error C5013: profile does not support "for" statements and "for" could not
|
||||
// be unrolled
|
||||
//#define DRIVERS_ALLOW_DYNAMIC_BRANCHES
|
||||
|
||||
// Without DRIVERS_ALLOW_DYNAMIC_BRANCHES, we need to use unrollable loops.
|
||||
// Using one static loop avoids overhead if the user is right, but if the user
|
||||
// is wrong (loops are allowed), breaking a loop into if-blocked pieces with a
|
||||
// binary search can potentially save some iterations. However, it may fail:
|
||||
// error C6001: Temporary register limit of 32 exceeded; 35 registers
|
||||
// needed to compile program
|
||||
//#define ACCOMODATE_POSSIBLE_DYNAMIC_LOOPS
|
||||
|
||||
// tex2Dlod: Requires an fp40 or newer profile. This can be used to disable
|
||||
// anisotropic filtering, thereby fixing related artifacts. Related errors:
|
||||
// error C3004: function "float4 tex2Dlod(sampler2D, float4);" not supported in
|
||||
// this profile
|
||||
//#define DRIVERS_ALLOW_TEX2DLOD
|
||||
|
||||
// tex2Dbias: Requires an fp30 or newer profile. This can be used to alleviate
|
||||
// artifacts from anisotropic filtering and mipmapping. Related errors:
|
||||
// error C3004: function "float4 tex2Dbias(sampler2D, float4);" not supported
|
||||
// in this profile
|
||||
//#define DRIVERS_ALLOW_TEX2DBIAS
|
||||
|
||||
// Integrated graphics compatibility: Integrated graphics like Intel HD 4000
|
||||
// impose stricter limitations on register counts and instructions. Enable
|
||||
// INTEGRATED_GRAPHICS_COMPATIBILITY_MODE if you still see error C6001 or:
|
||||
// error C6002: Instruction limit of 1024 exceeded: 1523 instructions needed
|
||||
// to compile program.
|
||||
// Enabling integrated graphics compatibility mode will automatically disable:
|
||||
// 1.) PHOSPHOR_MASK_MANUALLY_RESIZE: The phosphor mask will be softer.
|
||||
// (This may be reenabled in a later release.)
|
||||
// 2.) RUNTIME_GEOMETRY_MODE
|
||||
// 3.) The high-quality 4x4 Gaussian resize for the bloom approximation
|
||||
//#define INTEGRATED_GRAPHICS_COMPATIBILITY_MODE
|
||||
|
||||
|
||||
//////////////////////////// USER CODEPATH OPTIONS ///////////////////////////
|
||||
|
||||
// To disable a #define option, turn its line into a comment with "//."
|
||||
|
||||
// RUNTIME VS. COMPILE-TIME OPTIONS (Major Performance Implications):
|
||||
// Enable runtime shader parameters in the Retroarch (etc.) GUI? They override
|
||||
// many of the options in this file and allow real-time tuning, but many of
|
||||
// them are slower. Disabling them and using this text file will boost FPS.
|
||||
#define RUNTIME_SHADER_PARAMS_ENABLE
|
||||
// Specify the phosphor bloom sigma at runtime? This option is 10% slower, but
|
||||
// it's the only way to do a wide-enough full bloom with a runtime dot pitch.
|
||||
#define RUNTIME_PHOSPHOR_BLOOM_SIGMA
|
||||
// Specify antialiasing weight parameters at runtime? (Costs ~20% with cubics)
|
||||
//#define RUNTIME_ANTIALIAS_WEIGHTS
|
||||
// Specify subpixel offsets at runtime? (WARNING: EXTREMELY EXPENSIVE!)
|
||||
//#define RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS
|
||||
// Make beam_horiz_filter and beam_horiz_linear_rgb_weight into runtime shader
|
||||
// parameters? This will require more math or dynamic branching.
|
||||
//#define RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE
|
||||
// Specify the tilt at runtime? This makes things about 3% slower.
|
||||
//#define RUNTIME_GEOMETRY_TILT
|
||||
// Specify the geometry mode at runtime?
|
||||
#define RUNTIME_GEOMETRY_MODE
|
||||
// Specify the phosphor mask type (aperture grille, slot mask, shadow mask) and
|
||||
// mode (Lanczos-resize, hardware resize, or tile 1:1) at runtime, even without
|
||||
// dynamic branches? This is cheap if mask_resize_viewport_scale is small.
|
||||
#define FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
|
||||
|
||||
// PHOSPHOR MASK:
|
||||
// Manually resize the phosphor mask for best results (slower)? Disabling this
|
||||
// removes the option to do so, but it may be faster without dynamic branches.
|
||||
#define PHOSPHOR_MASK_MANUALLY_RESIZE
|
||||
// If we sinc-resize the mask, should we Lanczos-window it (slower but better)?
|
||||
#define PHOSPHOR_MASK_RESIZE_LANCZOS_WINDOW
|
||||
// Larger blurs are expensive, but we need them to blur larger triads. We can
|
||||
// detect the right blur if the triad size is static or our profile allows
|
||||
// dynamic branches, but otherwise we use the largest blur the user indicates
|
||||
// they might need:
|
||||
#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_3_PIXELS
|
||||
//#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_6_PIXELS
|
||||
//#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_9_PIXELS
|
||||
//#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_12_PIXELS
|
||||
// Here's a helpful chart:
|
||||
// MaxTriadSize BlurSize MinTriadCountsByResolution
|
||||
// 3.0 9.0 480/640/960/1920 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
|
||||
// 6.0 17.0 240/320/480/960 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
|
||||
// 9.0 25.0 160/213/320/640 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
|
||||
// 12.0 31.0 120/160/240/480 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
|
||||
// 18.0 43.0 80/107/160/320 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
|
||||
|
||||
|
||||
/////////////////////////////// USER PARAMETERS //////////////////////////////
|
||||
|
||||
// Note: Many of these static parameters are overridden by runtime shader
|
||||
// parameters when those are enabled. However, many others are static codepath
|
||||
// options that were cleaner or more convert to code as static constants.
|
||||
|
||||
// GAMMA:
|
||||
static const float crt_gamma_static = 2.5; // range [1, 5]
|
||||
static const float lcd_gamma_static = 2.2; // range [1, 5]
|
||||
|
||||
// LEVELS MANAGEMENT:
|
||||
// Control the final multiplicative image contrast:
|
||||
static const float levels_contrast_static = 1.0; // range [0, 4)
|
||||
// We auto-dim to avoid clipping between passes and restore brightness
|
||||
// later. Control the dim factor here: Lower values clip less but crush
|
||||
// blacks more (static only for now).
|
||||
static const float levels_autodim_temp = 0.5; // range (0, 1]
|
||||
|
||||
// HALATION/DIFFUSION/BLOOM:
|
||||
// Halation weight: How much energy should be lost to electrons bounding
|
||||
// around under the CRT glass and exciting random phosphors?
|
||||
static const float halation_weight_static = 0.0; // range [0, 1]
|
||||
// Refractive diffusion weight: How much light should spread/diffuse from
|
||||
// refracting through the CRT glass?
|
||||
static const float diffusion_weight_static = 0.075; // range [0, 1]
|
||||
// Underestimate brightness: Bright areas bloom more, but we can base the
|
||||
// bloom brightpass on a lower brightness to sharpen phosphors, or a higher
|
||||
// brightness to soften them. Low values clip, but >= 0.8 looks okay.
|
||||
static const float bloom_underestimate_levels_static = 0.8; // range [0, 5]
|
||||
// Blur all colors more than necessary for a softer phosphor bloom?
|
||||
static const float bloom_excess_static = 0.0; // range [0, 1]
|
||||
// The BLOOM_APPROX pass approximates a phosphor blur early on with a small
|
||||
// blurred resize of the input (convergence offsets are applied as well).
|
||||
// There are three filter options (static option only for now):
|
||||
// 0.) Bilinear resize: A fast, close approximation to a 4x4 resize
|
||||
// if min_allowed_viewport_triads and the BLOOM_APPROX resolution are sane
|
||||
// and beam_max_sigma is low.
|
||||
// 1.) 3x3 resize blur: Medium speed, soft/smeared from bilinear blurring,
|
||||
// always uses a static sigma regardless of beam_max_sigma or
|
||||
// mask_num_triads_desired.
|
||||
// 2.) True 4x4 Gaussian resize: Slowest, technically correct.
|
||||
// These options are more pronounced for the fast, unbloomed shader version.
|
||||
static const float bloom_approx_filter_static = 2.0;
|
||||
|
||||
// ELECTRON BEAM SCANLINE DISTRIBUTION:
|
||||
// How many scanlines should contribute light to each pixel? Using more
|
||||
// scanlines is slower (especially for a generalized Gaussian) but less
|
||||
// distorted with larger beam sigmas (especially for a pure Gaussian). The
|
||||
// max_beam_sigma at which the closest unused weight is guaranteed <
|
||||
// 1.0/255.0 (for a 3x antialiased pure Gaussian) is:
|
||||
// 2 scanlines: max_beam_sigma = 0.2089; distortions begin ~0.34; 141.7 FPS pure, 131.9 FPS generalized
|
||||
// 3 scanlines, max_beam_sigma = 0.3879; distortions begin ~0.52; 137.5 FPS pure; 123.8 FPS generalized
|
||||
// 4 scanlines, max_beam_sigma = 0.5723; distortions begin ~0.70; 134.7 FPS pure; 117.2 FPS generalized
|
||||
// 5 scanlines, max_beam_sigma = 0.7591; distortions begin ~0.89; 131.6 FPS pure; 112.1 FPS generalized
|
||||
// 6 scanlines, max_beam_sigma = 0.9483; distortions begin ~1.08; 127.9 FPS pure; 105.6 FPS generalized
|
||||
static const float beam_num_scanlines = 3.0; // range [2, 6]
|
||||
// A generalized Gaussian beam varies shape with color too, now just width.
|
||||
// It's slower but more flexible (static option only for now).
|
||||
static const bool beam_generalized_gaussian = false;
|
||||
// What kind of scanline antialiasing do you want?
|
||||
// 0: Sample weights at 1x; 1: Sample weights at 3x; 2: Compute an integral
|
||||
// Integrals are slow (especially for generalized Gaussians) and rarely any
|
||||
// better than 3x antialiasing (static option only for now).
|
||||
static const float beam_antialias_level = 1.0; // range [0, 2]
|
||||
// Min/max standard deviations for scanline beams: Higher values widen and
|
||||
// soften scanlines. Depending on other options, low min sigmas can alias.
|
||||
static const float beam_min_sigma_static = 0.02; // range (0, 1]
|
||||
static const float beam_max_sigma_static = 0.3; // range (0, 1]
|
||||
// Beam width varies as a function of color: A power function (0) is more
|
||||
// configurable, but a spherical function (1) gives the widest beam
|
||||
// variability without aliasing (static option only for now).
|
||||
static const float beam_spot_shape_function = 0.0;
|
||||
// Spot shape power: Powers <= 1 give smoother spot shapes but lower
|
||||
// sharpness. Powers >= 1.0 are awful unless mix/max sigmas are close.
|
||||
static const float beam_spot_power_static = 1.0/3.0; // range (0, 16]
|
||||
// Generalized Gaussian max shape parameters: Higher values give flatter
|
||||
// scanline plateaus and steeper dropoffs, simultaneously widening and
|
||||
// sharpening scanlines at the cost of aliasing. 2.0 is pure Gaussian, and
|
||||
// values > ~40.0 cause artifacts with integrals.
|
||||
static const float beam_min_shape_static = 2.0; // range [2, 32]
|
||||
static const float beam_max_shape_static = 4.0; // range [2, 32]
|
||||
// Generalized Gaussian shape power: Affects how quickly the distribution
|
||||
// changes shape from Gaussian to steep/plateaued as color increases from 0
|
||||
// to 1.0. Higher powers appear softer for most colors, and lower powers
|
||||
// appear sharper for most colors.
|
||||
static const float beam_shape_power_static = 1.0/4.0; // range (0, 16]
|
||||
// What filter should be used to sample scanlines horizontally?
|
||||
// 0: Quilez (fast), 1: Gaussian (configurable), 2: Lanczos2 (sharp)
|
||||
static const float beam_horiz_filter_static = 0.0;
|
||||
// Standard deviation for horizontal Gaussian resampling:
|
||||
static const float beam_horiz_sigma_static = 0.35; // range (0, 2/3]
|
||||
// Do horizontal scanline sampling in linear RGB (correct light mixing),
|
||||
// gamma-encoded RGB (darker, hard spot shape, may better match bandwidth-
|
||||
// limiting circuitry in some CRT's), or a weighted avg.?
|
||||
static const float beam_horiz_linear_rgb_weight_static = 1.0; // range [0, 1]
|
||||
// Simulate scanline misconvergence? This needs 3x horizontal texture
|
||||
// samples and 3x texture samples of BLOOM_APPROX and HALATION_BLUR in
|
||||
// later passes (static option only for now).
|
||||
static const bool beam_misconvergence = true;
|
||||
// Convergence offsets in x/y directions for R/G/B scanline beams in units
|
||||
// of scanlines. Positive offsets go right/down; ranges [-2, 2]
|
||||
static const float2 convergence_offsets_r_static = float2(0.1, 0.2);
|
||||
static const float2 convergence_offsets_g_static = float2(0.3, 0.4);
|
||||
static const float2 convergence_offsets_b_static = float2(0.5, 0.6);
|
||||
// Detect interlacing (static option only for now)?
|
||||
static const bool interlace_detect = true;
|
||||
// Assume 1080-line sources are interlaced?
|
||||
static const bool interlace_1080i_static = false;
|
||||
// For interlaced sources, assume TFF (top-field first) or BFF order?
|
||||
// (Whether this matters depends on the nature of the interlaced input.)
|
||||
static const bool interlace_bff_static = false;
|
||||
|
||||
// ANTIALIASING:
|
||||
// What AA level do you want for curvature/overscan/subpixels? Options:
|
||||
// 0x (none), 1x (sample subpixels), 4x, 5x, 6x, 7x, 8x, 12x, 16x, 20x, 24x
|
||||
// (Static option only for now)
|
||||
static const float aa_level = 12.0; // range [0, 24]
|
||||
// What antialiasing filter do you want (static option only)? Options:
|
||||
// 0: Box (separable), 1: Box (cylindrical),
|
||||
// 2: Tent (separable), 3: Tent (cylindrical),
|
||||
// 4: Gaussian (separable), 5: Gaussian (cylindrical),
|
||||
// 6: Cubic* (separable), 7: Cubic* (cylindrical, poor)
|
||||
// 8: Lanczos Sinc (separable), 9: Lanczos Jinc (cylindrical, poor)
|
||||
// * = Especially slow with RUNTIME_ANTIALIAS_WEIGHTS
|
||||
static const float aa_filter = 8.0; // range [0, 9]
|
||||
// Flip the sample grid on odd/even frames (static option only for now)?
|
||||
static const bool aa_temporal = false;
|
||||
// Use RGB subpixel offsets for antialiasing? The pixel is at green, and
|
||||
// the blue offset is the negative r offset; range [0, 0.5]
|
||||
static const float2 aa_subpixel_r_offset_static = float2(0.0, 0.0);//float2(0.0);
|
||||
// Cubics: See http://www.imagemagick.org/Usage/filter/#mitchell
|
||||
// 1.) "Keys cubics" with B = 1 - 2C are considered the highest quality.
|
||||
// 2.) C = 0.5 (default) is Catmull-Rom; higher C's apply sharpening.
|
||||
// 3.) C = 1.0/3.0 is the Mitchell-Netravali filter.
|
||||
// 4.) C = 0.0 is a soft spline filter.
|
||||
static const float aa_cubic_c_static = 0.5; // range [0, 4]
|
||||
// Standard deviation for Gaussian antialiasing: Try 0.5/aa_pixel_diameter.
|
||||
static const float aa_gauss_sigma_static = 0.5; // range [0.0625, 1.0]
|
||||
|
||||
// PHOSPHOR MASK:
|
||||
// Mask type: 0 = aperture grille, 1 = slot mask, 2 = EDP shadow mask
|
||||
static const float mask_type_static = 1.0; // range [0, 2]
|
||||
// We can sample the mask three ways. Pick 2/3 from: Pretty/Fast/Flexible.
|
||||
// 0.) Sinc-resize to the desired dot pitch manually (pretty/slow/flexible).
|
||||
// This requires PHOSPHOR_MASK_MANUALLY_RESIZE to be #defined.
|
||||
// 1.) Hardware-resize to the desired dot pitch (ugly/fast/flexible). This
|
||||
// is halfway decent with LUT mipmapping but atrocious without it.
|
||||
// 2.) Tile it without resizing at a 1:1 texel:pixel ratio for flat coords
|
||||
// (pretty/fast/inflexible). Each input LUT has a fixed dot pitch.
|
||||
// This mode reuses the same masks, so triads will be enormous unless
|
||||
// you change the mask LUT filenames in your .cgp file.
|
||||
static const float mask_sample_mode_static = 0.0; // range [0, 2]
|
||||
// Prefer setting the triad size (0.0) or number on the screen (1.0)?
|
||||
// If RUNTIME_PHOSPHOR_BLOOM_SIGMA isn't #defined, the specified triad size
|
||||
// will always be used to calculate the full bloom sigma statically.
|
||||
static const float mask_specify_num_triads_static = 0.0; // range [0, 1]
|
||||
// Specify the phosphor triad size, in pixels. Each tile (usually with 8
|
||||
// triads) will be rounded to the nearest integer tile size and clamped to
|
||||
// obey minimum size constraints (imposed to reduce downsize taps) and
|
||||
// maximum size constraints (imposed to have a sane MASK_RESIZE FBO size).
|
||||
// To increase the size limit, double the viewport-relative scales for the
|
||||
// two MASK_RESIZE passes in crt-royale.cgp and user-cgp-contants.h.
|
||||
// range [1, mask_texture_small_size/mask_triads_per_tile]
|
||||
static const float mask_triad_size_desired_static = 24.0 / 8.0;
|
||||
// If mask_specify_num_triads is 1.0/true, we'll go by this instead (the
|
||||
// final size will be rounded and constrained as above); default 480.0
|
||||
static const float mask_num_triads_desired_static = 480.0;
|
||||
// How many lobes should the sinc/Lanczos resizer use? More lobes require
|
||||
// more samples and avoid moire a bit better, but some is unavoidable
|
||||
// depending on the destination size (static option for now).
|
||||
static const float mask_sinc_lobes = 3.0; // range [2, 4]
|
||||
// The mask is resized using a variable number of taps in each dimension,
|
||||
// but some Cg profiles always fetch a constant number of taps no matter
|
||||
// what (no dynamic branching). We can limit the maximum number of taps if
|
||||
// we statically limit the minimum phosphor triad size. Larger values are
|
||||
// faster, but the limit IS enforced (static option only, forever);
|
||||
// range [1, mask_texture_small_size/mask_triads_per_tile]
|
||||
// TODO: Make this 1.0 and compensate with smarter sampling!
|
||||
static const float mask_min_allowed_triad_size = 2.0;
|
||||
|
||||
// GEOMETRY:
|
||||
// Geometry mode:
|
||||
// 0: Off (default), 1: Spherical mapping (like cgwg's),
|
||||
// 2: Alt. spherical mapping (more bulbous), 3: Cylindrical/Trinitron
|
||||
static const float geom_mode_static = 0.0; // range [0, 3]
|
||||
// Radius of curvature: Measured in units of your viewport's diagonal size.
|
||||
static const float geom_radius_static = 2.0; // range [1/(2*pi), 1024]
|
||||
// View dist is the distance from the player to their physical screen, in
|
||||
// units of the viewport's diagonal size. It controls the field of view.
|
||||
static const float geom_view_dist_static = 2.0; // range [0.5, 1024]
|
||||
// Tilt angle in radians (clockwise around up and right vectors):
|
||||
static const float2 geom_tilt_angle_static = float2(0.0, 0.0); // range [-pi, pi]
|
||||
// Aspect ratio: When the true viewport size is unknown, this value is used
|
||||
// to help convert between the phosphor triad size and count, along with
|
||||
// the mask_resize_viewport_scale constant from user-cgp-constants.h. Set
|
||||
// this equal to Retroarch's display aspect ratio (DAR) for best results;
|
||||
// range [1, geom_max_aspect_ratio from user-cgp-constants.h];
|
||||
// default (256/224)*(54/47) = 1.313069909 (see below)
|
||||
static const float geom_aspect_ratio_static = 1.313069909;
|
||||
// Before getting into overscan, here's some general aspect ratio info:
|
||||
// - DAR = display aspect ratio = SAR * PAR; as in your Retroarch setting
|
||||
// - SAR = storage aspect ratio = DAR / PAR; square pixel emulator frame AR
|
||||
// - PAR = pixel aspect ratio = DAR / SAR; holds regardless of cropping
|
||||
// Geometry processing has to "undo" the screen-space 2D DAR to calculate
|
||||
// 3D view vectors, then reapplies the aspect ratio to the simulated CRT in
|
||||
// uv-space. To ensure the source SAR is intended for a ~4:3 DAR, either:
|
||||
// a.) Enable Retroarch's "Crop Overscan"
|
||||
// b.) Readd horizontal padding: Set overscan to e.g. N*(1.0, 240.0/224.0)
|
||||
// Real consoles use horizontal black padding in the signal, but emulators
|
||||
// often crop this without cropping the vertical padding; a 256x224 [S]NES
|
||||
// frame (8:7 SAR) is intended for a ~4:3 DAR, but a 256x240 frame is not.
|
||||
// The correct [S]NES PAR is 54:47, found by blargg and NewRisingSun:
|
||||
// http://board.zsnes.com/phpBB3/viewtopic.php?f=22&t=11928&start=50
|
||||
// http://forums.nesdev.com/viewtopic.php?p=24815#p24815
|
||||
// For flat output, it's okay to set DAR = [existing] SAR * [correct] PAR
|
||||
// without doing a. or b., but horizontal image borders will be tighter
|
||||
// than vertical ones, messing up curvature and overscan. Fixing the
|
||||
// padding first corrects this.
|
||||
// Overscan: Amount to "zoom in" before cropping. You can zoom uniformly
|
||||
// or adjust x/y independently to e.g. readd horizontal padding, as noted
|
||||
// above: Values < 1.0 zoom out; range (0, inf)
|
||||
static const float2 geom_overscan_static = float2(1.0, 1.0);// * 1.005 * (1.0, 240/224.0)
|
||||
// Compute a proper pixel-space to texture-space matrix even without ddx()/
|
||||
// ddy()? This is ~8.5% slower but improves antialiasing/subpixel filtering
|
||||
// with strong curvature (static option only for now).
|
||||
static const bool geom_force_correct_tangent_matrix = false;
|
||||
|
||||
// BORDERS:
|
||||
// Rounded border size in texture uv coords:
|
||||
static const float border_size_static = 0.015; // range [0, 0.5]
|
||||
// Border darkness: Moderate values darken the border smoothly, and high
|
||||
// values make the image very dark just inside the border:
|
||||
static const float border_darkness_static = 2.0; // range [0, inf)
|
||||
// Border compression: High numbers compress border transitions, narrowing
|
||||
// the dark border area.
|
||||
static const float border_compress_static = 2.5; // range [1, inf)
|
||||
|
||||
|
||||
#endif // USER_SETTINGS_H
|
||||
|
|
@ -0,0 +1,359 @@
|
|||
#ifndef USER_SETTINGS_H
|
||||
#define USER_SETTINGS_H
|
||||
|
||||
///////////////////////////// DRIVER CAPABILITIES ////////////////////////////
|
||||
|
||||
// The Cg compiler uses different "profiles" with different capabilities.
|
||||
// This shader requires a Cg compilation profile >= arbfp1, but a few options
|
||||
// require higher profiles like fp30 or fp40. The shader can't detect profile
|
||||
// or driver capabilities, so instead you must comment or uncomment the lines
|
||||
// below with "//" before "#define." Disable an option if you get compilation
|
||||
// errors resembling those listed. Generally speaking, all of these options
|
||||
// will run on nVidia cards, but only DRIVERS_ALLOW_TEX2DBIAS (if that) is
|
||||
// likely to run on ATI/AMD, due to the Cg compiler's profile limitations.
|
||||
|
||||
// Derivatives: Unsupported on fp20, ps_1_1, ps_1_2, ps_1_3, and arbfp1.
|
||||
// Among other things, derivatives help us fix anisotropic filtering artifacts
|
||||
// with curved manually tiled phosphor mask coords. Related errors:
|
||||
// error C3004: function "float2 ddx(float2);" not supported in this profile
|
||||
// error C3004: function "float2 ddy(float2);" not supported in this profile
|
||||
//#define DRIVERS_ALLOW_DERIVATIVES
|
||||
|
||||
// Fine derivatives: Unsupported on older ATI cards.
|
||||
// Fine derivatives enable 2x2 fragment block communication, letting us perform
|
||||
// fast single-pass blur operations. If your card uses coarse derivatives and
|
||||
// these are enabled, blurs could look broken. Derivatives are a prerequisite.
|
||||
#ifdef DRIVERS_ALLOW_DERIVATIVES
|
||||
#define DRIVERS_ALLOW_FINE_DERIVATIVES
|
||||
#endif
|
||||
|
||||
// Dynamic looping: Requires an fp30 or newer profile.
|
||||
// This makes phosphor mask resampling faster in some cases. Related errors:
|
||||
// error C5013: profile does not support "for" statements and "for" could not
|
||||
// be unrolled
|
||||
//#define DRIVERS_ALLOW_DYNAMIC_BRANCHES
|
||||
|
||||
// Without DRIVERS_ALLOW_DYNAMIC_BRANCHES, we need to use unrollable loops.
|
||||
// Using one static loop avoids overhead if the user is right, but if the user
|
||||
// is wrong (loops are allowed), breaking a loop into if-blocked pieces with a
|
||||
// binary search can potentially save some iterations. However, it may fail:
|
||||
// error C6001: Temporary register limit of 32 exceeded; 35 registers
|
||||
// needed to compile program
|
||||
//#define ACCOMODATE_POSSIBLE_DYNAMIC_LOOPS
|
||||
|
||||
// tex2Dlod: Requires an fp40 or newer profile. This can be used to disable
|
||||
// anisotropic filtering, thereby fixing related artifacts. Related errors:
|
||||
// error C3004: function "float4 tex2Dlod(sampler2D, float4);" not supported in
|
||||
// this profile
|
||||
//#define DRIVERS_ALLOW_TEX2DLOD
|
||||
|
||||
// tex2Dbias: Requires an fp30 or newer profile. This can be used to alleviate
|
||||
// artifacts from anisotropic filtering and mipmapping. Related errors:
|
||||
// error C3004: function "float4 tex2Dbias(sampler2D, float4);" not supported
|
||||
// in this profile
|
||||
//#define DRIVERS_ALLOW_TEX2DBIAS
|
||||
|
||||
// Integrated graphics compatibility: Integrated graphics like Intel HD 4000
|
||||
// impose stricter limitations on register counts and instructions. Enable
|
||||
// INTEGRATED_GRAPHICS_COMPATIBILITY_MODE if you still see error C6001 or:
|
||||
// error C6002: Instruction limit of 1024 exceeded: 1523 instructions needed
|
||||
// to compile program.
|
||||
// Enabling integrated graphics compatibility mode will automatically disable:
|
||||
// 1.) PHOSPHOR_MASK_MANUALLY_RESIZE: The phosphor mask will be softer.
|
||||
// (This may be reenabled in a later release.)
|
||||
// 2.) RUNTIME_GEOMETRY_MODE
|
||||
// 3.) The high-quality 4x4 Gaussian resize for the bloom approximation
|
||||
#define INTEGRATED_GRAPHICS_COMPATIBILITY_MODE
|
||||
|
||||
|
||||
//////////////////////////// USER CODEPATH OPTIONS ///////////////////////////
|
||||
|
||||
// To disable a #define option, turn its line into a comment with "//."
|
||||
|
||||
// RUNTIME VS. COMPILE-TIME OPTIONS (Major Performance Implications):
|
||||
// Enable runtime shader parameters in the Retroarch (etc.) GUI? They override
|
||||
// many of the options in this file and allow real-time tuning, but many of
|
||||
// them are slower. Disabling them and using this text file will boost FPS.
|
||||
#define RUNTIME_SHADER_PARAMS_ENABLE
|
||||
// Specify the phosphor bloom sigma at runtime? This option is 10% slower, but
|
||||
// it's the only way to do a wide-enough full bloom with a runtime dot pitch.
|
||||
#define RUNTIME_PHOSPHOR_BLOOM_SIGMA
|
||||
// Specify antialiasing weight parameters at runtime? (Costs ~20% with cubics)
|
||||
//#define RUNTIME_ANTIALIAS_WEIGHTS
|
||||
// Specify subpixel offsets at runtime? (WARNING: EXTREMELY EXPENSIVE!)
|
||||
//#define RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS
|
||||
// Make beam_horiz_filter and beam_horiz_linear_rgb_weight into runtime shader
|
||||
// parameters? This will require more math or dynamic branching.
|
||||
//#define RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE
|
||||
// Specify the tilt at runtime? This makes things about 3% slower.
|
||||
//#define RUNTIME_GEOMETRY_TILT
|
||||
// Specify the geometry mode at runtime?
|
||||
#define RUNTIME_GEOMETRY_MODE
|
||||
// Specify the phosphor mask type (aperture grille, slot mask, shadow mask) and
|
||||
// mode (Lanczos-resize, hardware resize, or tile 1:1) at runtime, even without
|
||||
// dynamic branches? This is cheap if mask_resize_viewport_scale is small.
|
||||
#define FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
|
||||
|
||||
// PHOSPHOR MASK:
|
||||
// Manually resize the phosphor mask for best results (slower)? Disabling this
|
||||
// removes the option to do so, but it may be faster without dynamic branches.
|
||||
#define PHOSPHOR_MASK_MANUALLY_RESIZE
|
||||
// If we sinc-resize the mask, should we Lanczos-window it (slower but better)?
|
||||
#define PHOSPHOR_MASK_RESIZE_LANCZOS_WINDOW
|
||||
// Larger blurs are expensive, but we need them to blur larger triads. We can
|
||||
// detect the right blur if the triad size is static or our profile allows
|
||||
// dynamic branches, but otherwise we use the largest blur the user indicates
|
||||
// they might need:
|
||||
#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_3_PIXELS
|
||||
//#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_6_PIXELS
|
||||
//#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_9_PIXELS
|
||||
//#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_12_PIXELS
|
||||
// Here's a helpful chart:
|
||||
// MaxTriadSize BlurSize MinTriadCountsByResolution
|
||||
// 3.0 9.0 480/640/960/1920 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
|
||||
// 6.0 17.0 240/320/480/960 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
|
||||
// 9.0 25.0 160/213/320/640 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
|
||||
// 12.0 31.0 120/160/240/480 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
|
||||
// 18.0 43.0 80/107/160/320 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
|
||||
|
||||
|
||||
/////////////////////////////// USER PARAMETERS //////////////////////////////
|
||||
|
||||
// Note: Many of these static parameters are overridden by runtime shader
|
||||
// parameters when those are enabled. However, many others are static codepath
|
||||
// options that were cleaner or more convert to code as static constants.
|
||||
|
||||
// GAMMA:
|
||||
static const float crt_gamma_static = 2.5; // range [1, 5]
|
||||
static const float lcd_gamma_static = 2.2; // range [1, 5]
|
||||
|
||||
// LEVELS MANAGEMENT:
|
||||
// Control the final multiplicative image contrast:
|
||||
static const float levels_contrast_static = 1.0; // range [0, 4)
|
||||
// We auto-dim to avoid clipping between passes and restore brightness
|
||||
// later. Control the dim factor here: Lower values clip less but crush
|
||||
// blacks more (static only for now).
|
||||
static const float levels_autodim_temp = 0.5; // range (0, 1]
|
||||
|
||||
// HALATION/DIFFUSION/BLOOM:
|
||||
// Halation weight: How much energy should be lost to electrons bounding
|
||||
// around under the CRT glass and exciting random phosphors?
|
||||
static const float halation_weight_static = 0.0; // range [0, 1]
|
||||
// Refractive diffusion weight: How much light should spread/diffuse from
|
||||
// refracting through the CRT glass?
|
||||
static const float diffusion_weight_static = 0.075; // range [0, 1]
|
||||
// Underestimate brightness: Bright areas bloom more, but we can base the
|
||||
// bloom brightpass on a lower brightness to sharpen phosphors, or a higher
|
||||
// brightness to soften them. Low values clip, but >= 0.8 looks okay.
|
||||
static const float bloom_underestimate_levels_static = 0.8; // range [0, 5]
|
||||
// Blur all colors more than necessary for a softer phosphor bloom?
|
||||
static const float bloom_excess_static = 0.0; // range [0, 1]
|
||||
// The BLOOM_APPROX pass approximates a phosphor blur early on with a small
|
||||
// blurred resize of the input (convergence offsets are applied as well).
|
||||
// There are three filter options (static option only for now):
|
||||
// 0.) Bilinear resize: A fast, close approximation to a 4x4 resize
|
||||
// if min_allowed_viewport_triads and the BLOOM_APPROX resolution are sane
|
||||
// and beam_max_sigma is low.
|
||||
// 1.) 3x3 resize blur: Medium speed, soft/smeared from bilinear blurring,
|
||||
// always uses a static sigma regardless of beam_max_sigma or
|
||||
// mask_num_triads_desired.
|
||||
// 2.) True 4x4 Gaussian resize: Slowest, technically correct.
|
||||
// These options are more pronounced for the fast, unbloomed shader version.
|
||||
static const float bloom_approx_filter_static = 0.0;
|
||||
|
||||
// ELECTRON BEAM SCANLINE DISTRIBUTION:
|
||||
// How many scanlines should contribute light to each pixel? Using more
|
||||
// scanlines is slower (especially for a generalized Gaussian) but less
|
||||
// distorted with larger beam sigmas (especially for a pure Gaussian). The
|
||||
// max_beam_sigma at which the closest unused weight is guaranteed <
|
||||
// 1.0/255.0 (for a 3x antialiased pure Gaussian) is:
|
||||
// 2 scanlines: max_beam_sigma = 0.2089; distortions begin ~0.34; 141.7 FPS pure, 131.9 FPS generalized
|
||||
// 3 scanlines, max_beam_sigma = 0.3879; distortions begin ~0.52; 137.5 FPS pure; 123.8 FPS generalized
|
||||
// 4 scanlines, max_beam_sigma = 0.5723; distortions begin ~0.70; 134.7 FPS pure; 117.2 FPS generalized
|
||||
// 5 scanlines, max_beam_sigma = 0.7591; distortions begin ~0.89; 131.6 FPS pure; 112.1 FPS generalized
|
||||
// 6 scanlines, max_beam_sigma = 0.9483; distortions begin ~1.08; 127.9 FPS pure; 105.6 FPS generalized
|
||||
static const float beam_num_scanlines = 3.0; // range [2, 6]
|
||||
// A generalized Gaussian beam varies shape with color too, now just width.
|
||||
// It's slower but more flexible (static option only for now).
|
||||
static const bool beam_generalized_gaussian = false;
|
||||
// What kind of scanline antialiasing do you want?
|
||||
// 0: Sample weights at 1x; 1: Sample weights at 3x; 2: Compute an integral
|
||||
// Integrals are slow (especially for generalized Gaussians) and rarely any
|
||||
// better than 3x antialiasing (static option only for now).
|
||||
static const float beam_antialias_level = 1.0; // range [0, 2]
|
||||
// Min/max standard deviations for scanline beams: Higher values widen and
|
||||
// soften scanlines. Depending on other options, low min sigmas can alias.
|
||||
static const float beam_min_sigma_static = 0.02; // range (0, 1]
|
||||
static const float beam_max_sigma_static = 0.3; // range (0, 1]
|
||||
// Beam width varies as a function of color: A power function (0) is more
|
||||
// configurable, but a spherical function (1) gives the widest beam
|
||||
// variability without aliasing (static option only for now).
|
||||
static const float beam_spot_shape_function = 0.0;
|
||||
// Spot shape power: Powers <= 1 give smoother spot shapes but lower
|
||||
// sharpness. Powers >= 1.0 are awful unless mix/max sigmas are close.
|
||||
static const float beam_spot_power_static = 1.0/3.0; // range (0, 16]
|
||||
// Generalized Gaussian max shape parameters: Higher values give flatter
|
||||
// scanline plateaus and steeper dropoffs, simultaneously widening and
|
||||
// sharpening scanlines at the cost of aliasing. 2.0 is pure Gaussian, and
|
||||
// values > ~40.0 cause artifacts with integrals.
|
||||
static const float beam_min_shape_static = 2.0; // range [2, 32]
|
||||
static const float beam_max_shape_static = 4.0; // range [2, 32]
|
||||
// Generalized Gaussian shape power: Affects how quickly the distribution
|
||||
// changes shape from Gaussian to steep/plateaued as color increases from 0
|
||||
// to 1.0. Higher powers appear softer for most colors, and lower powers
|
||||
// appear sharper for most colors.
|
||||
static const float beam_shape_power_static = 1.0/4.0; // range (0, 16]
|
||||
// What filter should be used to sample scanlines horizontally?
|
||||
// 0: Quilez (fast), 1: Gaussian (configurable), 2: Lanczos2 (sharp)
|
||||
static const float beam_horiz_filter_static = 0.0;
|
||||
// Standard deviation for horizontal Gaussian resampling:
|
||||
static const float beam_horiz_sigma_static = 0.35; // range (0, 2/3]
|
||||
// Do horizontal scanline sampling in linear RGB (correct light mixing),
|
||||
// gamma-encoded RGB (darker, hard spot shape, may better match bandwidth-
|
||||
// limiting circuitry in some CRT's), or a weighted avg.?
|
||||
static const float beam_horiz_linear_rgb_weight_static = 1.0; // range [0, 1]
|
||||
// Simulate scanline misconvergence? This needs 3x horizontal texture
|
||||
// samples and 3x texture samples of BLOOM_APPROX and HALATION_BLUR in
|
||||
// later passes (static option only for now).
|
||||
static const bool beam_misconvergence = true;
|
||||
// Convergence offsets in x/y directions for R/G/B scanline beams in units
|
||||
// of scanlines. Positive offsets go right/down; ranges [-2, 2]
|
||||
static const float2 convergence_offsets_r_static = float2(0.1, 0.2);
|
||||
static const float2 convergence_offsets_g_static = float2(0.3, 0.4);
|
||||
static const float2 convergence_offsets_b_static = float2(0.5, 0.6);
|
||||
// Detect interlacing (static option only for now)?
|
||||
static const bool interlace_detect = true;
|
||||
// Assume 1080-line sources are interlaced?
|
||||
static const bool interlace_1080i_static = false;
|
||||
// For interlaced sources, assume TFF (top-field first) or BFF order?
|
||||
// (Whether this matters depends on the nature of the interlaced input.)
|
||||
static const bool interlace_bff_static = false;
|
||||
|
||||
// ANTIALIASING:
|
||||
// What AA level do you want for curvature/overscan/subpixels? Options:
|
||||
// 0x (none), 1x (sample subpixels), 4x, 5x, 6x, 7x, 8x, 12x, 16x, 20x, 24x
|
||||
// (Static option only for now)
|
||||
static const float aa_level = 12.0; // range [0, 24]
|
||||
// What antialiasing filter do you want (static option only)? Options:
|
||||
// 0: Box (separable), 1: Box (cylindrical),
|
||||
// 2: Tent (separable), 3: Tent (cylindrical),
|
||||
// 4: Gaussian (separable), 5: Gaussian (cylindrical),
|
||||
// 6: Cubic* (separable), 7: Cubic* (cylindrical, poor)
|
||||
// 8: Lanczos Sinc (separable), 9: Lanczos Jinc (cylindrical, poor)
|
||||
// * = Especially slow with RUNTIME_ANTIALIAS_WEIGHTS
|
||||
static const float aa_filter = 8.0; // range [0, 9]
|
||||
// Flip the sample grid on odd/even frames (static option only for now)?
|
||||
static const bool aa_temporal = false;
|
||||
// Use RGB subpixel offsets for antialiasing? The pixel is at green, and
|
||||
// the blue offset is the negative r offset; range [0, 0.5]
|
||||
static const float2 aa_subpixel_r_offset_static = float2(0.0, 0.0);//float2(0.0);
|
||||
// Cubics: See http://www.imagemagick.org/Usage/filter/#mitchell
|
||||
// 1.) "Keys cubics" with B = 1 - 2C are considered the highest quality.
|
||||
// 2.) C = 0.5 (default) is Catmull-Rom; higher C's apply sharpening.
|
||||
// 3.) C = 1.0/3.0 is the Mitchell-Netravali filter.
|
||||
// 4.) C = 0.0 is a soft spline filter.
|
||||
static const float aa_cubic_c_static = 0.5; // range [0, 4]
|
||||
// Standard deviation for Gaussian antialiasing: Try 0.5/aa_pixel_diameter.
|
||||
static const float aa_gauss_sigma_static = 0.5; // range [0.0625, 1.0]
|
||||
|
||||
// PHOSPHOR MASK:
|
||||
// Mask type: 0 = aperture grille, 1 = slot mask, 2 = EDP shadow mask
|
||||
static const float mask_type_static = 1.0; // range [0, 2]
|
||||
// We can sample the mask three ways. Pick 2/3 from: Pretty/Fast/Flexible.
|
||||
// 0.) Sinc-resize to the desired dot pitch manually (pretty/slow/flexible).
|
||||
// This requires PHOSPHOR_MASK_MANUALLY_RESIZE to be #defined.
|
||||
// 1.) Hardware-resize to the desired dot pitch (ugly/fast/flexible). This
|
||||
// is halfway decent with LUT mipmapping but atrocious without it.
|
||||
// 2.) Tile it without resizing at a 1:1 texel:pixel ratio for flat coords
|
||||
// (pretty/fast/inflexible). Each input LUT has a fixed dot pitch.
|
||||
// This mode reuses the same masks, so triads will be enormous unless
|
||||
// you change the mask LUT filenames in your .cgp file.
|
||||
static const float mask_sample_mode_static = 0.0; // range [0, 2]
|
||||
// Prefer setting the triad size (0.0) or number on the screen (1.0)?
|
||||
// If RUNTIME_PHOSPHOR_BLOOM_SIGMA isn't #defined, the specified triad size
|
||||
// will always be used to calculate the full bloom sigma statically.
|
||||
static const float mask_specify_num_triads_static = 0.0; // range [0, 1]
|
||||
// Specify the phosphor triad size, in pixels. Each tile (usually with 8
|
||||
// triads) will be rounded to the nearest integer tile size and clamped to
|
||||
// obey minimum size constraints (imposed to reduce downsize taps) and
|
||||
// maximum size constraints (imposed to have a sane MASK_RESIZE FBO size).
|
||||
// To increase the size limit, double the viewport-relative scales for the
|
||||
// two MASK_RESIZE passes in crt-royale.cgp and user-cgp-contants.h.
|
||||
// range [1, mask_texture_small_size/mask_triads_per_tile]
|
||||
static const float mask_triad_size_desired_static = 24.0 / 8.0;
|
||||
// If mask_specify_num_triads is 1.0/true, we'll go by this instead (the
|
||||
// final size will be rounded and constrained as above); default 480.0
|
||||
static const float mask_num_triads_desired_static = 480.0;
|
||||
// How many lobes should the sinc/Lanczos resizer use? More lobes require
|
||||
// more samples and avoid moire a bit better, but some is unavoidable
|
||||
// depending on the destination size (static option for now).
|
||||
static const float mask_sinc_lobes = 3.0; // range [2, 4]
|
||||
// The mask is resized using a variable number of taps in each dimension,
|
||||
// but some Cg profiles always fetch a constant number of taps no matter
|
||||
// what (no dynamic branching). We can limit the maximum number of taps if
|
||||
// we statically limit the minimum phosphor triad size. Larger values are
|
||||
// faster, but the limit IS enforced (static option only, forever);
|
||||
// range [1, mask_texture_small_size/mask_triads_per_tile]
|
||||
// TODO: Make this 1.0 and compensate with smarter sampling!
|
||||
static const float mask_min_allowed_triad_size = 2.0;
|
||||
|
||||
// GEOMETRY:
|
||||
// Geometry mode:
|
||||
// 0: Off (default), 1: Spherical mapping (like cgwg's),
|
||||
// 2: Alt. spherical mapping (more bulbous), 3: Cylindrical/Trinitron
|
||||
static const float geom_mode_static = 0.0; // range [0, 3]
|
||||
// Radius of curvature: Measured in units of your viewport's diagonal size.
|
||||
static const float geom_radius_static = 2.0; // range [1/(2*pi), 1024]
|
||||
// View dist is the distance from the player to their physical screen, in
|
||||
// units of the viewport's diagonal size. It controls the field of view.
|
||||
static const float geom_view_dist_static = 2.0; // range [0.5, 1024]
|
||||
// Tilt angle in radians (clockwise around up and right vectors):
|
||||
static const float2 geom_tilt_angle_static = float2(0.0, 0.0); // range [-pi, pi]
|
||||
// Aspect ratio: When the true viewport size is unknown, this value is used
|
||||
// to help convert between the phosphor triad size and count, along with
|
||||
// the mask_resize_viewport_scale constant from user-cgp-constants.h. Set
|
||||
// this equal to Retroarch's display aspect ratio (DAR) for best results;
|
||||
// range [1, geom_max_aspect_ratio from user-cgp-constants.h];
|
||||
// default (256/224)*(54/47) = 1.313069909 (see below)
|
||||
static const float geom_aspect_ratio_static = 1.313069909;
|
||||
// Before getting into overscan, here's some general aspect ratio info:
|
||||
// - DAR = display aspect ratio = SAR * PAR; as in your Retroarch setting
|
||||
// - SAR = storage aspect ratio = DAR / PAR; square pixel emulator frame AR
|
||||
// - PAR = pixel aspect ratio = DAR / SAR; holds regardless of cropping
|
||||
// Geometry processing has to "undo" the screen-space 2D DAR to calculate
|
||||
// 3D view vectors, then reapplies the aspect ratio to the simulated CRT in
|
||||
// uv-space. To ensure the source SAR is intended for a ~4:3 DAR, either:
|
||||
// a.) Enable Retroarch's "Crop Overscan"
|
||||
// b.) Readd horizontal padding: Set overscan to e.g. N*(1.0, 240.0/224.0)
|
||||
// Real consoles use horizontal black padding in the signal, but emulators
|
||||
// often crop this without cropping the vertical padding; a 256x224 [S]NES
|
||||
// frame (8:7 SAR) is intended for a ~4:3 DAR, but a 256x240 frame is not.
|
||||
// The correct [S]NES PAR is 54:47, found by blargg and NewRisingSun:
|
||||
// http://board.zsnes.com/phpBB3/viewtopic.php?f=22&t=11928&start=50
|
||||
// http://forums.nesdev.com/viewtopic.php?p=24815#p24815
|
||||
// For flat output, it's okay to set DAR = [existing] SAR * [correct] PAR
|
||||
// without doing a. or b., but horizontal image borders will be tighter
|
||||
// than vertical ones, messing up curvature and overscan. Fixing the
|
||||
// padding first corrects this.
|
||||
// Overscan: Amount to "zoom in" before cropping. You can zoom uniformly
|
||||
// or adjust x/y independently to e.g. readd horizontal padding, as noted
|
||||
// above: Values < 1.0 zoom out; range (0, inf)
|
||||
static const float2 geom_overscan_static = float2(1.0, 1.0);// * 1.005 * (1.0, 240/224.0)
|
||||
// Compute a proper pixel-space to texture-space matrix even without ddx()/
|
||||
// ddy()? This is ~8.5% slower but improves antialiasing/subpixel filtering
|
||||
// with strong curvature (static option only for now).
|
||||
static const bool geom_force_correct_tangent_matrix = false;
|
||||
|
||||
// BORDERS:
|
||||
// Rounded border size in texture uv coords:
|
||||
static const float border_size_static = 0.015; // range [0, 0.5]
|
||||
// Border darkness: Moderate values darken the border smoothly, and high
|
||||
// values make the image very dark just inside the border:
|
||||
static const float border_darkness_static = 2.0; // range [0, inf)
|
||||
// Border compression: High numbers compress border transitions, narrowing
|
||||
// the dark border area.
|
||||
static const float border_compress_static = 2.5; // range [1, inf)
|
||||
|
||||
|
||||
#endif // USER_SETTINGS_H
|
||||
|
|
@ -0,0 +1,359 @@
|
|||
#ifndef USER_SETTINGS_H
|
||||
#define USER_SETTINGS_H
|
||||
|
||||
///////////////////////////// DRIVER CAPABILITIES ////////////////////////////
|
||||
|
||||
// The Cg compiler uses different "profiles" with different capabilities.
|
||||
// This shader requires a Cg compilation profile >= arbfp1, but a few options
|
||||
// require higher profiles like fp30 or fp40. The shader can't detect profile
|
||||
// or driver capabilities, so instead you must comment or uncomment the lines
|
||||
// below with "//" before "#define." Disable an option if you get compilation
|
||||
// errors resembling those listed. Generally speaking, all of these options
|
||||
// will run on nVidia cards, but only DRIVERS_ALLOW_TEX2DBIAS (if that) is
|
||||
// likely to run on ATI/AMD, due to the Cg compiler's profile limitations.
|
||||
|
||||
// Derivatives: Unsupported on fp20, ps_1_1, ps_1_2, ps_1_3, and arbfp1.
|
||||
// Among other things, derivatives help us fix anisotropic filtering artifacts
|
||||
// with curved manually tiled phosphor mask coords. Related errors:
|
||||
// error C3004: function "float2 ddx(float2);" not supported in this profile
|
||||
// error C3004: function "float2 ddy(float2);" not supported in this profile
|
||||
#define DRIVERS_ALLOW_DERIVATIVES
|
||||
|
||||
// Fine derivatives: Unsupported on older ATI cards.
|
||||
// Fine derivatives enable 2x2 fragment block communication, letting us perform
|
||||
// fast single-pass blur operations. If your card uses coarse derivatives and
|
||||
// these are enabled, blurs could look broken. Derivatives are a prerequisite.
|
||||
#ifdef DRIVERS_ALLOW_DERIVATIVES
|
||||
#define DRIVERS_ALLOW_FINE_DERIVATIVES
|
||||
#endif
|
||||
|
||||
// Dynamic looping: Requires an fp30 or newer profile.
|
||||
// This makes phosphor mask resampling faster in some cases. Related errors:
|
||||
// error C5013: profile does not support "for" statements and "for" could not
|
||||
// be unrolled
|
||||
#define DRIVERS_ALLOW_DYNAMIC_BRANCHES
|
||||
|
||||
// Without DRIVERS_ALLOW_DYNAMIC_BRANCHES, we need to use unrollable loops.
|
||||
// Using one static loop avoids overhead if the user is right, but if the user
|
||||
// is wrong (loops are allowed), breaking a loop into if-blocked pieces with a
|
||||
// binary search can potentially save some iterations. However, it may fail:
|
||||
// error C6001: Temporary register limit of 32 exceeded; 35 registers
|
||||
// needed to compile program
|
||||
#define ACCOMODATE_POSSIBLE_DYNAMIC_LOOPS
|
||||
|
||||
// tex2Dlod: Requires an fp40 or newer profile. This can be used to disable
|
||||
// anisotropic filtering, thereby fixing related artifacts. Related errors:
|
||||
// error C3004: function "float4 tex2Dlod(sampler2D, float4);" not supported in
|
||||
// this profile
|
||||
#define DRIVERS_ALLOW_TEX2DLOD
|
||||
|
||||
// tex2Dbias: Requires an fp30 or newer profile. This can be used to alleviate
|
||||
// artifacts from anisotropic filtering and mipmapping. Related errors:
|
||||
// error C3004: function "float4 tex2Dbias(sampler2D, float4);" not supported
|
||||
// in this profile
|
||||
#define DRIVERS_ALLOW_TEX2DBIAS
|
||||
|
||||
// Integrated graphics compatibility: Integrated graphics like Intel HD 4000
|
||||
// impose stricter limitations on register counts and instructions. Enable
|
||||
// INTEGRATED_GRAPHICS_COMPATIBILITY_MODE if you still see error C6001 or:
|
||||
// error C6002: Instruction limit of 1024 exceeded: 1523 instructions needed
|
||||
// to compile program.
|
||||
// Enabling integrated graphics compatibility mode will automatically disable:
|
||||
// 1.) PHOSPHOR_MASK_MANUALLY_RESIZE: The phosphor mask will be softer.
|
||||
// (This may be reenabled in a later release.)
|
||||
// 2.) RUNTIME_GEOMETRY_MODE
|
||||
// 3.) The high-quality 4x4 Gaussian resize for the bloom approximation
|
||||
//#define INTEGRATED_GRAPHICS_COMPATIBILITY_MODE
|
||||
|
||||
|
||||
//////////////////////////// USER CODEPATH OPTIONS ///////////////////////////
|
||||
|
||||
// To disable a #define option, turn its line into a comment with "//."
|
||||
|
||||
// RUNTIME VS. COMPILE-TIME OPTIONS (Major Performance Implications):
|
||||
// Enable runtime shader parameters in the Retroarch (etc.) GUI? They override
|
||||
// many of the options in this file and allow real-time tuning, but many of
|
||||
// them are slower. Disabling them and using this text file will boost FPS.
|
||||
#define RUNTIME_SHADER_PARAMS_ENABLE
|
||||
// Specify the phosphor bloom sigma at runtime? This option is 10% slower, but
|
||||
// it's the only way to do a wide-enough full bloom with a runtime dot pitch.
|
||||
#define RUNTIME_PHOSPHOR_BLOOM_SIGMA
|
||||
// Specify antialiasing weight parameters at runtime? (Costs ~20% with cubics)
|
||||
//#define RUNTIME_ANTIALIAS_WEIGHTS
|
||||
// Specify subpixel offsets at runtime? (WARNING: EXTREMELY EXPENSIVE!)
|
||||
//#define RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS
|
||||
// Make beam_horiz_filter and beam_horiz_linear_rgb_weight into runtime shader
|
||||
// parameters? This will require more math or dynamic branching.
|
||||
//#define RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE
|
||||
// Specify the tilt at runtime? This makes things about 3% slower.
|
||||
//#define RUNTIME_GEOMETRY_TILT
|
||||
// Specify the geometry mode at runtime?
|
||||
#define RUNTIME_GEOMETRY_MODE
|
||||
// Specify the phosphor mask type (aperture grille, slot mask, shadow mask) and
|
||||
// mode (Lanczos-resize, hardware resize, or tile 1:1) at runtime, even without
|
||||
// dynamic branches? This is cheap if mask_resize_viewport_scale is small.
|
||||
#define FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
|
||||
|
||||
// PHOSPHOR MASK:
|
||||
// Manually resize the phosphor mask for best results (slower)? Disabling this
|
||||
// removes the option to do so, but it may be faster without dynamic branches.
|
||||
#define PHOSPHOR_MASK_MANUALLY_RESIZE
|
||||
// If we sinc-resize the mask, should we Lanczos-window it (slower but better)?
|
||||
#define PHOSPHOR_MASK_RESIZE_LANCZOS_WINDOW
|
||||
// Larger blurs are expensive, but we need them to blur larger triads. We can
|
||||
// detect the right blur if the triad size is static or our profile allows
|
||||
// dynamic branches, but otherwise we use the largest blur the user indicates
|
||||
// they might need:
|
||||
#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_3_PIXELS
|
||||
//#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_6_PIXELS
|
||||
//#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_9_PIXELS
|
||||
//#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_12_PIXELS
|
||||
// Here's a helpful chart:
|
||||
// MaxTriadSize BlurSize MinTriadCountsByResolution
|
||||
// 3.0 9.0 480/640/960/1920 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
|
||||
// 6.0 17.0 240/320/480/960 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
|
||||
// 9.0 25.0 160/213/320/640 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
|
||||
// 12.0 31.0 120/160/240/480 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
|
||||
// 18.0 43.0 80/107/160/320 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
|
||||
|
||||
|
||||
/////////////////////////////// USER PARAMETERS //////////////////////////////
|
||||
|
||||
// Note: Many of these static parameters are overridden by runtime shader
|
||||
// parameters when those are enabled. However, many others are static codepath
|
||||
// options that were cleaner or more convert to code as static constants.
|
||||
|
||||
// GAMMA:
|
||||
static const float crt_gamma_static = 2.5; // range [1, 5]
|
||||
static const float lcd_gamma_static = 2.2; // range [1, 5]
|
||||
|
||||
// LEVELS MANAGEMENT:
|
||||
// Control the final multiplicative image contrast:
|
||||
static const float levels_contrast_static = 1.0; // range [0, 4)
|
||||
// We auto-dim to avoid clipping between passes and restore brightness
|
||||
// later. Control the dim factor here: Lower values clip less but crush
|
||||
// blacks more (static only for now).
|
||||
static const float levels_autodim_temp = 0.5; // range (0, 1]
|
||||
|
||||
// HALATION/DIFFUSION/BLOOM:
|
||||
// Halation weight: How much energy should be lost to electrons bounding
|
||||
// around under the CRT glass and exciting random phosphors?
|
||||
static const float halation_weight_static = 0.0; // range [0, 1]
|
||||
// Refractive diffusion weight: How much light should spread/diffuse from
|
||||
// refracting through the CRT glass?
|
||||
static const float diffusion_weight_static = 0.075; // range [0, 1]
|
||||
// Underestimate brightness: Bright areas bloom more, but we can base the
|
||||
// bloom brightpass on a lower brightness to sharpen phosphors, or a higher
|
||||
// brightness to soften them. Low values clip, but >= 0.8 looks okay.
|
||||
static const float bloom_underestimate_levels_static = 0.8; // range [0, 5]
|
||||
// Blur all colors more than necessary for a softer phosphor bloom?
|
||||
static const float bloom_excess_static = 0.0; // range [0, 1]
|
||||
// The BLOOM_APPROX pass approximates a phosphor blur early on with a small
|
||||
// blurred resize of the input (convergence offsets are applied as well).
|
||||
// There are three filter options (static option only for now):
|
||||
// 0.) Bilinear resize: A fast, close approximation to a 4x4 resize
|
||||
// if min_allowed_viewport_triads and the BLOOM_APPROX resolution are sane
|
||||
// and beam_max_sigma is low.
|
||||
// 1.) 3x3 resize blur: Medium speed, soft/smeared from bilinear blurring,
|
||||
// always uses a static sigma regardless of beam_max_sigma or
|
||||
// mask_num_triads_desired.
|
||||
// 2.) True 4x4 Gaussian resize: Slowest, technically correct.
|
||||
// These options are more pronounced for the fast, unbloomed shader version.
|
||||
static const float bloom_approx_filter_static = 2.0;
|
||||
|
||||
// ELECTRON BEAM SCANLINE DISTRIBUTION:
|
||||
// How many scanlines should contribute light to each pixel? Using more
|
||||
// scanlines is slower (especially for a generalized Gaussian) but less
|
||||
// distorted with larger beam sigmas (especially for a pure Gaussian). The
|
||||
// max_beam_sigma at which the closest unused weight is guaranteed <
|
||||
// 1.0/255.0 (for a 3x antialiased pure Gaussian) is:
|
||||
// 2 scanlines: max_beam_sigma = 0.2089; distortions begin ~0.34; 141.7 FPS pure, 131.9 FPS generalized
|
||||
// 3 scanlines, max_beam_sigma = 0.3879; distortions begin ~0.52; 137.5 FPS pure; 123.8 FPS generalized
|
||||
// 4 scanlines, max_beam_sigma = 0.5723; distortions begin ~0.70; 134.7 FPS pure; 117.2 FPS generalized
|
||||
// 5 scanlines, max_beam_sigma = 0.7591; distortions begin ~0.89; 131.6 FPS pure; 112.1 FPS generalized
|
||||
// 6 scanlines, max_beam_sigma = 0.9483; distortions begin ~1.08; 127.9 FPS pure; 105.6 FPS generalized
|
||||
static const float beam_num_scanlines = 3.0; // range [2, 6]
|
||||
// A generalized Gaussian beam varies shape with color too, now just width.
|
||||
// It's slower but more flexible (static option only for now).
|
||||
static const bool beam_generalized_gaussian = false;
|
||||
// What kind of scanline antialiasing do you want?
|
||||
// 0: Sample weights at 1x; 1: Sample weights at 3x; 2: Compute an integral
|
||||
// Integrals are slow (especially for generalized Gaussians) and rarely any
|
||||
// better than 3x antialiasing (static option only for now).
|
||||
static const float beam_antialias_level = 1.0; // range [0, 2]
|
||||
// Min/max standard deviations for scanline beams: Higher values widen and
|
||||
// soften scanlines. Depending on other options, low min sigmas can alias.
|
||||
static const float beam_min_sigma_static = 0.02; // range (0, 1]
|
||||
static const float beam_max_sigma_static = 0.3; // range (0, 1]
|
||||
// Beam width varies as a function of color: A power function (0) is more
|
||||
// configurable, but a spherical function (1) gives the widest beam
|
||||
// variability without aliasing (static option only for now).
|
||||
static const float beam_spot_shape_function = 0.0;
|
||||
// Spot shape power: Powers <= 1 give smoother spot shapes but lower
|
||||
// sharpness. Powers >= 1.0 are awful unless mix/max sigmas are close.
|
||||
static const float beam_spot_power_static = 1.0/3.0; // range (0, 16]
|
||||
// Generalized Gaussian max shape parameters: Higher values give flatter
|
||||
// scanline plateaus and steeper dropoffs, simultaneously widening and
|
||||
// sharpening scanlines at the cost of aliasing. 2.0 is pure Gaussian, and
|
||||
// values > ~40.0 cause artifacts with integrals.
|
||||
static const float beam_min_shape_static = 2.0; // range [2, 32]
|
||||
static const float beam_max_shape_static = 4.0; // range [2, 32]
|
||||
// Generalized Gaussian shape power: Affects how quickly the distribution
|
||||
// changes shape from Gaussian to steep/plateaued as color increases from 0
|
||||
// to 1.0. Higher powers appear softer for most colors, and lower powers
|
||||
// appear sharper for most colors.
|
||||
static const float beam_shape_power_static = 1.0/4.0; // range (0, 16]
|
||||
// What filter should be used to sample scanlines horizontally?
|
||||
// 0: Quilez (fast), 1: Gaussian (configurable), 2: Lanczos2 (sharp)
|
||||
static const float beam_horiz_filter_static = 0.0;
|
||||
// Standard deviation for horizontal Gaussian resampling:
|
||||
static const float beam_horiz_sigma_static = 0.35; // range (0, 2/3]
|
||||
// Do horizontal scanline sampling in linear RGB (correct light mixing),
|
||||
// gamma-encoded RGB (darker, hard spot shape, may better match bandwidth-
|
||||
// limiting circuitry in some CRT's), or a weighted avg.?
|
||||
static const float beam_horiz_linear_rgb_weight_static = 1.0; // range [0, 1]
|
||||
// Simulate scanline misconvergence? This needs 3x horizontal texture
|
||||
// samples and 3x texture samples of BLOOM_APPROX and HALATION_BLUR in
|
||||
// later passes (static option only for now).
|
||||
static const bool beam_misconvergence = true;
|
||||
// Convergence offsets in x/y directions for R/G/B scanline beams in units
|
||||
// of scanlines. Positive offsets go right/down; ranges [-2, 2]
|
||||
static const float2 convergence_offsets_r_static = float2(0.1, 0.2);
|
||||
static const float2 convergence_offsets_g_static = float2(0.3, 0.4);
|
||||
static const float2 convergence_offsets_b_static = float2(0.5, 0.6);
|
||||
// Detect interlacing (static option only for now)?
|
||||
static const bool interlace_detect = true;
|
||||
// Assume 1080-line sources are interlaced?
|
||||
static const bool interlace_1080i_static = false;
|
||||
// For interlaced sources, assume TFF (top-field first) or BFF order?
|
||||
// (Whether this matters depends on the nature of the interlaced input.)
|
||||
static const bool interlace_bff_static = false;
|
||||
|
||||
// ANTIALIASING:
|
||||
// What AA level do you want for curvature/overscan/subpixels? Options:
|
||||
// 0x (none), 1x (sample subpixels), 4x, 5x, 6x, 7x, 8x, 12x, 16x, 20x, 24x
|
||||
// (Static option only for now)
|
||||
static const float aa_level = 12.0; // range [0, 24]
|
||||
// What antialiasing filter do you want (static option only)? Options:
|
||||
// 0: Box (separable), 1: Box (cylindrical),
|
||||
// 2: Tent (separable), 3: Tent (cylindrical),
|
||||
// 4: Gaussian (separable), 5: Gaussian (cylindrical),
|
||||
// 6: Cubic* (separable), 7: Cubic* (cylindrical, poor)
|
||||
// 8: Lanczos Sinc (separable), 9: Lanczos Jinc (cylindrical, poor)
|
||||
// * = Especially slow with RUNTIME_ANTIALIAS_WEIGHTS
|
||||
static const float aa_filter = 8.0; // range [0, 9]
|
||||
// Flip the sample grid on odd/even frames (static option only for now)?
|
||||
static const bool aa_temporal = false;
|
||||
// Use RGB subpixel offsets for antialiasing? The pixel is at green, and
|
||||
// the blue offset is the negative r offset; range [0, 0.5]
|
||||
static const float2 aa_subpixel_r_offset_static = float2(0.0, 0.0);//float2(0.0);
|
||||
// Cubics: See http://www.imagemagick.org/Usage/filter/#mitchell
|
||||
// 1.) "Keys cubics" with B = 1 - 2C are considered the highest quality.
|
||||
// 2.) C = 0.5 (default) is Catmull-Rom; higher C's apply sharpening.
|
||||
// 3.) C = 1.0/3.0 is the Mitchell-Netravali filter.
|
||||
// 4.) C = 0.0 is a soft spline filter.
|
||||
static const float aa_cubic_c_static = 0.5; // range [0, 4]
|
||||
// Standard deviation for Gaussian antialiasing: Try 0.5/aa_pixel_diameter.
|
||||
static const float aa_gauss_sigma_static = 0.5; // range [0.0625, 1.0]
|
||||
|
||||
// PHOSPHOR MASK:
|
||||
// Mask type: 0 = aperture grille, 1 = slot mask, 2 = EDP shadow mask
|
||||
static const float mask_type_static = 1.0; // range [0, 2]
|
||||
// We can sample the mask three ways. Pick 2/3 from: Pretty/Fast/Flexible.
|
||||
// 0.) Sinc-resize to the desired dot pitch manually (pretty/slow/flexible).
|
||||
// This requires PHOSPHOR_MASK_MANUALLY_RESIZE to be #defined.
|
||||
// 1.) Hardware-resize to the desired dot pitch (ugly/fast/flexible). This
|
||||
// is halfway decent with LUT mipmapping but atrocious without it.
|
||||
// 2.) Tile it without resizing at a 1:1 texel:pixel ratio for flat coords
|
||||
// (pretty/fast/inflexible). Each input LUT has a fixed dot pitch.
|
||||
// This mode reuses the same masks, so triads will be enormous unless
|
||||
// you change the mask LUT filenames in your .cgp file.
|
||||
static const float mask_sample_mode_static = 0.0; // range [0, 2]
|
||||
// Prefer setting the triad size (0.0) or number on the screen (1.0)?
|
||||
// If RUNTIME_PHOSPHOR_BLOOM_SIGMA isn't #defined, the specified triad size
|
||||
// will always be used to calculate the full bloom sigma statically.
|
||||
static const float mask_specify_num_triads_static = 0.0; // range [0, 1]
|
||||
// Specify the phosphor triad size, in pixels. Each tile (usually with 8
|
||||
// triads) will be rounded to the nearest integer tile size and clamped to
|
||||
// obey minimum size constraints (imposed to reduce downsize taps) and
|
||||
// maximum size constraints (imposed to have a sane MASK_RESIZE FBO size).
|
||||
// To increase the size limit, double the viewport-relative scales for the
|
||||
// two MASK_RESIZE passes in crt-royale.cgp and user-cgp-contants.h.
|
||||
// range [1, mask_texture_small_size/mask_triads_per_tile]
|
||||
static const float mask_triad_size_desired_static = 24.0 / 8.0;
|
||||
// If mask_specify_num_triads is 1.0/true, we'll go by this instead (the
|
||||
// final size will be rounded and constrained as above); default 480.0
|
||||
static const float mask_num_triads_desired_static = 480.0;
|
||||
// How many lobes should the sinc/Lanczos resizer use? More lobes require
|
||||
// more samples and avoid moire a bit better, but some is unavoidable
|
||||
// depending on the destination size (static option for now).
|
||||
static const float mask_sinc_lobes = 3.0; // range [2, 4]
|
||||
// The mask is resized using a variable number of taps in each dimension,
|
||||
// but some Cg profiles always fetch a constant number of taps no matter
|
||||
// what (no dynamic branching). We can limit the maximum number of taps if
|
||||
// we statically limit the minimum phosphor triad size. Larger values are
|
||||
// faster, but the limit IS enforced (static option only, forever);
|
||||
// range [1, mask_texture_small_size/mask_triads_per_tile]
|
||||
// TODO: Make this 1.0 and compensate with smarter sampling!
|
||||
static const float mask_min_allowed_triad_size = 2.0;
|
||||
|
||||
// GEOMETRY:
|
||||
// Geometry mode:
|
||||
// 0: Off (default), 1: Spherical mapping (like cgwg's),
|
||||
// 2: Alt. spherical mapping (more bulbous), 3: Cylindrical/Trinitron
|
||||
static const float geom_mode_static = 0.0; // range [0, 3]
|
||||
// Radius of curvature: Measured in units of your viewport's diagonal size.
|
||||
static const float geom_radius_static = 2.0; // range [1/(2*pi), 1024]
|
||||
// View dist is the distance from the player to their physical screen, in
|
||||
// units of the viewport's diagonal size. It controls the field of view.
|
||||
static const float geom_view_dist_static = 2.0; // range [0.5, 1024]
|
||||
// Tilt angle in radians (clockwise around up and right vectors):
|
||||
static const float2 geom_tilt_angle_static = float2(0.0, 0.0); // range [-pi, pi]
|
||||
// Aspect ratio: When the true viewport size is unknown, this value is used
|
||||
// to help convert between the phosphor triad size and count, along with
|
||||
// the mask_resize_viewport_scale constant from user-cgp-constants.h. Set
|
||||
// this equal to Retroarch's display aspect ratio (DAR) for best results;
|
||||
// range [1, geom_max_aspect_ratio from user-cgp-constants.h];
|
||||
// default (256/224)*(54/47) = 1.313069909 (see below)
|
||||
static const float geom_aspect_ratio_static = 1.313069909;
|
||||
// Before getting into overscan, here's some general aspect ratio info:
|
||||
// - DAR = display aspect ratio = SAR * PAR; as in your Retroarch setting
|
||||
// - SAR = storage aspect ratio = DAR / PAR; square pixel emulator frame AR
|
||||
// - PAR = pixel aspect ratio = DAR / SAR; holds regardless of cropping
|
||||
// Geometry processing has to "undo" the screen-space 2D DAR to calculate
|
||||
// 3D view vectors, then reapplies the aspect ratio to the simulated CRT in
|
||||
// uv-space. To ensure the source SAR is intended for a ~4:3 DAR, either:
|
||||
// a.) Enable Retroarch's "Crop Overscan"
|
||||
// b.) Readd horizontal padding: Set overscan to e.g. N*(1.0, 240.0/224.0)
|
||||
// Real consoles use horizontal black padding in the signal, but emulators
|
||||
// often crop this without cropping the vertical padding; a 256x224 [S]NES
|
||||
// frame (8:7 SAR) is intended for a ~4:3 DAR, but a 256x240 frame is not.
|
||||
// The correct [S]NES PAR is 54:47, found by blargg and NewRisingSun:
|
||||
// http://board.zsnes.com/phpBB3/viewtopic.php?f=22&t=11928&start=50
|
||||
// http://forums.nesdev.com/viewtopic.php?p=24815#p24815
|
||||
// For flat output, it's okay to set DAR = [existing] SAR * [correct] PAR
|
||||
// without doing a. or b., but horizontal image borders will be tighter
|
||||
// than vertical ones, messing up curvature and overscan. Fixing the
|
||||
// padding first corrects this.
|
||||
// Overscan: Amount to "zoom in" before cropping. You can zoom uniformly
|
||||
// or adjust x/y independently to e.g. readd horizontal padding, as noted
|
||||
// above: Values < 1.0 zoom out; range (0, inf)
|
||||
static const float2 geom_overscan_static = float2(1.0, 1.0);// * 1.005 * (1.0, 240/224.0)
|
||||
// Compute a proper pixel-space to texture-space matrix even without ddx()/
|
||||
// ddy()? This is ~8.5% slower but improves antialiasing/subpixel filtering
|
||||
// with strong curvature (static option only for now).
|
||||
static const bool geom_force_correct_tangent_matrix = false;
|
||||
|
||||
// BORDERS:
|
||||
// Rounded border size in texture uv coords:
|
||||
static const float border_size_static = 0.015; // range [0, 0.5]
|
||||
// Border darkness: Moderate values darken the border smoothly, and high
|
||||
// values make the image very dark just inside the border:
|
||||
static const float border_darkness_static = 2.0; // range [0, inf)
|
||||
// Border compression: High numbers compress border transitions, narrowing
|
||||
// the dark border area.
|
||||
static const float border_compress_static = 2.5; // range [1, inf)
|
||||
|
||||
|
||||
#endif // USER_SETTINGS_H
|
||||
|
|
@ -0,0 +1,359 @@
|
|||
#ifndef USER_SETTINGS_H
|
||||
#define USER_SETTINGS_H
|
||||
|
||||
///////////////////////////// DRIVER CAPABILITIES ////////////////////////////
|
||||
|
||||
// The Cg compiler uses different "profiles" with different capabilities.
|
||||
// This shader requires a Cg compilation profile >= arbfp1, but a few options
|
||||
// require higher profiles like fp30 or fp40. The shader can't detect profile
|
||||
// or driver capabilities, so instead you must comment or uncomment the lines
|
||||
// below with "//" before "#define." Disable an option if you get compilation
|
||||
// errors resembling those listed. Generally speaking, all of these options
|
||||
// will run on nVidia cards, but only DRIVERS_ALLOW_TEX2DBIAS (if that) is
|
||||
// likely to run on ATI/AMD, due to the Cg compiler's profile limitations.
|
||||
|
||||
// Derivatives: Unsupported on fp20, ps_1_1, ps_1_2, ps_1_3, and arbfp1.
|
||||
// Among other things, derivatives help us fix anisotropic filtering artifacts
|
||||
// with curved manually tiled phosphor mask coords. Related errors:
|
||||
// error C3004: function "float2 ddx(float2);" not supported in this profile
|
||||
// error C3004: function "float2 ddy(float2);" not supported in this profile
|
||||
//#define DRIVERS_ALLOW_DERIVATIVES
|
||||
|
||||
// Fine derivatives: Unsupported on older ATI cards.
|
||||
// Fine derivatives enable 2x2 fragment block communication, letting us perform
|
||||
// fast single-pass blur operations. If your card uses coarse derivatives and
|
||||
// these are enabled, blurs could look broken. Derivatives are a prerequisite.
|
||||
#ifdef DRIVERS_ALLOW_DERIVATIVES
|
||||
#define DRIVERS_ALLOW_FINE_DERIVATIVES
|
||||
#endif
|
||||
|
||||
// Dynamic looping: Requires an fp30 or newer profile.
|
||||
// This makes phosphor mask resampling faster in some cases. Related errors:
|
||||
// error C5013: profile does not support "for" statements and "for" could not
|
||||
// be unrolled
|
||||
//#define DRIVERS_ALLOW_DYNAMIC_BRANCHES
|
||||
|
||||
// Without DRIVERS_ALLOW_DYNAMIC_BRANCHES, we need to use unrollable loops.
|
||||
// Using one static loop avoids overhead if the user is right, but if the user
|
||||
// is wrong (loops are allowed), breaking a loop into if-blocked pieces with a
|
||||
// binary search can potentially save some iterations. However, it may fail:
|
||||
// error C6001: Temporary register limit of 32 exceeded; 35 registers
|
||||
// needed to compile program
|
||||
//#define ACCOMODATE_POSSIBLE_DYNAMIC_LOOPS
|
||||
|
||||
// tex2Dlod: Requires an fp40 or newer profile. This can be used to disable
|
||||
// anisotropic filtering, thereby fixing related artifacts. Related errors:
|
||||
// error C3004: function "float4 tex2Dlod(sampler2D, float4);" not supported in
|
||||
// this profile
|
||||
//#define DRIVERS_ALLOW_TEX2DLOD
|
||||
|
||||
// tex2Dbias: Requires an fp30 or newer profile. This can be used to alleviate
|
||||
// artifacts from anisotropic filtering and mipmapping. Related errors:
|
||||
// error C3004: function "float4 tex2Dbias(sampler2D, float4);" not supported
|
||||
// in this profile
|
||||
//#define DRIVERS_ALLOW_TEX2DBIAS
|
||||
|
||||
// Integrated graphics compatibility: Integrated graphics like Intel HD 4000
|
||||
// impose stricter limitations on register counts and instructions. Enable
|
||||
// INTEGRATED_GRAPHICS_COMPATIBILITY_MODE if you still see error C6001 or:
|
||||
// error C6002: Instruction limit of 1024 exceeded: 1523 instructions needed
|
||||
// to compile program.
|
||||
// Enabling integrated graphics compatibility mode will automatically disable:
|
||||
// 1.) PHOSPHOR_MASK_MANUALLY_RESIZE: The phosphor mask will be softer.
|
||||
// (This may be reenabled in a later release.)
|
||||
// 2.) RUNTIME_GEOMETRY_MODE
|
||||
// 3.) The high-quality 4x4 Gaussian resize for the bloom approximation
|
||||
//#define INTEGRATED_GRAPHICS_COMPATIBILITY_MODE
|
||||
|
||||
|
||||
//////////////////////////// USER CODEPATH OPTIONS ///////////////////////////
|
||||
|
||||
// To disable a #define option, turn its line into a comment with "//."
|
||||
|
||||
// RUNTIME VS. COMPILE-TIME OPTIONS (Major Performance Implications):
|
||||
// Enable runtime shader parameters in the Retroarch (etc.) GUI? They override
|
||||
// many of the options in this file and allow real-time tuning, but many of
|
||||
// them are slower. Disabling them and using this text file will boost FPS.
|
||||
//#define RUNTIME_SHADER_PARAMS_ENABLE
|
||||
// Specify the phosphor bloom sigma at runtime? This option is 10% slower, but
|
||||
// it's the only way to do a wide-enough full bloom with a runtime dot pitch.
|
||||
//#define RUNTIME_PHOSPHOR_BLOOM_SIGMA
|
||||
// Specify antialiasing weight parameters at runtime? (Costs ~20% with cubics)
|
||||
//#define RUNTIME_ANTIALIAS_WEIGHTS
|
||||
// Specify subpixel offsets at runtime? (WARNING: EXTREMELY EXPENSIVE!)
|
||||
//#define RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS
|
||||
// Make beam_horiz_filter and beam_horiz_linear_rgb_weight into runtime shader
|
||||
// parameters? This will require more math or dynamic branching.
|
||||
//#define RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE
|
||||
// Specify the tilt at runtime? This makes things about 3% slower.
|
||||
//#define RUNTIME_GEOMETRY_TILT
|
||||
// Specify the geometry mode at runtime?
|
||||
//#define RUNTIME_GEOMETRY_MODE
|
||||
// Specify the phosphor mask type (aperture grille, slot mask, shadow mask) and
|
||||
// mode (Lanczos-resize, hardware resize, or tile 1:1) at runtime, even without
|
||||
// dynamic branches? This is cheap if mask_resize_viewport_scale is small.
|
||||
//#define FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
|
||||
|
||||
// PHOSPHOR MASK:
|
||||
// Manually resize the phosphor mask for best results (slower)? Disabling this
|
||||
// removes the option to do so, but it may be faster without dynamic branches.
|
||||
#define PHOSPHOR_MASK_MANUALLY_RESIZE
|
||||
// If we sinc-resize the mask, should we Lanczos-window it (slower but better)?
|
||||
#define PHOSPHOR_MASK_RESIZE_LANCZOS_WINDOW
|
||||
// Larger blurs are expensive, but we need them to blur larger triads. We can
|
||||
// detect the right blur if the triad size is static or our profile allows
|
||||
// dynamic branches, but otherwise we use the largest blur the user indicates
|
||||
// they might need:
|
||||
//#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_3_PIXELS
|
||||
//#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_6_PIXELS
|
||||
//#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_9_PIXELS
|
||||
//#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_12_PIXELS
|
||||
// Here's a helpful chart:
|
||||
// MaxTriadSize BlurSize MinTriadCountsByResolution
|
||||
// 3.0 9.0 480/640/960/1920 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
|
||||
// 6.0 17.0 240/320/480/960 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
|
||||
// 9.0 25.0 160/213/320/640 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
|
||||
// 12.0 31.0 120/160/240/480 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
|
||||
// 18.0 43.0 80/107/160/320 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
|
||||
|
||||
|
||||
/////////////////////////////// USER PARAMETERS //////////////////////////////
|
||||
|
||||
// Note: Many of these static parameters are overridden by runtime shader
|
||||
// parameters when those are enabled. However, many others are static codepath
|
||||
// options that were cleaner or more convert to code as static constants.
|
||||
|
||||
// GAMMA:
|
||||
static const float crt_gamma_static = 2.5; // range [1, 5]
|
||||
static const float lcd_gamma_static = 2.2; // range [1, 5]
|
||||
|
||||
// LEVELS MANAGEMENT:
|
||||
// Control the final multiplicative image contrast:
|
||||
static const float levels_contrast_static = 1.0; // range [0, 4)
|
||||
// We auto-dim to avoid clipping between passes and restore brightness
|
||||
// later. Control the dim factor here: Lower values clip less but crush
|
||||
// blacks more (static only for now).
|
||||
static const float levels_autodim_temp = 0.5; // range (0, 1]
|
||||
|
||||
// HALATION/DIFFUSION/BLOOM:
|
||||
// Halation weight: How much energy should be lost to electrons bounding
|
||||
// around under the CRT glass and exciting random phosphors?
|
||||
static const float halation_weight_static = 0.0; // range [0, 1]
|
||||
// Refractive diffusion weight: How much light should spread/diffuse from
|
||||
// refracting through the CRT glass?
|
||||
static const float diffusion_weight_static = 0.075; // range [0, 1]
|
||||
// Underestimate brightness: Bright areas bloom more, but we can base the
|
||||
// bloom brightpass on a lower brightness to sharpen phosphors, or a higher
|
||||
// brightness to soften them. Low values clip, but >= 0.8 looks okay.
|
||||
static const float bloom_underestimate_levels_static = 0.8; // range [0, 5]
|
||||
// Blur all colors more than necessary for a softer phosphor bloom?
|
||||
static const float bloom_excess_static = 0.0; // range [0, 1]
|
||||
// The BLOOM_APPROX pass approximates a phosphor blur early on with a small
|
||||
// blurred resize of the input (convergence offsets are applied as well).
|
||||
// There are three filter options (static option only for now):
|
||||
// 0.) Bilinear resize: A fast, close approximation to a 4x4 resize
|
||||
// if min_allowed_viewport_triads and the BLOOM_APPROX resolution are sane
|
||||
// and beam_max_sigma is low.
|
||||
// 1.) 3x3 resize blur: Medium speed, soft/smeared from bilinear blurring,
|
||||
// always uses a static sigma regardless of beam_max_sigma or
|
||||
// mask_num_triads_desired.
|
||||
// 2.) True 4x4 Gaussian resize: Slowest, technically correct.
|
||||
// These options are more pronounced for the fast, unbloomed shader version.
|
||||
static const float bloom_approx_filter_static = 0.0;
|
||||
|
||||
// ELECTRON BEAM SCANLINE DISTRIBUTION:
|
||||
// How many scanlines should contribute light to each pixel? Using more
|
||||
// scanlines is slower (especially for a generalized Gaussian) but less
|
||||
// distorted with larger beam sigmas (especially for a pure Gaussian). The
|
||||
// max_beam_sigma at which the closest unused weight is guaranteed <
|
||||
// 1.0/255.0 (for a 3x antialiased pure Gaussian) is:
|
||||
// 2 scanlines: max_beam_sigma = 0.2089; distortions begin ~0.34; 141.7 FPS pure, 131.9 FPS generalized
|
||||
// 3 scanlines, max_beam_sigma = 0.3879; distortions begin ~0.52; 137.5 FPS pure; 123.8 FPS generalized
|
||||
// 4 scanlines, max_beam_sigma = 0.5723; distortions begin ~0.70; 134.7 FPS pure; 117.2 FPS generalized
|
||||
// 5 scanlines, max_beam_sigma = 0.7591; distortions begin ~0.89; 131.6 FPS pure; 112.1 FPS generalized
|
||||
// 6 scanlines, max_beam_sigma = 0.9483; distortions begin ~1.08; 127.9 FPS pure; 105.6 FPS generalized
|
||||
static const float beam_num_scanlines = 2.0; // range [2, 6]
|
||||
// A generalized Gaussian beam varies shape with color too, now just width.
|
||||
// It's slower but more flexible (static option only for now).
|
||||
static const bool beam_generalized_gaussian = false;
|
||||
// What kind of scanline antialiasing do you want?
|
||||
// 0: Sample weights at 1x; 1: Sample weights at 3x; 2: Compute an integral
|
||||
// Integrals are slow (especially for generalized Gaussians) and rarely any
|
||||
// better than 3x antialiasing (static option only for now).
|
||||
static const float beam_antialias_level = 1.0; // range [0, 2]
|
||||
// Min/max standard deviations for scanline beams: Higher values widen and
|
||||
// soften scanlines. Depending on other options, low min sigmas can alias.
|
||||
static const float beam_min_sigma_static = 0.02; // range (0, 1]
|
||||
static const float beam_max_sigma_static = 0.3; // range (0, 1]
|
||||
// Beam width varies as a function of color: A power function (0) is more
|
||||
// configurable, but a spherical function (1) gives the widest beam
|
||||
// variability without aliasing (static option only for now).
|
||||
static const float beam_spot_shape_function = 0.0;
|
||||
// Spot shape power: Powers <= 1 give smoother spot shapes but lower
|
||||
// sharpness. Powers >= 1.0 are awful unless mix/max sigmas are close.
|
||||
static const float beam_spot_power_static = 1.0/3.0; // range (0, 16]
|
||||
// Generalized Gaussian max shape parameters: Higher values give flatter
|
||||
// scanline plateaus and steeper dropoffs, simultaneously widening and
|
||||
// sharpening scanlines at the cost of aliasing. 2.0 is pure Gaussian, and
|
||||
// values > ~40.0 cause artifacts with integrals.
|
||||
static const float beam_min_shape_static = 2.0; // range [2, 32]
|
||||
static const float beam_max_shape_static = 4.0; // range [2, 32]
|
||||
// Generalized Gaussian shape power: Affects how quickly the distribution
|
||||
// changes shape from Gaussian to steep/plateaued as color increases from 0
|
||||
// to 1.0. Higher powers appear softer for most colors, and lower powers
|
||||
// appear sharper for most colors.
|
||||
static const float beam_shape_power_static = 1.0/4.0; // range (0, 16]
|
||||
// What filter should be used to sample scanlines horizontally?
|
||||
// 0: Quilez (fast), 1: Gaussian (configurable), 2: Lanczos2 (sharp)
|
||||
static const float beam_horiz_filter_static = 0.0;
|
||||
// Standard deviation for horizontal Gaussian resampling:
|
||||
static const float beam_horiz_sigma_static = 0.35; // range (0, 2/3]
|
||||
// Do horizontal scanline sampling in linear RGB (correct light mixing),
|
||||
// gamma-encoded RGB (darker, hard spot shape, may better match bandwidth-
|
||||
// limiting circuitry in some CRT's), or a weighted avg.?
|
||||
static const float beam_horiz_linear_rgb_weight_static = 1.0; // range [0, 1]
|
||||
// Simulate scanline misconvergence? This needs 3x horizontal texture
|
||||
// samples and 3x texture samples of BLOOM_APPROX and HALATION_BLUR in
|
||||
// later passes (static option only for now).
|
||||
static const bool beam_misconvergence = false;
|
||||
// Convergence offsets in x/y directions for R/G/B scanline beams in units
|
||||
// of scanlines. Positive offsets go right/down; ranges [-2, 2]
|
||||
static const float2 convergence_offsets_r_static = float2(0.1, 0.2);
|
||||
static const float2 convergence_offsets_g_static = float2(0.3, 0.4);
|
||||
static const float2 convergence_offsets_b_static = float2(0.5, 0.6);
|
||||
// Detect interlacing (static option only for now)?
|
||||
static const bool interlace_detect = true;
|
||||
// Assume 1080-line sources are interlaced?
|
||||
static const bool interlace_1080i_static = false;
|
||||
// For interlaced sources, assume TFF (top-field first) or BFF order?
|
||||
// (Whether this matters depends on the nature of the interlaced input.)
|
||||
static const bool interlace_bff_static = false;
|
||||
|
||||
// ANTIALIASING:
|
||||
// What AA level do you want for curvature/overscan/subpixels? Options:
|
||||
// 0x (none), 1x (sample subpixels), 4x, 5x, 6x, 7x, 8x, 12x, 16x, 20x, 24x
|
||||
// (Static option only for now)
|
||||
static const float aa_level = 12.0; // range [0, 24]
|
||||
// What antialiasing filter do you want (static option only)? Options:
|
||||
// 0: Box (separable), 1: Box (cylindrical),
|
||||
// 2: Tent (separable), 3: Tent (cylindrical),
|
||||
// 4: Gaussian (separable), 5: Gaussian (cylindrical),
|
||||
// 6: Cubic* (separable), 7: Cubic* (cylindrical, poor)
|
||||
// 8: Lanczos Sinc (separable), 9: Lanczos Jinc (cylindrical, poor)
|
||||
// * = Especially slow with RUNTIME_ANTIALIAS_WEIGHTS
|
||||
static const float aa_filter = 8.0; // range [0, 9]
|
||||
// Flip the sample grid on odd/even frames (static option only for now)?
|
||||
static const bool aa_temporal = false;
|
||||
// Use RGB subpixel offsets for antialiasing? The pixel is at green, and
|
||||
// the blue offset is the negative r offset; range [0, 0.5]
|
||||
static const float2 aa_subpixel_r_offset_static = float2(0.0, 0.0);//float2(0.0);
|
||||
// Cubics: See http://www.imagemagick.org/Usage/filter/#mitchell
|
||||
// 1.) "Keys cubics" with B = 1 - 2C are considered the highest quality.
|
||||
// 2.) C = 0.5 (default) is Catmull-Rom; higher C's apply sharpening.
|
||||
// 3.) C = 1.0/3.0 is the Mitchell-Netravali filter.
|
||||
// 4.) C = 0.0 is a soft spline filter.
|
||||
static const float aa_cubic_c_static = 0.5; // range [0, 4]
|
||||
// Standard deviation for Gaussian antialiasing: Try 0.5/aa_pixel_diameter.
|
||||
static const float aa_gauss_sigma_static = 0.5; // range [0.0625, 1.0]
|
||||
|
||||
// PHOSPHOR MASK:
|
||||
// Mask type: 0 = aperture grille, 1 = slot mask, 2 = EDP shadow mask
|
||||
static const float mask_type_static = 1.0; // range [0, 2]
|
||||
// We can sample the mask three ways. Pick 2/3 from: Pretty/Fast/Flexible.
|
||||
// 0.) Sinc-resize to the desired dot pitch manually (pretty/slow/flexible).
|
||||
// This requires PHOSPHOR_MASK_MANUALLY_RESIZE to be #defined.
|
||||
// 1.) Hardware-resize to the desired dot pitch (ugly/fast/flexible). This
|
||||
// is halfway decent with LUT mipmapping but atrocious without it.
|
||||
// 2.) Tile it without resizing at a 1:1 texel:pixel ratio for flat coords
|
||||
// (pretty/fast/inflexible). Each input LUT has a fixed dot pitch.
|
||||
// This mode reuses the same masks, so triads will be enormous unless
|
||||
// you change the mask LUT filenames in your .cgp file.
|
||||
static const float mask_sample_mode_static = 0.0; // range [0, 2]
|
||||
// Prefer setting the triad size (0.0) or number on the screen (1.0)?
|
||||
// If RUNTIME_PHOSPHOR_BLOOM_SIGMA isn't #defined, the specified triad size
|
||||
// will always be used to calculate the full bloom sigma statically.
|
||||
static const float mask_specify_num_triads_static = 0.0; // range [0, 1]
|
||||
// Specify the phosphor triad size, in pixels. Each tile (usually with 8
|
||||
// triads) will be rounded to the nearest integer tile size and clamped to
|
||||
// obey minimum size constraints (imposed to reduce downsize taps) and
|
||||
// maximum size constraints (imposed to have a sane MASK_RESIZE FBO size).
|
||||
// To increase the size limit, double the viewport-relative scales for the
|
||||
// two MASK_RESIZE passes in crt-royale.cgp and user-cgp-contants.h.
|
||||
// range [1, mask_texture_small_size/mask_triads_per_tile]
|
||||
static const float mask_triad_size_desired_static = 24.0 / 8.0;
|
||||
// If mask_specify_num_triads is 1.0/true, we'll go by this instead (the
|
||||
// final size will be rounded and constrained as above); default 480.0
|
||||
static const float mask_num_triads_desired_static = 480.0;
|
||||
// How many lobes should the sinc/Lanczos resizer use? More lobes require
|
||||
// more samples and avoid moire a bit better, but some is unavoidable
|
||||
// depending on the destination size (static option for now).
|
||||
static const float mask_sinc_lobes = 3.0; // range [2, 4]
|
||||
// The mask is resized using a variable number of taps in each dimension,
|
||||
// but some Cg profiles always fetch a constant number of taps no matter
|
||||
// what (no dynamic branching). We can limit the maximum number of taps if
|
||||
// we statically limit the minimum phosphor triad size. Larger values are
|
||||
// faster, but the limit IS enforced (static option only, forever);
|
||||
// range [1, mask_texture_small_size/mask_triads_per_tile]
|
||||
// TODO: Make this 1.0 and compensate with smarter sampling!
|
||||
static const float mask_min_allowed_triad_size = mask_specify_num_triads_static;
|
||||
|
||||
// GEOMETRY:
|
||||
// Geometry mode:
|
||||
// 0: Off (default), 1: Spherical mapping (like cgwg's),
|
||||
// 2: Alt. spherical mapping (more bulbous), 3: Cylindrical/Trinitron
|
||||
static const float geom_mode_static = 0.0; // range [0, 3]
|
||||
// Radius of curvature: Measured in units of your viewport's diagonal size.
|
||||
static const float geom_radius_static = 2.0; // range [1/(2*pi), 1024]
|
||||
// View dist is the distance from the player to their physical screen, in
|
||||
// units of the viewport's diagonal size. It controls the field of view.
|
||||
static const float geom_view_dist_static = 2.0; // range [0.5, 1024]
|
||||
// Tilt angle in radians (clockwise around up and right vectors):
|
||||
static const float2 geom_tilt_angle_static = float2(0.0, 0.0); // range [-pi, pi]
|
||||
// Aspect ratio: When the true viewport size is unknown, this value is used
|
||||
// to help convert between the phosphor triad size and count, along with
|
||||
// the mask_resize_viewport_scale constant from user-cgp-constants.h. Set
|
||||
// this equal to Retroarch's display aspect ratio (DAR) for best results;
|
||||
// range [1, geom_max_aspect_ratio from user-cgp-constants.h];
|
||||
// default (256/224)*(54/47) = 1.313069909 (see below)
|
||||
static const float geom_aspect_ratio_static = 1.313069909;
|
||||
// Before getting into overscan, here's some general aspect ratio info:
|
||||
// - DAR = display aspect ratio = SAR * PAR; as in your Retroarch setting
|
||||
// - SAR = storage aspect ratio = DAR / PAR; square pixel emulator frame AR
|
||||
// - PAR = pixel aspect ratio = DAR / SAR; holds regardless of cropping
|
||||
// Geometry processing has to "undo" the screen-space 2D DAR to calculate
|
||||
// 3D view vectors, then reapplies the aspect ratio to the simulated CRT in
|
||||
// uv-space. To ensure the source SAR is intended for a ~4:3 DAR, either:
|
||||
// a.) Enable Retroarch's "Crop Overscan"
|
||||
// b.) Readd horizontal padding: Set overscan to e.g. N*(1.0, 240.0/224.0)
|
||||
// Real consoles use horizontal black padding in the signal, but emulators
|
||||
// often crop this without cropping the vertical padding; a 256x224 [S]NES
|
||||
// frame (8:7 SAR) is intended for a ~4:3 DAR, but a 256x240 frame is not.
|
||||
// The correct [S]NES PAR is 54:47, found by blargg and NewRisingSun:
|
||||
// http://board.zsnes.com/phpBB3/viewtopic.php?f=22&t=11928&start=50
|
||||
// http://forums.nesdev.com/viewtopic.php?p=24815#p24815
|
||||
// For flat output, it's okay to set DAR = [existing] SAR * [correct] PAR
|
||||
// without doing a. or b., but horizontal image borders will be tighter
|
||||
// than vertical ones, messing up curvature and overscan. Fixing the
|
||||
// padding first corrects this.
|
||||
// Overscan: Amount to "zoom in" before cropping. You can zoom uniformly
|
||||
// or adjust x/y independently to e.g. readd horizontal padding, as noted
|
||||
// above: Values < 1.0 zoom out; range (0, inf)
|
||||
static const float2 geom_overscan_static = float2(1.0, 1.0);// * 1.005 * (1.0, 240/224.0)
|
||||
// Compute a proper pixel-space to texture-space matrix even without ddx()/
|
||||
// ddy()? This is ~8.5% slower but improves antialiasing/subpixel filtering
|
||||
// with strong curvature (static option only for now).
|
||||
static const bool geom_force_correct_tangent_matrix = false;
|
||||
|
||||
// BORDERS:
|
||||
// Rounded border size in texture uv coords:
|
||||
static const float border_size_static = 0.015; // range [0, 0.5]
|
||||
// Border darkness: Moderate values darken the border smoothly, and high
|
||||
// values make the image very dark just inside the border:
|
||||
static const float border_darkness_static = 2.0; // range [0, inf)
|
||||
// Border compression: High numbers compress border transitions, narrowing
|
||||
// the dark border area.
|
||||
static const float border_compress_static = 2.5; // range [1, inf)
|
||||
|
||||
|
||||
#endif // USER_SETTINGS_H
|
||||
|
|
@ -0,0 +1,359 @@
|
|||
#ifndef USER_SETTINGS_H
|
||||
#define USER_SETTINGS_H
|
||||
|
||||
///////////////////////////// DRIVER CAPABILITIES ////////////////////////////
|
||||
|
||||
// The Cg compiler uses different "profiles" with different capabilities.
|
||||
// This shader requires a Cg compilation profile >= arbfp1, but a few options
|
||||
// require higher profiles like fp30 or fp40. The shader can't detect profile
|
||||
// or driver capabilities, so instead you must comment or uncomment the lines
|
||||
// below with "//" before "#define." Disable an option if you get compilation
|
||||
// errors resembling those listed. Generally speaking, all of these options
|
||||
// will run on nVidia cards, but only DRIVERS_ALLOW_TEX2DBIAS (if that) is
|
||||
// likely to run on ATI/AMD, due to the Cg compiler's profile limitations.
|
||||
|
||||
// Derivatives: Unsupported on fp20, ps_1_1, ps_1_2, ps_1_3, and arbfp1.
|
||||
// Among other things, derivatives help us fix anisotropic filtering artifacts
|
||||
// with curved manually tiled phosphor mask coords. Related errors:
|
||||
// error C3004: function "float2 ddx(float2);" not supported in this profile
|
||||
// error C3004: function "float2 ddy(float2);" not supported in this profile
|
||||
//#define DRIVERS_ALLOW_DERIVATIVES
|
||||
|
||||
// Fine derivatives: Unsupported on older ATI cards.
|
||||
// Fine derivatives enable 2x2 fragment block communication, letting us perform
|
||||
// fast single-pass blur operations. If your card uses coarse derivatives and
|
||||
// these are enabled, blurs could look broken. Derivatives are a prerequisite.
|
||||
#ifdef DRIVERS_ALLOW_DERIVATIVES
|
||||
#define DRIVERS_ALLOW_FINE_DERIVATIVES
|
||||
#endif
|
||||
|
||||
// Dynamic looping: Requires an fp30 or newer profile.
|
||||
// This makes phosphor mask resampling faster in some cases. Related errors:
|
||||
// error C5013: profile does not support "for" statements and "for" could not
|
||||
// be unrolled
|
||||
//#define DRIVERS_ALLOW_DYNAMIC_BRANCHES
|
||||
|
||||
// Without DRIVERS_ALLOW_DYNAMIC_BRANCHES, we need to use unrollable loops.
|
||||
// Using one static loop avoids overhead if the user is right, but if the user
|
||||
// is wrong (loops are allowed), breaking a loop into if-blocked pieces with a
|
||||
// binary search can potentially save some iterations. However, it may fail:
|
||||
// error C6001: Temporary register limit of 32 exceeded; 35 registers
|
||||
// needed to compile program
|
||||
//#define ACCOMODATE_POSSIBLE_DYNAMIC_LOOPS
|
||||
|
||||
// tex2Dlod: Requires an fp40 or newer profile. This can be used to disable
|
||||
// anisotropic filtering, thereby fixing related artifacts. Related errors:
|
||||
// error C3004: function "float4 tex2Dlod(sampler2D, float4);" not supported in
|
||||
// this profile
|
||||
//#define DRIVERS_ALLOW_TEX2DLOD
|
||||
|
||||
// tex2Dbias: Requires an fp30 or newer profile. This can be used to alleviate
|
||||
// artifacts from anisotropic filtering and mipmapping. Related errors:
|
||||
// error C3004: function "float4 tex2Dbias(sampler2D, float4);" not supported
|
||||
// in this profile
|
||||
//#define DRIVERS_ALLOW_TEX2DBIAS
|
||||
|
||||
// Integrated graphics compatibility: Integrated graphics like Intel HD 4000
|
||||
// impose stricter limitations on register counts and instructions. Enable
|
||||
// INTEGRATED_GRAPHICS_COMPATIBILITY_MODE if you still see error C6001 or:
|
||||
// error C6002: Instruction limit of 1024 exceeded: 1523 instructions needed
|
||||
// to compile program.
|
||||
// Enabling integrated graphics compatibility mode will automatically disable:
|
||||
// 1.) PHOSPHOR_MASK_MANUALLY_RESIZE: The phosphor mask will be softer.
|
||||
// (This may be reenabled in a later release.)
|
||||
// 2.) RUNTIME_GEOMETRY_MODE
|
||||
// 3.) The high-quality 4x4 Gaussian resize for the bloom approximation
|
||||
#define INTEGRATED_GRAPHICS_COMPATIBILITY_MODE
|
||||
|
||||
|
||||
//////////////////////////// USER CODEPATH OPTIONS ///////////////////////////
|
||||
|
||||
// To disable a #define option, turn its line into a comment with "//."
|
||||
|
||||
// RUNTIME VS. COMPILE-TIME OPTIONS (Major Performance Implications):
|
||||
// Enable runtime shader parameters in the Retroarch (etc.) GUI? They override
|
||||
// many of the options in this file and allow real-time tuning, but many of
|
||||
// them are slower. Disabling them and using this text file will boost FPS.
|
||||
//#define RUNTIME_SHADER_PARAMS_ENABLE
|
||||
// Specify the phosphor bloom sigma at runtime? This option is 10% slower, but
|
||||
// it's the only way to do a wide-enough full bloom with a runtime dot pitch.
|
||||
//#define RUNTIME_PHOSPHOR_BLOOM_SIGMA
|
||||
// Specify antialiasing weight parameters at runtime? (Costs ~20% with cubics)
|
||||
//#define RUNTIME_ANTIALIAS_WEIGHTS
|
||||
// Specify subpixel offsets at runtime? (WARNING: EXTREMELY EXPENSIVE!)
|
||||
//#define RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS
|
||||
// Make beam_horiz_filter and beam_horiz_linear_rgb_weight into runtime shader
|
||||
// parameters? This will require more math or dynamic branching.
|
||||
//#define RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE
|
||||
// Specify the tilt at runtime? This makes things about 3% slower.
|
||||
//#define RUNTIME_GEOMETRY_TILT
|
||||
// Specify the geometry mode at runtime?
|
||||
//#define RUNTIME_GEOMETRY_MODE
|
||||
// Specify the phosphor mask type (aperture grille, slot mask, shadow mask) and
|
||||
// mode (Lanczos-resize, hardware resize, or tile 1:1) at runtime, even without
|
||||
// dynamic branches? This is cheap if mask_resize_viewport_scale is small.
|
||||
//#define FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
|
||||
|
||||
// PHOSPHOR MASK:
|
||||
// Manually resize the phosphor mask for best results (slower)? Disabling this
|
||||
// removes the option to do so, but it may be faster without dynamic branches.
|
||||
#define PHOSPHOR_MASK_MANUALLY_RESIZE
|
||||
// If we sinc-resize the mask, should we Lanczos-window it (slower but better)?
|
||||
#define PHOSPHOR_MASK_RESIZE_LANCZOS_WINDOW
|
||||
// Larger blurs are expensive, but we need them to blur larger triads. We can
|
||||
// detect the right blur if the triad size is static or our profile allows
|
||||
// dynamic branches, but otherwise we use the largest blur the user indicates
|
||||
// they might need:
|
||||
//#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_3_PIXELS
|
||||
//#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_6_PIXELS
|
||||
//#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_9_PIXELS
|
||||
//#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_12_PIXELS
|
||||
// Here's a helpful chart:
|
||||
// MaxTriadSize BlurSize MinTriadCountsByResolution
|
||||
// 3.0 9.0 480/640/960/1920 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
|
||||
// 6.0 17.0 240/320/480/960 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
|
||||
// 9.0 25.0 160/213/320/640 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
|
||||
// 12.0 31.0 120/160/240/480 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
|
||||
// 18.0 43.0 80/107/160/320 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
|
||||
|
||||
|
||||
/////////////////////////////// USER PARAMETERS //////////////////////////////
|
||||
|
||||
// Note: Many of these static parameters are overridden by runtime shader
|
||||
// parameters when those are enabled. However, many others are static codepath
|
||||
// options that were cleaner or more convert to code as static constants.
|
||||
|
||||
// GAMMA:
|
||||
static const float crt_gamma_static = 2.5; // range [1, 5]
|
||||
static const float lcd_gamma_static = 2.2; // range [1, 5]
|
||||
|
||||
// LEVELS MANAGEMENT:
|
||||
// Control the final multiplicative image contrast:
|
||||
static const float levels_contrast_static = 1.0; // range [0, 4)
|
||||
// We auto-dim to avoid clipping between passes and restore brightness
|
||||
// later. Control the dim factor here: Lower values clip less but crush
|
||||
// blacks more (static only for now).
|
||||
static const float levels_autodim_temp = 0.5; // range (0, 1]
|
||||
|
||||
// HALATION/DIFFUSION/BLOOM:
|
||||
// Halation weight: How much energy should be lost to electrons bounding
|
||||
// around under the CRT glass and exciting random phosphors?
|
||||
static const float halation_weight_static = 0.0; // range [0, 1]
|
||||
// Refractive diffusion weight: How much light should spread/diffuse from
|
||||
// refracting through the CRT glass?
|
||||
static const float diffusion_weight_static = 0.075; // range [0, 1]
|
||||
// Underestimate brightness: Bright areas bloom more, but we can base the
|
||||
// bloom brightpass on a lower brightness to sharpen phosphors, or a higher
|
||||
// brightness to soften them. Low values clip, but >= 0.8 looks okay.
|
||||
static const float bloom_underestimate_levels_static = 0.8; // range [0, 5]
|
||||
// Blur all colors more than necessary for a softer phosphor bloom?
|
||||
static const float bloom_excess_static = 0.0; // range [0, 1]
|
||||
// The BLOOM_APPROX pass approximates a phosphor blur early on with a small
|
||||
// blurred resize of the input (convergence offsets are applied as well).
|
||||
// There are three filter options (static option only for now):
|
||||
// 0.) Bilinear resize: A fast, close approximation to a 4x4 resize
|
||||
// if min_allowed_viewport_triads and the BLOOM_APPROX resolution are sane
|
||||
// and beam_max_sigma is low.
|
||||
// 1.) 3x3 resize blur: Medium speed, soft/smeared from bilinear blurring,
|
||||
// always uses a static sigma regardless of beam_max_sigma or
|
||||
// mask_num_triads_desired.
|
||||
// 2.) True 4x4 Gaussian resize: Slowest, technically correct.
|
||||
// These options are more pronounced for the fast, unbloomed shader version.
|
||||
static const float bloom_approx_filter_static = 0.0;
|
||||
|
||||
// ELECTRON BEAM SCANLINE DISTRIBUTION:
|
||||
// How many scanlines should contribute light to each pixel? Using more
|
||||
// scanlines is slower (especially for a generalized Gaussian) but less
|
||||
// distorted with larger beam sigmas (especially for a pure Gaussian). The
|
||||
// max_beam_sigma at which the closest unused weight is guaranteed <
|
||||
// 1.0/255.0 (for a 3x antialiased pure Gaussian) is:
|
||||
// 2 scanlines: max_beam_sigma = 0.2089; distortions begin ~0.34; 141.7 FPS pure, 131.9 FPS generalized
|
||||
// 3 scanlines, max_beam_sigma = 0.3879; distortions begin ~0.52; 137.5 FPS pure; 123.8 FPS generalized
|
||||
// 4 scanlines, max_beam_sigma = 0.5723; distortions begin ~0.70; 134.7 FPS pure; 117.2 FPS generalized
|
||||
// 5 scanlines, max_beam_sigma = 0.7591; distortions begin ~0.89; 131.6 FPS pure; 112.1 FPS generalized
|
||||
// 6 scanlines, max_beam_sigma = 0.9483; distortions begin ~1.08; 127.9 FPS pure; 105.6 FPS generalized
|
||||
static const float beam_num_scanlines = 2.0; // range [2, 6]
|
||||
// A generalized Gaussian beam varies shape with color too, now just width.
|
||||
// It's slower but more flexible (static option only for now).
|
||||
static const bool beam_generalized_gaussian = false;
|
||||
// What kind of scanline antialiasing do you want?
|
||||
// 0: Sample weights at 1x; 1: Sample weights at 3x; 2: Compute an integral
|
||||
// Integrals are slow (especially for generalized Gaussians) and rarely any
|
||||
// better than 3x antialiasing (static option only for now).
|
||||
static const float beam_antialias_level = 1.0; // range [0, 2]
|
||||
// Min/max standard deviations for scanline beams: Higher values widen and
|
||||
// soften scanlines. Depending on other options, low min sigmas can alias.
|
||||
static const float beam_min_sigma_static = 0.02; // range (0, 1]
|
||||
static const float beam_max_sigma_static = 0.3; // range (0, 1]
|
||||
// Beam width varies as a function of color: A power function (0) is more
|
||||
// configurable, but a spherical function (1) gives the widest beam
|
||||
// variability without aliasing (static option only for now).
|
||||
static const float beam_spot_shape_function = 0.0;
|
||||
// Spot shape power: Powers <= 1 give smoother spot shapes but lower
|
||||
// sharpness. Powers >= 1.0 are awful unless mix/max sigmas are close.
|
||||
static const float beam_spot_power_static = 1.0/3.0; // range (0, 16]
|
||||
// Generalized Gaussian max shape parameters: Higher values give flatter
|
||||
// scanline plateaus and steeper dropoffs, simultaneously widening and
|
||||
// sharpening scanlines at the cost of aliasing. 2.0 is pure Gaussian, and
|
||||
// values > ~40.0 cause artifacts with integrals.
|
||||
static const float beam_min_shape_static = 2.0; // range [2, 32]
|
||||
static const float beam_max_shape_static = 4.0; // range [2, 32]
|
||||
// Generalized Gaussian shape power: Affects how quickly the distribution
|
||||
// changes shape from Gaussian to steep/plateaued as color increases from 0
|
||||
// to 1.0. Higher powers appear softer for most colors, and lower powers
|
||||
// appear sharper for most colors.
|
||||
static const float beam_shape_power_static = 1.0/4.0; // range (0, 16]
|
||||
// What filter should be used to sample scanlines horizontally?
|
||||
// 0: Quilez (fast), 1: Gaussian (configurable), 2: Lanczos2 (sharp)
|
||||
static const float beam_horiz_filter_static = 0.0;
|
||||
// Standard deviation for horizontal Gaussian resampling:
|
||||
static const float beam_horiz_sigma_static = 0.35; // range (0, 2/3]
|
||||
// Do horizontal scanline sampling in linear RGB (correct light mixing),
|
||||
// gamma-encoded RGB (darker, hard spot shape, may better match bandwidth-
|
||||
// limiting circuitry in some CRT's), or a weighted avg.?
|
||||
static const float beam_horiz_linear_rgb_weight_static = 1.0; // range [0, 1]
|
||||
// Simulate scanline misconvergence? This needs 3x horizontal texture
|
||||
// samples and 3x texture samples of BLOOM_APPROX and HALATION_BLUR in
|
||||
// later passes (static option only for now).
|
||||
static const bool beam_misconvergence = false;
|
||||
// Convergence offsets in x/y directions for R/G/B scanline beams in units
|
||||
// of scanlines. Positive offsets go right/down; ranges [-2, 2]
|
||||
static const float2 convergence_offsets_r_static = float2(0.1, 0.2);
|
||||
static const float2 convergence_offsets_g_static = float2(0.3, 0.4);
|
||||
static const float2 convergence_offsets_b_static = float2(0.5, 0.6);
|
||||
// Detect interlacing (static option only for now)?
|
||||
static const bool interlace_detect = true;
|
||||
// Assume 1080-line sources are interlaced?
|
||||
static const bool interlace_1080i_static = false;
|
||||
// For interlaced sources, assume TFF (top-field first) or BFF order?
|
||||
// (Whether this matters depends on the nature of the interlaced input.)
|
||||
static const bool interlace_bff_static = false;
|
||||
|
||||
// ANTIALIASING:
|
||||
// What AA level do you want for curvature/overscan/subpixels? Options:
|
||||
// 0x (none), 1x (sample subpixels), 4x, 5x, 6x, 7x, 8x, 12x, 16x, 20x, 24x
|
||||
// (Static option only for now)
|
||||
static const float aa_level = 12.0; // range [0, 24]
|
||||
// What antialiasing filter do you want (static option only)? Options:
|
||||
// 0: Box (separable), 1: Box (cylindrical),
|
||||
// 2: Tent (separable), 3: Tent (cylindrical),
|
||||
// 4: Gaussian (separable), 5: Gaussian (cylindrical),
|
||||
// 6: Cubic* (separable), 7: Cubic* (cylindrical, poor)
|
||||
// 8: Lanczos Sinc (separable), 9: Lanczos Jinc (cylindrical, poor)
|
||||
// * = Especially slow with RUNTIME_ANTIALIAS_WEIGHTS
|
||||
static const float aa_filter = 8.0; // range [0, 9]
|
||||
// Flip the sample grid on odd/even frames (static option only for now)?
|
||||
static const bool aa_temporal = false;
|
||||
// Use RGB subpixel offsets for antialiasing? The pixel is at green, and
|
||||
// the blue offset is the negative r offset; range [0, 0.5]
|
||||
static const float2 aa_subpixel_r_offset_static = float2(0.0, 0.0);//float2(0.0);
|
||||
// Cubics: See http://www.imagemagick.org/Usage/filter/#mitchell
|
||||
// 1.) "Keys cubics" with B = 1 - 2C are considered the highest quality.
|
||||
// 2.) C = 0.5 (default) is Catmull-Rom; higher C's apply sharpening.
|
||||
// 3.) C = 1.0/3.0 is the Mitchell-Netravali filter.
|
||||
// 4.) C = 0.0 is a soft spline filter.
|
||||
static const float aa_cubic_c_static = 0.5; // range [0, 4]
|
||||
// Standard deviation for Gaussian antialiasing: Try 0.5/aa_pixel_diameter.
|
||||
static const float aa_gauss_sigma_static = 0.5; // range [0.0625, 1.0]
|
||||
|
||||
// PHOSPHOR MASK:
|
||||
// Mask type: 0 = aperture grille, 1 = slot mask, 2 = EDP shadow mask
|
||||
static const float mask_type_static = 1.0; // range [0, 2]
|
||||
// We can sample the mask three ways. Pick 2/3 from: Pretty/Fast/Flexible.
|
||||
// 0.) Sinc-resize to the desired dot pitch manually (pretty/slow/flexible).
|
||||
// This requires PHOSPHOR_MASK_MANUALLY_RESIZE to be #defined.
|
||||
// 1.) Hardware-resize to the desired dot pitch (ugly/fast/flexible). This
|
||||
// is halfway decent with LUT mipmapping but atrocious without it.
|
||||
// 2.) Tile it without resizing at a 1:1 texel:pixel ratio for flat coords
|
||||
// (pretty/fast/inflexible). Each input LUT has a fixed dot pitch.
|
||||
// This mode reuses the same masks, so triads will be enormous unless
|
||||
// you change the mask LUT filenames in your .cgp file.
|
||||
static const float mask_sample_mode_static = 0.0; // range [0, 2]
|
||||
// Prefer setting the triad size (0.0) or number on the screen (1.0)?
|
||||
// If RUNTIME_PHOSPHOR_BLOOM_SIGMA isn't #defined, the specified triad size
|
||||
// will always be used to calculate the full bloom sigma statically.
|
||||
static const float mask_specify_num_triads_static = 0.0; // range [0, 1]
|
||||
// Specify the phosphor triad size, in pixels. Each tile (usually with 8
|
||||
// triads) will be rounded to the nearest integer tile size and clamped to
|
||||
// obey minimum size constraints (imposed to reduce downsize taps) and
|
||||
// maximum size constraints (imposed to have a sane MASK_RESIZE FBO size).
|
||||
// To increase the size limit, double the viewport-relative scales for the
|
||||
// two MASK_RESIZE passes in crt-royale.cgp and user-cgp-contants.h.
|
||||
// range [1, mask_texture_small_size/mask_triads_per_tile]
|
||||
static const float mask_triad_size_desired_static = 24.0 / 8.0;
|
||||
// If mask_specify_num_triads is 1.0/true, we'll go by this instead (the
|
||||
// final size will be rounded and constrained as above); default 480.0
|
||||
static const float mask_num_triads_desired_static = 480.0;
|
||||
// How many lobes should the sinc/Lanczos resizer use? More lobes require
|
||||
// more samples and avoid moire a bit better, but some is unavoidable
|
||||
// depending on the destination size (static option for now).
|
||||
static const float mask_sinc_lobes = 3.0; // range [2, 4]
|
||||
// The mask is resized using a variable number of taps in each dimension,
|
||||
// but some Cg profiles always fetch a constant number of taps no matter
|
||||
// what (no dynamic branching). We can limit the maximum number of taps if
|
||||
// we statically limit the minimum phosphor triad size. Larger values are
|
||||
// faster, but the limit IS enforced (static option only, forever);
|
||||
// range [1, mask_texture_small_size/mask_triads_per_tile]
|
||||
// TODO: Make this 1.0 and compensate with smarter sampling!
|
||||
static const float mask_min_allowed_triad_size = mask_specify_num_triads_static;
|
||||
|
||||
// GEOMETRY:
|
||||
// Geometry mode:
|
||||
// 0: Off (default), 1: Spherical mapping (like cgwg's),
|
||||
// 2: Alt. spherical mapping (more bulbous), 3: Cylindrical/Trinitron
|
||||
static const float geom_mode_static = 0.0; // range [0, 3]
|
||||
// Radius of curvature: Measured in units of your viewport's diagonal size.
|
||||
static const float geom_radius_static = 2.0; // range [1/(2*pi), 1024]
|
||||
// View dist is the distance from the player to their physical screen, in
|
||||
// units of the viewport's diagonal size. It controls the field of view.
|
||||
static const float geom_view_dist_static = 2.0; // range [0.5, 1024]
|
||||
// Tilt angle in radians (clockwise around up and right vectors):
|
||||
static const float2 geom_tilt_angle_static = float2(0.0, 0.0); // range [-pi, pi]
|
||||
// Aspect ratio: When the true viewport size is unknown, this value is used
|
||||
// to help convert between the phosphor triad size and count, along with
|
||||
// the mask_resize_viewport_scale constant from user-cgp-constants.h. Set
|
||||
// this equal to Retroarch's display aspect ratio (DAR) for best results;
|
||||
// range [1, geom_max_aspect_ratio from user-cgp-constants.h];
|
||||
// default (256/224)*(54/47) = 1.313069909 (see below)
|
||||
static const float geom_aspect_ratio_static = 1.313069909;
|
||||
// Before getting into overscan, here's some general aspect ratio info:
|
||||
// - DAR = display aspect ratio = SAR * PAR; as in your Retroarch setting
|
||||
// - SAR = storage aspect ratio = DAR / PAR; square pixel emulator frame AR
|
||||
// - PAR = pixel aspect ratio = DAR / SAR; holds regardless of cropping
|
||||
// Geometry processing has to "undo" the screen-space 2D DAR to calculate
|
||||
// 3D view vectors, then reapplies the aspect ratio to the simulated CRT in
|
||||
// uv-space. To ensure the source SAR is intended for a ~4:3 DAR, either:
|
||||
// a.) Enable Retroarch's "Crop Overscan"
|
||||
// b.) Readd horizontal padding: Set overscan to e.g. N*(1.0, 240.0/224.0)
|
||||
// Real consoles use horizontal black padding in the signal, but emulators
|
||||
// often crop this without cropping the vertical padding; a 256x224 [S]NES
|
||||
// frame (8:7 SAR) is intended for a ~4:3 DAR, but a 256x240 frame is not.
|
||||
// The correct [S]NES PAR is 54:47, found by blargg and NewRisingSun:
|
||||
// http://board.zsnes.com/phpBB3/viewtopic.php?f=22&t=11928&start=50
|
||||
// http://forums.nesdev.com/viewtopic.php?p=24815#p24815
|
||||
// For flat output, it's okay to set DAR = [existing] SAR * [correct] PAR
|
||||
// without doing a. or b., but horizontal image borders will be tighter
|
||||
// than vertical ones, messing up curvature and overscan. Fixing the
|
||||
// padding first corrects this.
|
||||
// Overscan: Amount to "zoom in" before cropping. You can zoom uniformly
|
||||
// or adjust x/y independently to e.g. readd horizontal padding, as noted
|
||||
// above: Values < 1.0 zoom out; range (0, inf)
|
||||
static const float2 geom_overscan_static = float2(1.0, 1.0);// * 1.005 * (1.0, 240/224.0)
|
||||
// Compute a proper pixel-space to texture-space matrix even without ddx()/
|
||||
// ddy()? This is ~8.5% slower but improves antialiasing/subpixel filtering
|
||||
// with strong curvature (static option only for now).
|
||||
static const bool geom_force_correct_tangent_matrix = false;
|
||||
|
||||
// BORDERS:
|
||||
// Rounded border size in texture uv coords:
|
||||
static const float border_size_static = 0.015; // range [0, 0.5]
|
||||
// Border darkness: Moderate values darken the border smoothly, and high
|
||||
// values make the image very dark just inside the border:
|
||||
static const float border_darkness_static = 2.0; // range [0, inf)
|
||||
// Border compression: High numbers compress border transitions, narrowing
|
||||
// the dark border area.
|
||||
static const float border_compress_static = 2.5; // range [1, inf)
|
||||
|
||||
|
||||
#endif // USER_SETTINGS_H
|
||||
|
|
@ -0,0 +1,359 @@
|
|||
#ifndef USER_SETTINGS_H
|
||||
#define USER_SETTINGS_H
|
||||
|
||||
///////////////////////////// DRIVER CAPABILITIES ////////////////////////////
|
||||
|
||||
// The Cg compiler uses different "profiles" with different capabilities.
|
||||
// This shader requires a Cg compilation profile >= arbfp1, but a few options
|
||||
// require higher profiles like fp30 or fp40. The shader can't detect profile
|
||||
// or driver capabilities, so instead you must comment or uncomment the lines
|
||||
// below with "//" before "#define." Disable an option if you get compilation
|
||||
// errors resembling those listed. Generally speaking, all of these options
|
||||
// will run on nVidia cards, but only DRIVERS_ALLOW_TEX2DBIAS (if that) is
|
||||
// likely to run on ATI/AMD, due to the Cg compiler's profile limitations.
|
||||
|
||||
// Derivatives: Unsupported on fp20, ps_1_1, ps_1_2, ps_1_3, and arbfp1.
|
||||
// Among other things, derivatives help us fix anisotropic filtering artifacts
|
||||
// with curved manually tiled phosphor mask coords. Related errors:
|
||||
// error C3004: function "float2 ddx(float2);" not supported in this profile
|
||||
// error C3004: function "float2 ddy(float2);" not supported in this profile
|
||||
#define DRIVERS_ALLOW_DERIVATIVES
|
||||
|
||||
// Fine derivatives: Unsupported on older ATI cards.
|
||||
// Fine derivatives enable 2x2 fragment block communication, letting us perform
|
||||
// fast single-pass blur operations. If your card uses coarse derivatives and
|
||||
// these are enabled, blurs could look broken. Derivatives are a prerequisite.
|
||||
#ifdef DRIVERS_ALLOW_DERIVATIVES
|
||||
#define DRIVERS_ALLOW_FINE_DERIVATIVES
|
||||
#endif
|
||||
|
||||
// Dynamic looping: Requires an fp30 or newer profile.
|
||||
// This makes phosphor mask resampling faster in some cases. Related errors:
|
||||
// error C5013: profile does not support "for" statements and "for" could not
|
||||
// be unrolled
|
||||
#define DRIVERS_ALLOW_DYNAMIC_BRANCHES
|
||||
|
||||
// Without DRIVERS_ALLOW_DYNAMIC_BRANCHES, we need to use unrollable loops.
|
||||
// Using one static loop avoids overhead if the user is right, but if the user
|
||||
// is wrong (loops are allowed), breaking a loop into if-blocked pieces with a
|
||||
// binary search can potentially save some iterations. However, it may fail:
|
||||
// error C6001: Temporary register limit of 32 exceeded; 35 registers
|
||||
// needed to compile program
|
||||
#define ACCOMODATE_POSSIBLE_DYNAMIC_LOOPS
|
||||
|
||||
// tex2Dlod: Requires an fp40 or newer profile. This can be used to disable
|
||||
// anisotropic filtering, thereby fixing related artifacts. Related errors:
|
||||
// error C3004: function "float4 tex2Dlod(sampler2D, float4);" not supported in
|
||||
// this profile
|
||||
#define DRIVERS_ALLOW_TEX2DLOD
|
||||
|
||||
// tex2Dbias: Requires an fp30 or newer profile. This can be used to alleviate
|
||||
// artifacts from anisotropic filtering and mipmapping. Related errors:
|
||||
// error C3004: function "float4 tex2Dbias(sampler2D, float4);" not supported
|
||||
// in this profile
|
||||
#define DRIVERS_ALLOW_TEX2DBIAS
|
||||
|
||||
// Integrated graphics compatibility: Integrated graphics like Intel HD 4000
|
||||
// impose stricter limitations on register counts and instructions. Enable
|
||||
// INTEGRATED_GRAPHICS_COMPATIBILITY_MODE if you still see error C6001 or:
|
||||
// error C6002: Instruction limit of 1024 exceeded: 1523 instructions needed
|
||||
// to compile program.
|
||||
// Enabling integrated graphics compatibility mode will automatically disable:
|
||||
// 1.) PHOSPHOR_MASK_MANUALLY_RESIZE: The phosphor mask will be softer.
|
||||
// (This may be reenabled in a later release.)
|
||||
// 2.) RUNTIME_GEOMETRY_MODE
|
||||
// 3.) The high-quality 4x4 Gaussian resize for the bloom approximation
|
||||
//#define INTEGRATED_GRAPHICS_COMPATIBILITY_MODE
|
||||
|
||||
|
||||
//////////////////////////// USER CODEPATH OPTIONS ///////////////////////////
|
||||
|
||||
// To disable a #define option, turn its line into a comment with "//."
|
||||
|
||||
// RUNTIME VS. COMPILE-TIME OPTIONS (Major Performance Implications):
|
||||
// Enable runtime shader parameters in the Retroarch (etc.) GUI? They override
|
||||
// many of the options in this file and allow real-time tuning, but many of
|
||||
// them are slower. Disabling them and using this text file will boost FPS.
|
||||
//#define RUNTIME_SHADER_PARAMS_ENABLE
|
||||
// Specify the phosphor bloom sigma at runtime? This option is 10% slower, but
|
||||
// it's the only way to do a wide-enough full bloom with a runtime dot pitch.
|
||||
//#define RUNTIME_PHOSPHOR_BLOOM_SIGMA
|
||||
// Specify antialiasing weight parameters at runtime? (Costs ~20% with cubics)
|
||||
//#define RUNTIME_ANTIALIAS_WEIGHTS
|
||||
// Specify subpixel offsets at runtime? (WARNING: EXTREMELY EXPENSIVE!)
|
||||
//#define RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS
|
||||
// Make beam_horiz_filter and beam_horiz_linear_rgb_weight into runtime shader
|
||||
// parameters? This will require more math or dynamic branching.
|
||||
//#define RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE
|
||||
// Specify the tilt at runtime? This makes things about 3% slower.
|
||||
//#define RUNTIME_GEOMETRY_TILT
|
||||
// Specify the geometry mode at runtime?
|
||||
//#define RUNTIME_GEOMETRY_MODE
|
||||
// Specify the phosphor mask type (aperture grille, slot mask, shadow mask) and
|
||||
// mode (Lanczos-resize, hardware resize, or tile 1:1) at runtime, even without
|
||||
// dynamic branches? This is cheap if mask_resize_viewport_scale is small.
|
||||
//#define FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
|
||||
|
||||
// PHOSPHOR MASK:
|
||||
// Manually resize the phosphor mask for best results (slower)? Disabling this
|
||||
// removes the option to do so, but it may be faster without dynamic branches.
|
||||
#define PHOSPHOR_MASK_MANUALLY_RESIZE
|
||||
// If we sinc-resize the mask, should we Lanczos-window it (slower but better)?
|
||||
#define PHOSPHOR_MASK_RESIZE_LANCZOS_WINDOW
|
||||
// Larger blurs are expensive, but we need them to blur larger triads. We can
|
||||
// detect the right blur if the triad size is static or our profile allows
|
||||
// dynamic branches, but otherwise we use the largest blur the user indicates
|
||||
// they might need:
|
||||
//#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_3_PIXELS
|
||||
//#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_6_PIXELS
|
||||
//#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_9_PIXELS
|
||||
//#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_12_PIXELS
|
||||
// Here's a helpful chart:
|
||||
// MaxTriadSize BlurSize MinTriadCountsByResolution
|
||||
// 3.0 9.0 480/640/960/1920 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
|
||||
// 6.0 17.0 240/320/480/960 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
|
||||
// 9.0 25.0 160/213/320/640 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
|
||||
// 12.0 31.0 120/160/240/480 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
|
||||
// 18.0 43.0 80/107/160/320 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
|
||||
|
||||
|
||||
/////////////////////////////// USER PARAMETERS //////////////////////////////
|
||||
|
||||
// Note: Many of these static parameters are overridden by runtime shader
|
||||
// parameters when those are enabled. However, many others are static codepath
|
||||
// options that were cleaner or more convert to code as static constants.
|
||||
|
||||
// GAMMA:
|
||||
static const float crt_gamma_static = 2.5; // range [1, 5]
|
||||
static const float lcd_gamma_static = 2.2; // range [1, 5]
|
||||
|
||||
// LEVELS MANAGEMENT:
|
||||
// Control the final multiplicative image contrast:
|
||||
static const float levels_contrast_static = 1.0; // range [0, 4)
|
||||
// We auto-dim to avoid clipping between passes and restore brightness
|
||||
// later. Control the dim factor here: Lower values clip less but crush
|
||||
// blacks more (static only for now).
|
||||
static const float levels_autodim_temp = 0.5; // range (0, 1]
|
||||
|
||||
// HALATION/DIFFUSION/BLOOM:
|
||||
// Halation weight: How much energy should be lost to electrons bounding
|
||||
// around under the CRT glass and exciting random phosphors?
|
||||
static const float halation_weight_static = 0.0; // range [0, 1]
|
||||
// Refractive diffusion weight: How much light should spread/diffuse from
|
||||
// refracting through the CRT glass?
|
||||
static const float diffusion_weight_static = 0.075; // range [0, 1]
|
||||
// Underestimate brightness: Bright areas bloom more, but we can base the
|
||||
// bloom brightpass on a lower brightness to sharpen phosphors, or a higher
|
||||
// brightness to soften them. Low values clip, but >= 0.8 looks okay.
|
||||
static const float bloom_underestimate_levels_static = 0.8; // range [0, 5]
|
||||
// Blur all colors more than necessary for a softer phosphor bloom?
|
||||
static const float bloom_excess_static = 0.0; // range [0, 1]
|
||||
// The BLOOM_APPROX pass approximates a phosphor blur early on with a small
|
||||
// blurred resize of the input (convergence offsets are applied as well).
|
||||
// There are three filter options (static option only for now):
|
||||
// 0.) Bilinear resize: A fast, close approximation to a 4x4 resize
|
||||
// if min_allowed_viewport_triads and the BLOOM_APPROX resolution are sane
|
||||
// and beam_max_sigma is low.
|
||||
// 1.) 3x3 resize blur: Medium speed, soft/smeared from bilinear blurring,
|
||||
// always uses a static sigma regardless of beam_max_sigma or
|
||||
// mask_num_triads_desired.
|
||||
// 2.) True 4x4 Gaussian resize: Slowest, technically correct.
|
||||
// These options are more pronounced for the fast, unbloomed shader version.
|
||||
static const float bloom_approx_filter_static = 0.0;
|
||||
|
||||
// ELECTRON BEAM SCANLINE DISTRIBUTION:
|
||||
// How many scanlines should contribute light to each pixel? Using more
|
||||
// scanlines is slower (especially for a generalized Gaussian) but less
|
||||
// distorted with larger beam sigmas (especially for a pure Gaussian). The
|
||||
// max_beam_sigma at which the closest unused weight is guaranteed <
|
||||
// 1.0/255.0 (for a 3x antialiased pure Gaussian) is:
|
||||
// 2 scanlines: max_beam_sigma = 0.2089; distortions begin ~0.34; 141.7 FPS pure, 131.9 FPS generalized
|
||||
// 3 scanlines, max_beam_sigma = 0.3879; distortions begin ~0.52; 137.5 FPS pure; 123.8 FPS generalized
|
||||
// 4 scanlines, max_beam_sigma = 0.5723; distortions begin ~0.70; 134.7 FPS pure; 117.2 FPS generalized
|
||||
// 5 scanlines, max_beam_sigma = 0.7591; distortions begin ~0.89; 131.6 FPS pure; 112.1 FPS generalized
|
||||
// 6 scanlines, max_beam_sigma = 0.9483; distortions begin ~1.08; 127.9 FPS pure; 105.6 FPS generalized
|
||||
static const float beam_num_scanlines = 2.0; // range [2, 6]
|
||||
// A generalized Gaussian beam varies shape with color too, now just width.
|
||||
// It's slower but more flexible (static option only for now).
|
||||
static const bool beam_generalized_gaussian = false;
|
||||
// What kind of scanline antialiasing do you want?
|
||||
// 0: Sample weights at 1x; 1: Sample weights at 3x; 2: Compute an integral
|
||||
// Integrals are slow (especially for generalized Gaussians) and rarely any
|
||||
// better than 3x antialiasing (static option only for now).
|
||||
static const float beam_antialias_level = 1.0; // range [0, 2]
|
||||
// Min/max standard deviations for scanline beams: Higher values widen and
|
||||
// soften scanlines. Depending on other options, low min sigmas can alias.
|
||||
static const float beam_min_sigma_static = 0.02; // range (0, 1]
|
||||
static const float beam_max_sigma_static = 0.3; // range (0, 1]
|
||||
// Beam width varies as a function of color: A power function (0) is more
|
||||
// configurable, but a spherical function (1) gives the widest beam
|
||||
// variability without aliasing (static option only for now).
|
||||
static const float beam_spot_shape_function = 0.0;
|
||||
// Spot shape power: Powers <= 1 give smoother spot shapes but lower
|
||||
// sharpness. Powers >= 1.0 are awful unless mix/max sigmas are close.
|
||||
static const float beam_spot_power_static = 1.0/3.0; // range (0, 16]
|
||||
// Generalized Gaussian max shape parameters: Higher values give flatter
|
||||
// scanline plateaus and steeper dropoffs, simultaneously widening and
|
||||
// sharpening scanlines at the cost of aliasing. 2.0 is pure Gaussian, and
|
||||
// values > ~40.0 cause artifacts with integrals.
|
||||
static const float beam_min_shape_static = 2.0; // range [2, 32]
|
||||
static const float beam_max_shape_static = 4.0; // range [2, 32]
|
||||
// Generalized Gaussian shape power: Affects how quickly the distribution
|
||||
// changes shape from Gaussian to steep/plateaued as color increases from 0
|
||||
// to 1.0. Higher powers appear softer for most colors, and lower powers
|
||||
// appear sharper for most colors.
|
||||
static const float beam_shape_power_static = 1.0/4.0; // range (0, 16]
|
||||
// What filter should be used to sample scanlines horizontally?
|
||||
// 0: Quilez (fast), 1: Gaussian (configurable), 2: Lanczos2 (sharp)
|
||||
static const float beam_horiz_filter_static = 0.0;
|
||||
// Standard deviation for horizontal Gaussian resampling:
|
||||
static const float beam_horiz_sigma_static = 0.35; // range (0, 2/3]
|
||||
// Do horizontal scanline sampling in linear RGB (correct light mixing),
|
||||
// gamma-encoded RGB (darker, hard spot shape, may better match bandwidth-
|
||||
// limiting circuitry in some CRT's), or a weighted avg.?
|
||||
static const float beam_horiz_linear_rgb_weight_static = 1.0; // range [0, 1]
|
||||
// Simulate scanline misconvergence? This needs 3x horizontal texture
|
||||
// samples and 3x texture samples of BLOOM_APPROX and HALATION_BLUR in
|
||||
// later passes (static option only for now).
|
||||
static const bool beam_misconvergence = false;
|
||||
// Convergence offsets in x/y directions for R/G/B scanline beams in units
|
||||
// of scanlines. Positive offsets go right/down; ranges [-2, 2]
|
||||
static const float2 convergence_offsets_r_static = float2(0.1, 0.2);
|
||||
static const float2 convergence_offsets_g_static = float2(0.3, 0.4);
|
||||
static const float2 convergence_offsets_b_static = float2(0.5, 0.6);
|
||||
// Detect interlacing (static option only for now)?
|
||||
static const bool interlace_detect = true;
|
||||
// Assume 1080-line sources are interlaced?
|
||||
static const bool interlace_1080i_static = false;
|
||||
// For interlaced sources, assume TFF (top-field first) or BFF order?
|
||||
// (Whether this matters depends on the nature of the interlaced input.)
|
||||
static const bool interlace_bff_static = false;
|
||||
|
||||
// ANTIALIASING:
|
||||
// What AA level do you want for curvature/overscan/subpixels? Options:
|
||||
// 0x (none), 1x (sample subpixels), 4x, 5x, 6x, 7x, 8x, 12x, 16x, 20x, 24x
|
||||
// (Static option only for now)
|
||||
static const float aa_level = 12.0; // range [0, 24]
|
||||
// What antialiasing filter do you want (static option only)? Options:
|
||||
// 0: Box (separable), 1: Box (cylindrical),
|
||||
// 2: Tent (separable), 3: Tent (cylindrical),
|
||||
// 4: Gaussian (separable), 5: Gaussian (cylindrical),
|
||||
// 6: Cubic* (separable), 7: Cubic* (cylindrical, poor)
|
||||
// 8: Lanczos Sinc (separable), 9: Lanczos Jinc (cylindrical, poor)
|
||||
// * = Especially slow with RUNTIME_ANTIALIAS_WEIGHTS
|
||||
static const float aa_filter = 8.0; // range [0, 9]
|
||||
// Flip the sample grid on odd/even frames (static option only for now)?
|
||||
static const bool aa_temporal = false;
|
||||
// Use RGB subpixel offsets for antialiasing? The pixel is at green, and
|
||||
// the blue offset is the negative r offset; range [0, 0.5]
|
||||
static const float2 aa_subpixel_r_offset_static = float2(0.0, 0.0);//float2(0.0);
|
||||
// Cubics: See http://www.imagemagick.org/Usage/filter/#mitchell
|
||||
// 1.) "Keys cubics" with B = 1 - 2C are considered the highest quality.
|
||||
// 2.) C = 0.5 (default) is Catmull-Rom; higher C's apply sharpening.
|
||||
// 3.) C = 1.0/3.0 is the Mitchell-Netravali filter.
|
||||
// 4.) C = 0.0 is a soft spline filter.
|
||||
static const float aa_cubic_c_static = 0.5; // range [0, 4]
|
||||
// Standard deviation for Gaussian antialiasing: Try 0.5/aa_pixel_diameter.
|
||||
static const float aa_gauss_sigma_static = 0.5; // range [0.0625, 1.0]
|
||||
|
||||
// PHOSPHOR MASK:
|
||||
// Mask type: 0 = aperture grille, 1 = slot mask, 2 = EDP shadow mask
|
||||
static const float mask_type_static = 1.0; // range [0, 2]
|
||||
// We can sample the mask three ways. Pick 2/3 from: Pretty/Fast/Flexible.
|
||||
// 0.) Sinc-resize to the desired dot pitch manually (pretty/slow/flexible).
|
||||
// This requires PHOSPHOR_MASK_MANUALLY_RESIZE to be #defined.
|
||||
// 1.) Hardware-resize to the desired dot pitch (ugly/fast/flexible). This
|
||||
// is halfway decent with LUT mipmapping but atrocious without it.
|
||||
// 2.) Tile it without resizing at a 1:1 texel:pixel ratio for flat coords
|
||||
// (pretty/fast/inflexible). Each input LUT has a fixed dot pitch.
|
||||
// This mode reuses the same masks, so triads will be enormous unless
|
||||
// you change the mask LUT filenames in your .cgp file.
|
||||
static const float mask_sample_mode_static = 0.0; // range [0, 2]
|
||||
// Prefer setting the triad size (0.0) or number on the screen (1.0)?
|
||||
// If RUNTIME_PHOSPHOR_BLOOM_SIGMA isn't #defined, the specified triad size
|
||||
// will always be used to calculate the full bloom sigma statically.
|
||||
static const float mask_specify_num_triads_static = 0.0; // range [0, 1]
|
||||
// Specify the phosphor triad size, in pixels. Each tile (usually with 8
|
||||
// triads) will be rounded to the nearest integer tile size and clamped to
|
||||
// obey minimum size constraints (imposed to reduce downsize taps) and
|
||||
// maximum size constraints (imposed to have a sane MASK_RESIZE FBO size).
|
||||
// To increase the size limit, double the viewport-relative scales for the
|
||||
// two MASK_RESIZE passes in crt-royale.cgp and user-cgp-contants.h.
|
||||
// range [1, mask_texture_small_size/mask_triads_per_tile]
|
||||
static const float mask_triad_size_desired_static = 24.0 / 8.0;
|
||||
// If mask_specify_num_triads is 1.0/true, we'll go by this instead (the
|
||||
// final size will be rounded and constrained as above); default 480.0
|
||||
static const float mask_num_triads_desired_static = 480.0;
|
||||
// How many lobes should the sinc/Lanczos resizer use? More lobes require
|
||||
// more samples and avoid moire a bit better, but some is unavoidable
|
||||
// depending on the destination size (static option for now).
|
||||
static const float mask_sinc_lobes = 3.0; // range [2, 4]
|
||||
// The mask is resized using a variable number of taps in each dimension,
|
||||
// but some Cg profiles always fetch a constant number of taps no matter
|
||||
// what (no dynamic branching). We can limit the maximum number of taps if
|
||||
// we statically limit the minimum phosphor triad size. Larger values are
|
||||
// faster, but the limit IS enforced (static option only, forever);
|
||||
// range [1, mask_texture_small_size/mask_triads_per_tile]
|
||||
// TODO: Make this 1.0 and compensate with smarter sampling!
|
||||
static const float mask_min_allowed_triad_size = mask_specify_num_triads_static;
|
||||
|
||||
// GEOMETRY:
|
||||
// Geometry mode:
|
||||
// 0: Off (default), 1: Spherical mapping (like cgwg's),
|
||||
// 2: Alt. spherical mapping (more bulbous), 3: Cylindrical/Trinitron
|
||||
static const float geom_mode_static = 0.0; // range [0, 3]
|
||||
// Radius of curvature: Measured in units of your viewport's diagonal size.
|
||||
static const float geom_radius_static = 2.0; // range [1/(2*pi), 1024]
|
||||
// View dist is the distance from the player to their physical screen, in
|
||||
// units of the viewport's diagonal size. It controls the field of view.
|
||||
static const float geom_view_dist_static = 2.0; // range [0.5, 1024]
|
||||
// Tilt angle in radians (clockwise around up and right vectors):
|
||||
static const float2 geom_tilt_angle_static = float2(0.0, 0.0); // range [-pi, pi]
|
||||
// Aspect ratio: When the true viewport size is unknown, this value is used
|
||||
// to help convert between the phosphor triad size and count, along with
|
||||
// the mask_resize_viewport_scale constant from user-cgp-constants.h. Set
|
||||
// this equal to Retroarch's display aspect ratio (DAR) for best results;
|
||||
// range [1, geom_max_aspect_ratio from user-cgp-constants.h];
|
||||
// default (256/224)*(54/47) = 1.313069909 (see below)
|
||||
static const float geom_aspect_ratio_static = 1.313069909;
|
||||
// Before getting into overscan, here's some general aspect ratio info:
|
||||
// - DAR = display aspect ratio = SAR * PAR; as in your Retroarch setting
|
||||
// - SAR = storage aspect ratio = DAR / PAR; square pixel emulator frame AR
|
||||
// - PAR = pixel aspect ratio = DAR / SAR; holds regardless of cropping
|
||||
// Geometry processing has to "undo" the screen-space 2D DAR to calculate
|
||||
// 3D view vectors, then reapplies the aspect ratio to the simulated CRT in
|
||||
// uv-space. To ensure the source SAR is intended for a ~4:3 DAR, either:
|
||||
// a.) Enable Retroarch's "Crop Overscan"
|
||||
// b.) Readd horizontal padding: Set overscan to e.g. N*(1.0, 240.0/224.0)
|
||||
// Real consoles use horizontal black padding in the signal, but emulators
|
||||
// often crop this without cropping the vertical padding; a 256x224 [S]NES
|
||||
// frame (8:7 SAR) is intended for a ~4:3 DAR, but a 256x240 frame is not.
|
||||
// The correct [S]NES PAR is 54:47, found by blargg and NewRisingSun:
|
||||
// http://board.zsnes.com/phpBB3/viewtopic.php?f=22&t=11928&start=50
|
||||
// http://forums.nesdev.com/viewtopic.php?p=24815#p24815
|
||||
// For flat output, it's okay to set DAR = [existing] SAR * [correct] PAR
|
||||
// without doing a. or b., but horizontal image borders will be tighter
|
||||
// than vertical ones, messing up curvature and overscan. Fixing the
|
||||
// padding first corrects this.
|
||||
// Overscan: Amount to "zoom in" before cropping. You can zoom uniformly
|
||||
// or adjust x/y independently to e.g. readd horizontal padding, as noted
|
||||
// above: Values < 1.0 zoom out; range (0, inf)
|
||||
static const float2 geom_overscan_static = float2(1.0, 1.0);// * 1.005 * (1.0, 240/224.0)
|
||||
// Compute a proper pixel-space to texture-space matrix even without ddx()/
|
||||
// ddy()? This is ~8.5% slower but improves antialiasing/subpixel filtering
|
||||
// with strong curvature (static option only for now).
|
||||
static const bool geom_force_correct_tangent_matrix = false;
|
||||
|
||||
// BORDERS:
|
||||
// Rounded border size in texture uv coords:
|
||||
static const float border_size_static = 0.015; // range [0, 0.5]
|
||||
// Border darkness: Moderate values darken the border smoothly, and high
|
||||
// values make the image very dark just inside the border:
|
||||
static const float border_darkness_static = 2.0; // range [0, inf)
|
||||
// Border compression: High numbers compress border transitions, narrowing
|
||||
// the dark border area.
|
||||
static const float border_compress_static = 2.5; // range [1, inf)
|
||||
|
||||
|
||||
#endif // USER_SETTINGS_H
|
||||
|
|
@ -0,0 +1,359 @@
|
|||
#ifndef USER_SETTINGS_H
|
||||
#define USER_SETTINGS_H
|
||||
|
||||
///////////////////////////// DRIVER CAPABILITIES ////////////////////////////
|
||||
|
||||
// The Cg compiler uses different "profiles" with different capabilities.
|
||||
// This shader requires a Cg compilation profile >= arbfp1, but a few options
|
||||
// require higher profiles like fp30 or fp40. The shader can't detect profile
|
||||
// or driver capabilities, so instead you must comment or uncomment the lines
|
||||
// below with "//" before "#define." Disable an option if you get compilation
|
||||
// errors resembling those listed. Generally speaking, all of these options
|
||||
// will run on nVidia cards, but only DRIVERS_ALLOW_TEX2DBIAS (if that) is
|
||||
// likely to run on ATI/AMD, due to the Cg compiler's profile limitations.
|
||||
|
||||
// Derivatives: Unsupported on fp20, ps_1_1, ps_1_2, ps_1_3, and arbfp1.
|
||||
// Among other things, derivatives help us fix anisotropic filtering artifacts
|
||||
// with curved manually tiled phosphor mask coords. Related errors:
|
||||
// error C3004: function "float2 ddx(float2);" not supported in this profile
|
||||
// error C3004: function "float2 ddy(float2);" not supported in this profile
|
||||
//#define DRIVERS_ALLOW_DERIVATIVES
|
||||
|
||||
// Fine derivatives: Unsupported on older ATI cards.
|
||||
// Fine derivatives enable 2x2 fragment block communication, letting us perform
|
||||
// fast single-pass blur operations. If your card uses coarse derivatives and
|
||||
// these are enabled, blurs could look broken. Derivatives are a prerequisite.
|
||||
#ifdef DRIVERS_ALLOW_DERIVATIVES
|
||||
#define DRIVERS_ALLOW_FINE_DERIVATIVES
|
||||
#endif
|
||||
|
||||
// Dynamic looping: Requires an fp30 or newer profile.
|
||||
// This makes phosphor mask resampling faster in some cases. Related errors:
|
||||
// error C5013: profile does not support "for" statements and "for" could not
|
||||
// be unrolled
|
||||
//#define DRIVERS_ALLOW_DYNAMIC_BRANCHES
|
||||
|
||||
// Without DRIVERS_ALLOW_DYNAMIC_BRANCHES, we need to use unrollable loops.
|
||||
// Using one static loop avoids overhead if the user is right, but if the user
|
||||
// is wrong (loops are allowed), breaking a loop into if-blocked pieces with a
|
||||
// binary search can potentially save some iterations. However, it may fail:
|
||||
// error C6001: Temporary register limit of 32 exceeded; 35 registers
|
||||
// needed to compile program
|
||||
//#define ACCOMODATE_POSSIBLE_DYNAMIC_LOOPS
|
||||
|
||||
// tex2Dlod: Requires an fp40 or newer profile. This can be used to disable
|
||||
// anisotropic filtering, thereby fixing related artifacts. Related errors:
|
||||
// error C3004: function "float4 tex2Dlod(sampler2D, float4);" not supported in
|
||||
// this profile
|
||||
//#define DRIVERS_ALLOW_TEX2DLOD
|
||||
|
||||
// tex2Dbias: Requires an fp30 or newer profile. This can be used to alleviate
|
||||
// artifacts from anisotropic filtering and mipmapping. Related errors:
|
||||
// error C3004: function "float4 tex2Dbias(sampler2D, float4);" not supported
|
||||
// in this profile
|
||||
//#define DRIVERS_ALLOW_TEX2DBIAS
|
||||
|
||||
// Integrated graphics compatibility: Integrated graphics like Intel HD 4000
|
||||
// impose stricter limitations on register counts and instructions. Enable
|
||||
// INTEGRATED_GRAPHICS_COMPATIBILITY_MODE if you still see error C6001 or:
|
||||
// error C6002: Instruction limit of 1024 exceeded: 1523 instructions needed
|
||||
// to compile program.
|
||||
// Enabling integrated graphics compatibility mode will automatically disable:
|
||||
// 1.) PHOSPHOR_MASK_MANUALLY_RESIZE: The phosphor mask will be softer.
|
||||
// (This may be reenabled in a later release.)
|
||||
// 2.) RUNTIME_GEOMETRY_MODE
|
||||
// 3.) The high-quality 4x4 Gaussian resize for the bloom approximation
|
||||
//#define INTEGRATED_GRAPHICS_COMPATIBILITY_MODE
|
||||
|
||||
|
||||
//////////////////////////// USER CODEPATH OPTIONS ///////////////////////////
|
||||
|
||||
// To disable a #define option, turn its line into a comment with "//."
|
||||
|
||||
// RUNTIME VS. COMPILE-TIME OPTIONS (Major Performance Implications):
|
||||
// Enable runtime shader parameters in the Retroarch (etc.) GUI? They override
|
||||
// many of the options in this file and allow real-time tuning, but many of
|
||||
// them are slower. Disabling them and using this text file will boost FPS.
|
||||
#define RUNTIME_SHADER_PARAMS_ENABLE
|
||||
// Specify the phosphor bloom sigma at runtime? This option is 10% slower, but
|
||||
// it's the only way to do a wide-enough full bloom with a runtime dot pitch.
|
||||
#define RUNTIME_PHOSPHOR_BLOOM_SIGMA
|
||||
// Specify antialiasing weight parameters at runtime? (Costs ~20% with cubics)
|
||||
#define RUNTIME_ANTIALIAS_WEIGHTS
|
||||
// Specify subpixel offsets at runtime? (WARNING: EXTREMELY EXPENSIVE!)
|
||||
#define RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS
|
||||
// Make beam_horiz_filter and beam_horiz_linear_rgb_weight into runtime shader
|
||||
// parameters? This will require more math or dynamic branching.
|
||||
#define RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE
|
||||
// Specify the tilt at runtime? This makes things about 3% slower.
|
||||
#define RUNTIME_GEOMETRY_TILT
|
||||
// Specify the geometry mode at runtime?
|
||||
#define RUNTIME_GEOMETRY_MODE
|
||||
// Specify the phosphor mask type (aperture grille, slot mask, shadow mask) and
|
||||
// mode (Lanczos-resize, hardware resize, or tile 1:1) at runtime, even without
|
||||
// dynamic branches? This is cheap if mask_resize_viewport_scale is small.
|
||||
#define FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
|
||||
|
||||
// PHOSPHOR MASK:
|
||||
// Manually resize the phosphor mask for best results (slower)? Disabling this
|
||||
// removes the option to do so, but it may be faster without dynamic branches.
|
||||
#define PHOSPHOR_MASK_MANUALLY_RESIZE
|
||||
// If we sinc-resize the mask, should we Lanczos-window it (slower but better)?
|
||||
#define PHOSPHOR_MASK_RESIZE_LANCZOS_WINDOW
|
||||
// Larger blurs are expensive, but we need them to blur larger triads. We can
|
||||
// detect the right blur if the triad size is static or our profile allows
|
||||
// dynamic branches, but otherwise we use the largest blur the user indicates
|
||||
// they might need:
|
||||
#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_3_PIXELS
|
||||
#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_6_PIXELS
|
||||
#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_9_PIXELS
|
||||
#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_12_PIXELS
|
||||
// Here's a helpful chart:
|
||||
// MaxTriadSize BlurSize MinTriadCountsByResolution
|
||||
// 3.0 9.0 480/640/960/1920 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
|
||||
// 6.0 17.0 240/320/480/960 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
|
||||
// 9.0 25.0 160/213/320/640 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
|
||||
// 12.0 31.0 120/160/240/480 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
|
||||
// 18.0 43.0 80/107/160/320 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
|
||||
|
||||
|
||||
/////////////////////////////// USER PARAMETERS //////////////////////////////
|
||||
|
||||
// Note: Many of these static parameters are overridden by runtime shader
|
||||
// parameters when those are enabled. However, many others are static codepath
|
||||
// options that were cleaner or more convert to code as static constants.
|
||||
|
||||
// GAMMA:
|
||||
static const float crt_gamma_static = 2.5; // range [1, 5]
|
||||
static const float lcd_gamma_static = 2.2; // range [1, 5]
|
||||
|
||||
// LEVELS MANAGEMENT:
|
||||
// Control the final multiplicative image contrast:
|
||||
static const float levels_contrast_static = 1.0; // range [0, 4)
|
||||
// We auto-dim to avoid clipping between passes and restore brightness
|
||||
// later. Control the dim factor here: Lower values clip less but crush
|
||||
// blacks more (static only for now).
|
||||
static const float levels_autodim_temp = 0.5; // range (0, 1]
|
||||
|
||||
// HALATION/DIFFUSION/BLOOM:
|
||||
// Halation weight: How much energy should be lost to electrons bounding
|
||||
// around under the CRT glass and exciting random phosphors?
|
||||
static const float halation_weight_static = 0.0; // range [0, 1]
|
||||
// Refractive diffusion weight: How much light should spread/diffuse from
|
||||
// refracting through the CRT glass?
|
||||
static const float diffusion_weight_static = 0.075; // range [0, 1]
|
||||
// Underestimate brightness: Bright areas bloom more, but we can base the
|
||||
// bloom brightpass on a lower brightness to sharpen phosphors, or a higher
|
||||
// brightness to soften them. Low values clip, but >= 0.8 looks okay.
|
||||
static const float bloom_underestimate_levels_static = 0.8; // range [0, 5]
|
||||
// Blur all colors more than necessary for a softer phosphor bloom?
|
||||
static const float bloom_excess_static = 0.0; // range [0, 1]
|
||||
// The BLOOM_APPROX pass approximates a phosphor blur early on with a small
|
||||
// blurred resize of the input (convergence offsets are applied as well).
|
||||
// There are three filter options (static option only for now):
|
||||
// 0.) Bilinear resize: A fast, close approximation to a 4x4 resize
|
||||
// if min_allowed_viewport_triads and the BLOOM_APPROX resolution are sane
|
||||
// and beam_max_sigma is low.
|
||||
// 1.) 3x3 resize blur: Medium speed, soft/smeared from bilinear blurring,
|
||||
// always uses a static sigma regardless of beam_max_sigma or
|
||||
// mask_num_triads_desired.
|
||||
// 2.) True 4x4 Gaussian resize: Slowest, technically correct.
|
||||
// These options are more pronounced for the fast, unbloomed shader version.
|
||||
static const float bloom_approx_filter_static = 2.0;
|
||||
|
||||
// ELECTRON BEAM SCANLINE DISTRIBUTION:
|
||||
// How many scanlines should contribute light to each pixel? Using more
|
||||
// scanlines is slower (especially for a generalized Gaussian) but less
|
||||
// distorted with larger beam sigmas (especially for a pure Gaussian). The
|
||||
// max_beam_sigma at which the closest unused weight is guaranteed <
|
||||
// 1.0/255.0 (for a 3x antialiased pure Gaussian) is:
|
||||
// 2 scanlines: max_beam_sigma = 0.2089; distortions begin ~0.34; 141.7 FPS pure, 131.9 FPS generalized
|
||||
// 3 scanlines, max_beam_sigma = 0.3879; distortions begin ~0.52; 137.5 FPS pure; 123.8 FPS generalized
|
||||
// 4 scanlines, max_beam_sigma = 0.5723; distortions begin ~0.70; 134.7 FPS pure; 117.2 FPS generalized
|
||||
// 5 scanlines, max_beam_sigma = 0.7591; distortions begin ~0.89; 131.6 FPS pure; 112.1 FPS generalized
|
||||
// 6 scanlines, max_beam_sigma = 0.9483; distortions begin ~1.08; 127.9 FPS pure; 105.6 FPS generalized
|
||||
static const float beam_num_scanlines = 4.0; // range [2, 6]
|
||||
// A generalized Gaussian beam varies shape with color too, now just width.
|
||||
// It's slower but more flexible (static option only for now).
|
||||
static const bool beam_generalized_gaussian = true;
|
||||
// What kind of scanline antialiasing do you want?
|
||||
// 0: Sample weights at 1x; 1: Sample weights at 3x; 2: Compute an integral
|
||||
// Integrals are slow (especially for generalized Gaussians) and rarely any
|
||||
// better than 3x antialiasing (static option only for now).
|
||||
static const float beam_antialias_level = 1.0; // range [0, 2]
|
||||
// Min/max standard deviations for scanline beams: Higher values widen and
|
||||
// soften scanlines. Depending on other options, low min sigmas can alias.
|
||||
static const float beam_min_sigma_static = 0.02; // range (0, 1]
|
||||
static const float beam_max_sigma_static = 0.3; // range (0, 1]
|
||||
// Beam width varies as a function of color: A power function (0) is more
|
||||
// configurable, but a spherical function (1) gives the widest beam
|
||||
// variability without aliasing (static option only for now).
|
||||
static const float beam_spot_shape_function = 0.0;
|
||||
// Spot shape power: Powers <= 1 give smoother spot shapes but lower
|
||||
// sharpness. Powers >= 1.0 are awful unless mix/max sigmas are close.
|
||||
static const float beam_spot_power_static = 1.0/3.0; // range (0, 16]
|
||||
// Generalized Gaussian max shape parameters: Higher values give flatter
|
||||
// scanline plateaus and steeper dropoffs, simultaneously widening and
|
||||
// sharpening scanlines at the cost of aliasing. 2.0 is pure Gaussian, and
|
||||
// values > ~40.0 cause artifacts with integrals.
|
||||
static const float beam_min_shape_static = 2.0; // range [2, 32]
|
||||
static const float beam_max_shape_static = 4.0; // range [2, 32]
|
||||
// Generalized Gaussian shape power: Affects how quickly the distribution
|
||||
// changes shape from Gaussian to steep/plateaued as color increases from 0
|
||||
// to 1.0. Higher powers appear softer for most colors, and lower powers
|
||||
// appear sharper for most colors.
|
||||
static const float beam_shape_power_static = 1.0/4.0; // range (0, 16]
|
||||
// What filter should be used to sample scanlines horizontally?
|
||||
// 0: Quilez (fast), 1: Gaussian (configurable), 2: Lanczos2 (sharp)
|
||||
static const float beam_horiz_filter_static = 0.0;
|
||||
// Standard deviation for horizontal Gaussian resampling:
|
||||
static const float beam_horiz_sigma_static = 0.35; // range (0, 2/3]
|
||||
// Do horizontal scanline sampling in linear RGB (correct light mixing),
|
||||
// gamma-encoded RGB (darker, hard spot shape, may better match bandwidth-
|
||||
// limiting circuitry in some CRT's), or a weighted avg.?
|
||||
static const float beam_horiz_linear_rgb_weight_static = 1.0; // range [0, 1]
|
||||
// Simulate scanline misconvergence? This needs 3x horizontal texture
|
||||
// samples and 3x texture samples of BLOOM_APPROX and HALATION_BLUR in
|
||||
// later passes (static option only for now).
|
||||
static const bool beam_misconvergence = true;
|
||||
// Convergence offsets in x/y directions for R/G/B scanline beams in units
|
||||
// of scanlines. Positive offsets go right/down; ranges [-2, 2]
|
||||
static const float2 convergence_offsets_r_static = float2(0.1, 0.2);
|
||||
static const float2 convergence_offsets_g_static = float2(0.3, 0.4);
|
||||
static const float2 convergence_offsets_b_static = float2(0.5, 0.6);
|
||||
// Detect interlacing (static option only for now)?
|
||||
static const bool interlace_detect = true;
|
||||
// Assume 1080-line sources are interlaced?
|
||||
static const bool interlace_1080i_static = false;
|
||||
// For interlaced sources, assume TFF (top-field first) or BFF order?
|
||||
// (Whether this matters depends on the nature of the interlaced input.)
|
||||
static const bool interlace_bff_static = false;
|
||||
|
||||
// ANTIALIASING:
|
||||
// What AA level do you want for curvature/overscan/subpixels? Options:
|
||||
// 0x (none), 1x (sample subpixels), 4x, 5x, 6x, 7x, 8x, 12x, 16x, 20x, 24x
|
||||
// (Static option only for now)
|
||||
static const float aa_level = 12.0; // range [0, 24]
|
||||
// What antialiasing filter do you want (static option only)? Options:
|
||||
// 0: Box (separable), 1: Box (cylindrical),
|
||||
// 2: Tent (separable), 3: Tent (cylindrical),
|
||||
// 4: Gaussian (separable), 5: Gaussian (cylindrical),
|
||||
// 6: Cubic* (separable), 7: Cubic* (cylindrical, poor)
|
||||
// 8: Lanczos Sinc (separable), 9: Lanczos Jinc (cylindrical, poor)
|
||||
// * = Especially slow with RUNTIME_ANTIALIAS_WEIGHTS
|
||||
static const float aa_filter = 6.0; // range [0, 9]
|
||||
// Flip the sample grid on odd/even frames (static option only for now)?
|
||||
static const bool aa_temporal = false;
|
||||
// Use RGB subpixel offsets for antialiasing? The pixel is at green, and
|
||||
// the blue offset is the negative r offset; range [0, 0.5]
|
||||
static const float2 aa_subpixel_r_offset_static = float2(-1.0/3.0, 0.0);//float2(0.0);
|
||||
// Cubics: See http://www.imagemagick.org/Usage/filter/#mitchell
|
||||
// 1.) "Keys cubics" with B = 1 - 2C are considered the highest quality.
|
||||
// 2.) C = 0.5 (default) is Catmull-Rom; higher C's apply sharpening.
|
||||
// 3.) C = 1.0/3.0 is the Mitchell-Netravali filter.
|
||||
// 4.) C = 0.0 is a soft spline filter.
|
||||
static const float aa_cubic_c_static = 0.5; // range [0, 4]
|
||||
// Standard deviation for Gaussian antialiasing: Try 0.5/aa_pixel_diameter.
|
||||
static const float aa_gauss_sigma_static = 0.5; // range [0.0625, 1.0]
|
||||
|
||||
// PHOSPHOR MASK:
|
||||
// Mask type: 0 = aperture grille, 1 = slot mask, 2 = EDP shadow mask
|
||||
static const float mask_type_static = 1.0; // range [0, 2]
|
||||
// We can sample the mask three ways. Pick 2/3 from: Pretty/Fast/Flexible.
|
||||
// 0.) Sinc-resize to the desired dot pitch manually (pretty/slow/flexible).
|
||||
// This requires PHOSPHOR_MASK_MANUALLY_RESIZE to be #defined.
|
||||
// 1.) Hardware-resize to the desired dot pitch (ugly/fast/flexible). This
|
||||
// is halfway decent with LUT mipmapping but atrocious without it.
|
||||
// 2.) Tile it without resizing at a 1:1 texel:pixel ratio for flat coords
|
||||
// (pretty/fast/inflexible). Each input LUT has a fixed dot pitch.
|
||||
// This mode reuses the same masks, so triads will be enormous unless
|
||||
// you change the mask LUT filenames in your .cgp file.
|
||||
static const float mask_sample_mode_static = 0.0; // range [0, 2]
|
||||
// Prefer setting the triad size (0.0) or number on the screen (1.0)?
|
||||
// If RUNTIME_PHOSPHOR_BLOOM_SIGMA isn't #defined, the specified triad size
|
||||
// will always be used to calculate the full bloom sigma statically.
|
||||
static const float mask_specify_num_triads_static = 0.0; // range [0, 1]
|
||||
// Specify the phosphor triad size, in pixels. Each tile (usually with 8
|
||||
// triads) will be rounded to the nearest integer tile size and clamped to
|
||||
// obey minimum size constraints (imposed to reduce downsize taps) and
|
||||
// maximum size constraints (imposed to have a sane MASK_RESIZE FBO size).
|
||||
// To increase the size limit, double the viewport-relative scales for the
|
||||
// two MASK_RESIZE passes in crt-royale.cgp and user-cgp-contants.h.
|
||||
// range [1, mask_texture_small_size/mask_triads_per_tile]
|
||||
static const float mask_triad_size_desired_static = 24.0 / 8.0;
|
||||
// If mask_specify_num_triads is 1.0/true, we'll go by this instead (the
|
||||
// final size will be rounded and constrained as above); default 480.0
|
||||
static const float mask_num_triads_desired_static = 480.0;
|
||||
// How many lobes should the sinc/Lanczos resizer use? More lobes require
|
||||
// more samples and avoid moire a bit better, but some is unavoidable
|
||||
// depending on the destination size (static option for now).
|
||||
static const float mask_sinc_lobes = 3.0; // range [2, 4]
|
||||
// The mask is resized using a variable number of taps in each dimension,
|
||||
// but some Cg profiles always fetch a constant number of taps no matter
|
||||
// what (no dynamic branching). We can limit the maximum number of taps if
|
||||
// we statically limit the minimum phosphor triad size. Larger values are
|
||||
// faster, but the limit IS enforced (static option only, forever);
|
||||
// range [1, mask_texture_small_size/mask_triads_per_tile]
|
||||
// TODO: Make this 1.0 and compensate with smarter sampling!
|
||||
static const float mask_min_allowed_triad_size = 2.0;
|
||||
|
||||
// GEOMETRY:
|
||||
// Geometry mode:
|
||||
// 0: Off (default), 1: Spherical mapping (like cgwg's),
|
||||
// 2: Alt. spherical mapping (more bulbous), 3: Cylindrical/Trinitron
|
||||
static const float geom_mode_static = 0.0; // range [0, 3]
|
||||
// Radius of curvature: Measured in units of your viewport's diagonal size.
|
||||
static const float geom_radius_static = 2.0; // range [1/(2*pi), 1024]
|
||||
// View dist is the distance from the player to their physical screen, in
|
||||
// units of the viewport's diagonal size. It controls the field of view.
|
||||
static const float geom_view_dist_static = 2.0; // range [0.5, 1024]
|
||||
// Tilt angle in radians (clockwise around up and right vectors):
|
||||
static const float2 geom_tilt_angle_static = float2(0.0, 0.0); // range [-pi, pi]
|
||||
// Aspect ratio: When the true viewport size is unknown, this value is used
|
||||
// to help convert between the phosphor triad size and count, along with
|
||||
// the mask_resize_viewport_scale constant from user-cgp-constants.h. Set
|
||||
// this equal to Retroarch's display aspect ratio (DAR) for best results;
|
||||
// range [1, geom_max_aspect_ratio from user-cgp-constants.h];
|
||||
// default (256/224)*(54/47) = 1.313069909 (see below)
|
||||
static const float geom_aspect_ratio_static = 1.313069909;
|
||||
// Before getting into overscan, here's some general aspect ratio info:
|
||||
// - DAR = display aspect ratio = SAR * PAR; as in your Retroarch setting
|
||||
// - SAR = storage aspect ratio = DAR / PAR; square pixel emulator frame AR
|
||||
// - PAR = pixel aspect ratio = DAR / SAR; holds regardless of cropping
|
||||
// Geometry processing has to "undo" the screen-space 2D DAR to calculate
|
||||
// 3D view vectors, then reapplies the aspect ratio to the simulated CRT in
|
||||
// uv-space. To ensure the source SAR is intended for a ~4:3 DAR, either:
|
||||
// a.) Enable Retroarch's "Crop Overscan"
|
||||
// b.) Readd horizontal padding: Set overscan to e.g. N*(1.0, 240.0/224.0)
|
||||
// Real consoles use horizontal black padding in the signal, but emulators
|
||||
// often crop this without cropping the vertical padding; a 256x224 [S]NES
|
||||
// frame (8:7 SAR) is intended for a ~4:3 DAR, but a 256x240 frame is not.
|
||||
// The correct [S]NES PAR is 54:47, found by blargg and NewRisingSun:
|
||||
// http://board.zsnes.com/phpBB3/viewtopic.php?f=22&t=11928&start=50
|
||||
// http://forums.nesdev.com/viewtopic.php?p=24815#p24815
|
||||
// For flat output, it's okay to set DAR = [existing] SAR * [correct] PAR
|
||||
// without doing a. or b., but horizontal image borders will be tighter
|
||||
// than vertical ones, messing up curvature and overscan. Fixing the
|
||||
// padding first corrects this.
|
||||
// Overscan: Amount to "zoom in" before cropping. You can zoom uniformly
|
||||
// or adjust x/y independently to e.g. readd horizontal padding, as noted
|
||||
// above: Values < 1.0 zoom out; range (0, inf)
|
||||
static const float2 geom_overscan_static = float2(1.0, 1.0);// * 1.005 * (1.0, 240/224.0)
|
||||
// Compute a proper pixel-space to texture-space matrix even without ddx()/
|
||||
// ddy()? This is ~8.5% slower but improves antialiasing/subpixel filtering
|
||||
// with strong curvature (static option only for now).
|
||||
static const bool geom_force_correct_tangent_matrix = true;
|
||||
|
||||
// BORDERS:
|
||||
// Rounded border size in texture uv coords:
|
||||
static const float border_size_static = 0.015; // range [0, 0.5]
|
||||
// Border darkness: Moderate values darken the border smoothly, and high
|
||||
// values make the image very dark just inside the border:
|
||||
static const float border_darkness_static = 2.0; // range [0, inf)
|
||||
// Border compression: High numbers compress border transitions, narrowing
|
||||
// the dark border area.
|
||||
static const float border_compress_static = 2.5; // range [1, inf)
|
||||
|
||||
|
||||
#endif // USER_SETTINGS_H
|
||||
|
|
@ -0,0 +1,359 @@
|
|||
#ifndef USER_SETTINGS_H
|
||||
#define USER_SETTINGS_H
|
||||
|
||||
///////////////////////////// DRIVER CAPABILITIES ////////////////////////////
|
||||
|
||||
// The Cg compiler uses different "profiles" with different capabilities.
|
||||
// This shader requires a Cg compilation profile >= arbfp1, but a few options
|
||||
// require higher profiles like fp30 or fp40. The shader can't detect profile
|
||||
// or driver capabilities, so instead you must comment or uncomment the lines
|
||||
// below with "//" before "#define." Disable an option if you get compilation
|
||||
// errors resembling those listed. Generally speaking, all of these options
|
||||
// will run on nVidia cards, but only DRIVERS_ALLOW_TEX2DBIAS (if that) is
|
||||
// likely to run on ATI/AMD, due to the Cg compiler's profile limitations.
|
||||
|
||||
// Derivatives: Unsupported on fp20, ps_1_1, ps_1_2, ps_1_3, and arbfp1.
|
||||
// Among other things, derivatives help us fix anisotropic filtering artifacts
|
||||
// with curved manually tiled phosphor mask coords. Related errors:
|
||||
// error C3004: function "float2 ddx(float2);" not supported in this profile
|
||||
// error C3004: function "float2 ddy(float2);" not supported in this profile
|
||||
#define DRIVERS_ALLOW_DERIVATIVES
|
||||
|
||||
// Fine derivatives: Unsupported on older ATI cards.
|
||||
// Fine derivatives enable 2x2 fragment block communication, letting us perform
|
||||
// fast single-pass blur operations. If your card uses coarse derivatives and
|
||||
// these are enabled, blurs could look broken. Derivatives are a prerequisite.
|
||||
#ifdef DRIVERS_ALLOW_DERIVATIVES
|
||||
#define DRIVERS_ALLOW_FINE_DERIVATIVES
|
||||
#endif
|
||||
|
||||
// Dynamic looping: Requires an fp30 or newer profile.
|
||||
// This makes phosphor mask resampling faster in some cases. Related errors:
|
||||
// error C5013: profile does not support "for" statements and "for" could not
|
||||
// be unrolled
|
||||
#define DRIVERS_ALLOW_DYNAMIC_BRANCHES
|
||||
|
||||
// Without DRIVERS_ALLOW_DYNAMIC_BRANCHES, we need to use unrollable loops.
|
||||
// Using one static loop avoids overhead if the user is right, but if the user
|
||||
// is wrong (loops are allowed), breaking a loop into if-blocked pieces with a
|
||||
// binary search can potentially save some iterations. However, it may fail:
|
||||
// error C6001: Temporary register limit of 32 exceeded; 35 registers
|
||||
// needed to compile program
|
||||
#define ACCOMODATE_POSSIBLE_DYNAMIC_LOOPS
|
||||
|
||||
// tex2Dlod: Requires an fp40 or newer profile. This can be used to disable
|
||||
// anisotropic filtering, thereby fixing related artifacts. Related errors:
|
||||
// error C3004: function "float4 tex2Dlod(sampler2D, float4);" not supported in
|
||||
// this profile
|
||||
#define DRIVERS_ALLOW_TEX2DLOD
|
||||
|
||||
// tex2Dbias: Requires an fp30 or newer profile. This can be used to alleviate
|
||||
// artifacts from anisotropic filtering and mipmapping. Related errors:
|
||||
// error C3004: function "float4 tex2Dbias(sampler2D, float4);" not supported
|
||||
// in this profile
|
||||
#define DRIVERS_ALLOW_TEX2DBIAS
|
||||
|
||||
// Integrated graphics compatibility: Integrated graphics like Intel HD 4000
|
||||
// impose stricter limitations on register counts and instructions. Enable
|
||||
// INTEGRATED_GRAPHICS_COMPATIBILITY_MODE if you still see error C6001 or:
|
||||
// error C6002: Instruction limit of 1024 exceeded: 1523 instructions needed
|
||||
// to compile program.
|
||||
// Enabling integrated graphics compatibility mode will automatically disable:
|
||||
// 1.) PHOSPHOR_MASK_MANUALLY_RESIZE: The phosphor mask will be softer.
|
||||
// (This may be reenabled in a later release.)
|
||||
// 2.) RUNTIME_GEOMETRY_MODE
|
||||
// 3.) The high-quality 4x4 Gaussian resize for the bloom approximation
|
||||
//#define INTEGRATED_GRAPHICS_COMPATIBILITY_MODE
|
||||
|
||||
|
||||
//////////////////////////// USER CODEPATH OPTIONS ///////////////////////////
|
||||
|
||||
// To disable a #define option, turn its line into a comment with "//."
|
||||
|
||||
// RUNTIME VS. COMPILE-TIME OPTIONS (Major Performance Implications):
|
||||
// Enable runtime shader parameters in the Retroarch (etc.) GUI? They override
|
||||
// many of the options in this file and allow real-time tuning, but many of
|
||||
// them are slower. Disabling them and using this text file will boost FPS.
|
||||
#define RUNTIME_SHADER_PARAMS_ENABLE
|
||||
// Specify the phosphor bloom sigma at runtime? This option is 10% slower, but
|
||||
// it's the only way to do a wide-enough full bloom with a runtime dot pitch.
|
||||
#define RUNTIME_PHOSPHOR_BLOOM_SIGMA
|
||||
// Specify antialiasing weight parameters at runtime? (Costs ~20% with cubics)
|
||||
#define RUNTIME_ANTIALIAS_WEIGHTS
|
||||
// Specify subpixel offsets at runtime? (WARNING: EXTREMELY EXPENSIVE!)
|
||||
#define RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS
|
||||
// Make beam_horiz_filter and beam_horiz_linear_rgb_weight into runtime shader
|
||||
// parameters? This will require more math or dynamic branching.
|
||||
#define RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE
|
||||
// Specify the tilt at runtime? This makes things about 3% slower.
|
||||
#define RUNTIME_GEOMETRY_TILT
|
||||
// Specify the geometry mode at runtime?
|
||||
#define RUNTIME_GEOMETRY_MODE
|
||||
// Specify the phosphor mask type (aperture grille, slot mask, shadow mask) and
|
||||
// mode (Lanczos-resize, hardware resize, or tile 1:1) at runtime, even without
|
||||
// dynamic branches? This is cheap if mask_resize_viewport_scale is small.
|
||||
#define FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
|
||||
|
||||
// PHOSPHOR MASK:
|
||||
// Manually resize the phosphor mask for best results (slower)? Disabling this
|
||||
// removes the option to do so, but it may be faster without dynamic branches.
|
||||
#define PHOSPHOR_MASK_MANUALLY_RESIZE
|
||||
// If we sinc-resize the mask, should we Lanczos-window it (slower but better)?
|
||||
#define PHOSPHOR_MASK_RESIZE_LANCZOS_WINDOW
|
||||
// Larger blurs are expensive, but we need them to blur larger triads. We can
|
||||
// detect the right blur if the triad size is static or our profile allows
|
||||
// dynamic branches, but otherwise we use the largest blur the user indicates
|
||||
// they might need:
|
||||
#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_3_PIXELS
|
||||
#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_6_PIXELS
|
||||
#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_9_PIXELS
|
||||
#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_12_PIXELS
|
||||
// Here's a helpful chart:
|
||||
// MaxTriadSize BlurSize MinTriadCountsByResolution
|
||||
// 3.0 9.0 480/640/960/1920 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
|
||||
// 6.0 17.0 240/320/480/960 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
|
||||
// 9.0 25.0 160/213/320/640 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
|
||||
// 12.0 31.0 120/160/240/480 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
|
||||
// 18.0 43.0 80/107/160/320 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
|
||||
|
||||
|
||||
/////////////////////////////// USER PARAMETERS //////////////////////////////
|
||||
|
||||
// Note: Many of these static parameters are overridden by runtime shader
|
||||
// parameters when those are enabled. However, many others are static codepath
|
||||
// options that were cleaner or more convert to code as static constants.
|
||||
|
||||
// GAMMA:
|
||||
static const float crt_gamma_static = 2.5; // range [1, 5]
|
||||
static const float lcd_gamma_static = 2.2; // range [1, 5]
|
||||
|
||||
// LEVELS MANAGEMENT:
|
||||
// Control the final multiplicative image contrast:
|
||||
static const float levels_contrast_static = 1.0; // range [0, 4)
|
||||
// We auto-dim to avoid clipping between passes and restore brightness
|
||||
// later. Control the dim factor here: Lower values clip less but crush
|
||||
// blacks more (static only for now).
|
||||
static const float levels_autodim_temp = 0.5; // range (0, 1]
|
||||
|
||||
// HALATION/DIFFUSION/BLOOM:
|
||||
// Halation weight: How much energy should be lost to electrons bounding
|
||||
// around under the CRT glass and exciting random phosphors?
|
||||
static const float halation_weight_static = 0.0; // range [0, 1]
|
||||
// Refractive diffusion weight: How much light should spread/diffuse from
|
||||
// refracting through the CRT glass?
|
||||
static const float diffusion_weight_static = 0.075; // range [0, 1]
|
||||
// Underestimate brightness: Bright areas bloom more, but we can base the
|
||||
// bloom brightpass on a lower brightness to sharpen phosphors, or a higher
|
||||
// brightness to soften them. Low values clip, but >= 0.8 looks okay.
|
||||
static const float bloom_underestimate_levels_static = 0.8; // range [0, 5]
|
||||
// Blur all colors more than necessary for a softer phosphor bloom?
|
||||
static const float bloom_excess_static = 0.0; // range [0, 1]
|
||||
// The BLOOM_APPROX pass approximates a phosphor blur early on with a small
|
||||
// blurred resize of the input (convergence offsets are applied as well).
|
||||
// There are three filter options (static option only for now):
|
||||
// 0.) Bilinear resize: A fast, close approximation to a 4x4 resize
|
||||
// if min_allowed_viewport_triads and the BLOOM_APPROX resolution are sane
|
||||
// and beam_max_sigma is low.
|
||||
// 1.) 3x3 resize blur: Medium speed, soft/smeared from bilinear blurring,
|
||||
// always uses a static sigma regardless of beam_max_sigma or
|
||||
// mask_num_triads_desired.
|
||||
// 2.) True 4x4 Gaussian resize: Slowest, technically correct.
|
||||
// These options are more pronounced for the fast, unbloomed shader version.
|
||||
static const float bloom_approx_filter_static = 2.0;
|
||||
|
||||
// ELECTRON BEAM SCANLINE DISTRIBUTION:
|
||||
// How many scanlines should contribute light to each pixel? Using more
|
||||
// scanlines is slower (especially for a generalized Gaussian) but less
|
||||
// distorted with larger beam sigmas (especially for a pure Gaussian). The
|
||||
// max_beam_sigma at which the closest unused weight is guaranteed <
|
||||
// 1.0/255.0 (for a 3x antialiased pure Gaussian) is:
|
||||
// 2 scanlines: max_beam_sigma = 0.2089; distortions begin ~0.34; 141.7 FPS pure, 131.9 FPS generalized
|
||||
// 3 scanlines, max_beam_sigma = 0.3879; distortions begin ~0.52; 137.5 FPS pure; 123.8 FPS generalized
|
||||
// 4 scanlines, max_beam_sigma = 0.5723; distortions begin ~0.70; 134.7 FPS pure; 117.2 FPS generalized
|
||||
// 5 scanlines, max_beam_sigma = 0.7591; distortions begin ~0.89; 131.6 FPS pure; 112.1 FPS generalized
|
||||
// 6 scanlines, max_beam_sigma = 0.9483; distortions begin ~1.08; 127.9 FPS pure; 105.6 FPS generalized
|
||||
static const float beam_num_scanlines = 4.0; // range [2, 6]
|
||||
// A generalized Gaussian beam varies shape with color too, now just width.
|
||||
// It's slower but more flexible (static option only for now).
|
||||
static const bool beam_generalized_gaussian = true;
|
||||
// What kind of scanline antialiasing do you want?
|
||||
// 0: Sample weights at 1x; 1: Sample weights at 3x; 2: Compute an integral
|
||||
// Integrals are slow (especially for generalized Gaussians) and rarely any
|
||||
// better than 3x antialiasing (static option only for now).
|
||||
static const float beam_antialias_level = 1.0; // range [0, 2]
|
||||
// Min/max standard deviations for scanline beams: Higher values widen and
|
||||
// soften scanlines. Depending on other options, low min sigmas can alias.
|
||||
static const float beam_min_sigma_static = 0.02; // range (0, 1]
|
||||
static const float beam_max_sigma_static = 0.3; // range (0, 1]
|
||||
// Beam width varies as a function of color: A power function (0) is more
|
||||
// configurable, but a spherical function (1) gives the widest beam
|
||||
// variability without aliasing (static option only for now).
|
||||
static const float beam_spot_shape_function = 0.0;
|
||||
// Spot shape power: Powers <= 1 give smoother spot shapes but lower
|
||||
// sharpness. Powers >= 1.0 are awful unless mix/max sigmas are close.
|
||||
static const float beam_spot_power_static = 1.0/3.0; // range (0, 16]
|
||||
// Generalized Gaussian max shape parameters: Higher values give flatter
|
||||
// scanline plateaus and steeper dropoffs, simultaneously widening and
|
||||
// sharpening scanlines at the cost of aliasing. 2.0 is pure Gaussian, and
|
||||
// values > ~40.0 cause artifacts with integrals.
|
||||
static const float beam_min_shape_static = 2.0; // range [2, 32]
|
||||
static const float beam_max_shape_static = 4.0; // range [2, 32]
|
||||
// Generalized Gaussian shape power: Affects how quickly the distribution
|
||||
// changes shape from Gaussian to steep/plateaued as color increases from 0
|
||||
// to 1.0. Higher powers appear softer for most colors, and lower powers
|
||||
// appear sharper for most colors.
|
||||
static const float beam_shape_power_static = 1.0/4.0; // range (0, 16]
|
||||
// What filter should be used to sample scanlines horizontally?
|
||||
// 0: Quilez (fast), 1: Gaussian (configurable), 2: Lanczos2 (sharp)
|
||||
static const float beam_horiz_filter_static = 0.0;
|
||||
// Standard deviation for horizontal Gaussian resampling:
|
||||
static const float beam_horiz_sigma_static = 0.35; // range (0, 2/3]
|
||||
// Do horizontal scanline sampling in linear RGB (correct light mixing),
|
||||
// gamma-encoded RGB (darker, hard spot shape, may better match bandwidth-
|
||||
// limiting circuitry in some CRT's), or a weighted avg.?
|
||||
static const float beam_horiz_linear_rgb_weight_static = 1.0; // range [0, 1]
|
||||
// Simulate scanline misconvergence? This needs 3x horizontal texture
|
||||
// samples and 3x texture samples of BLOOM_APPROX and HALATION_BLUR in
|
||||
// later passes (static option only for now).
|
||||
static const bool beam_misconvergence = true;
|
||||
// Convergence offsets in x/y directions for R/G/B scanline beams in units
|
||||
// of scanlines. Positive offsets go right/down; ranges [-2, 2]
|
||||
static const float2 convergence_offsets_r_static = float2(0.1, 0.2);
|
||||
static const float2 convergence_offsets_g_static = float2(0.3, 0.4);
|
||||
static const float2 convergence_offsets_b_static = float2(0.5, 0.6);
|
||||
// Detect interlacing (static option only for now)?
|
||||
static const bool interlace_detect = true;
|
||||
// Assume 1080-line sources are interlaced?
|
||||
static const bool interlace_1080i_static = false;
|
||||
// For interlaced sources, assume TFF (top-field first) or BFF order?
|
||||
// (Whether this matters depends on the nature of the interlaced input.)
|
||||
static const bool interlace_bff_static = false;
|
||||
|
||||
// ANTIALIASING:
|
||||
// What AA level do you want for curvature/overscan/subpixels? Options:
|
||||
// 0x (none), 1x (sample subpixels), 4x, 5x, 6x, 7x, 8x, 12x, 16x, 20x, 24x
|
||||
// (Static option only for now)
|
||||
static const float aa_level = 12.0; // range [0, 24]
|
||||
// What antialiasing filter do you want (static option only)? Options:
|
||||
// 0: Box (separable), 1: Box (cylindrical),
|
||||
// 2: Tent (separable), 3: Tent (cylindrical),
|
||||
// 4: Gaussian (separable), 5: Gaussian (cylindrical),
|
||||
// 6: Cubic* (separable), 7: Cubic* (cylindrical, poor)
|
||||
// 8: Lanczos Sinc (separable), 9: Lanczos Jinc (cylindrical, poor)
|
||||
// * = Especially slow with RUNTIME_ANTIALIAS_WEIGHTS
|
||||
static const float aa_filter = 6.0; // range [0, 9]
|
||||
// Flip the sample grid on odd/even frames (static option only for now)?
|
||||
static const bool aa_temporal = false;
|
||||
// Use RGB subpixel offsets for antialiasing? The pixel is at green, and
|
||||
// the blue offset is the negative r offset; range [0, 0.5]
|
||||
static const float2 aa_subpixel_r_offset_static = float2(-1.0/3.0, 0.0);//float2(0.0);
|
||||
// Cubics: See http://www.imagemagick.org/Usage/filter/#mitchell
|
||||
// 1.) "Keys cubics" with B = 1 - 2C are considered the highest quality.
|
||||
// 2.) C = 0.5 (default) is Catmull-Rom; higher C's apply sharpening.
|
||||
// 3.) C = 1.0/3.0 is the Mitchell-Netravali filter.
|
||||
// 4.) C = 0.0 is a soft spline filter.
|
||||
static const float aa_cubic_c_static = 0.5; // range [0, 4]
|
||||
// Standard deviation for Gaussian antialiasing: Try 0.5/aa_pixel_diameter.
|
||||
static const float aa_gauss_sigma_static = 0.5; // range [0.0625, 1.0]
|
||||
|
||||
// PHOSPHOR MASK:
|
||||
// Mask type: 0 = aperture grille, 1 = slot mask, 2 = EDP shadow mask
|
||||
static const float mask_type_static = 1.0; // range [0, 2]
|
||||
// We can sample the mask three ways. Pick 2/3 from: Pretty/Fast/Flexible.
|
||||
// 0.) Sinc-resize to the desired dot pitch manually (pretty/slow/flexible).
|
||||
// This requires PHOSPHOR_MASK_MANUALLY_RESIZE to be #defined.
|
||||
// 1.) Hardware-resize to the desired dot pitch (ugly/fast/flexible). This
|
||||
// is halfway decent with LUT mipmapping but atrocious without it.
|
||||
// 2.) Tile it without resizing at a 1:1 texel:pixel ratio for flat coords
|
||||
// (pretty/fast/inflexible). Each input LUT has a fixed dot pitch.
|
||||
// This mode reuses the same masks, so triads will be enormous unless
|
||||
// you change the mask LUT filenames in your .cgp file.
|
||||
static const float mask_sample_mode_static = 0.0; // range [0, 2]
|
||||
// Prefer setting the triad size (0.0) or number on the screen (1.0)?
|
||||
// If RUNTIME_PHOSPHOR_BLOOM_SIGMA isn't #defined, the specified triad size
|
||||
// will always be used to calculate the full bloom sigma statically.
|
||||
static const float mask_specify_num_triads_static = 0.0; // range [0, 1]
|
||||
// Specify the phosphor triad size, in pixels. Each tile (usually with 8
|
||||
// triads) will be rounded to the nearest integer tile size and clamped to
|
||||
// obey minimum size constraints (imposed to reduce downsize taps) and
|
||||
// maximum size constraints (imposed to have a sane MASK_RESIZE FBO size).
|
||||
// To increase the size limit, double the viewport-relative scales for the
|
||||
// two MASK_RESIZE passes in crt-royale.cgp and user-cgp-contants.h.
|
||||
// range [1, mask_texture_small_size/mask_triads_per_tile]
|
||||
static const float mask_triad_size_desired_static = 24.0 / 8.0;
|
||||
// If mask_specify_num_triads is 1.0/true, we'll go by this instead (the
|
||||
// final size will be rounded and constrained as above); default 480.0
|
||||
static const float mask_num_triads_desired_static = 480.0;
|
||||
// How many lobes should the sinc/Lanczos resizer use? More lobes require
|
||||
// more samples and avoid moire a bit better, but some is unavoidable
|
||||
// depending on the destination size (static option for now).
|
||||
static const float mask_sinc_lobes = 3.0; // range [2, 4]
|
||||
// The mask is resized using a variable number of taps in each dimension,
|
||||
// but some Cg profiles always fetch a constant number of taps no matter
|
||||
// what (no dynamic branching). We can limit the maximum number of taps if
|
||||
// we statically limit the minimum phosphor triad size. Larger values are
|
||||
// faster, but the limit IS enforced (static option only, forever);
|
||||
// range [1, mask_texture_small_size/mask_triads_per_tile]
|
||||
// TODO: Make this 1.0 and compensate with smarter sampling!
|
||||
static const float mask_min_allowed_triad_size = 2.0;
|
||||
|
||||
// GEOMETRY:
|
||||
// Geometry mode:
|
||||
// 0: Off (default), 1: Spherical mapping (like cgwg's),
|
||||
// 2: Alt. spherical mapping (more bulbous), 3: Cylindrical/Trinitron
|
||||
static const float geom_mode_static = 0.0; // range [0, 3]
|
||||
// Radius of curvature: Measured in units of your viewport's diagonal size.
|
||||
static const float geom_radius_static = 2.0; // range [1/(2*pi), 1024]
|
||||
// View dist is the distance from the player to their physical screen, in
|
||||
// units of the viewport's diagonal size. It controls the field of view.
|
||||
static const float geom_view_dist_static = 2.0; // range [0.5, 1024]
|
||||
// Tilt angle in radians (clockwise around up and right vectors):
|
||||
static const float2 geom_tilt_angle_static = float2(0.0, 0.0); // range [-pi, pi]
|
||||
// Aspect ratio: When the true viewport size is unknown, this value is used
|
||||
// to help convert between the phosphor triad size and count, along with
|
||||
// the mask_resize_viewport_scale constant from user-cgp-constants.h. Set
|
||||
// this equal to Retroarch's display aspect ratio (DAR) for best results;
|
||||
// range [1, geom_max_aspect_ratio from user-cgp-constants.h];
|
||||
// default (256/224)*(54/47) = 1.313069909 (see below)
|
||||
static const float geom_aspect_ratio_static = 1.313069909;
|
||||
// Before getting into overscan, here's some general aspect ratio info:
|
||||
// - DAR = display aspect ratio = SAR * PAR; as in your Retroarch setting
|
||||
// - SAR = storage aspect ratio = DAR / PAR; square pixel emulator frame AR
|
||||
// - PAR = pixel aspect ratio = DAR / SAR; holds regardless of cropping
|
||||
// Geometry processing has to "undo" the screen-space 2D DAR to calculate
|
||||
// 3D view vectors, then reapplies the aspect ratio to the simulated CRT in
|
||||
// uv-space. To ensure the source SAR is intended for a ~4:3 DAR, either:
|
||||
// a.) Enable Retroarch's "Crop Overscan"
|
||||
// b.) Readd horizontal padding: Set overscan to e.g. N*(1.0, 240.0/224.0)
|
||||
// Real consoles use horizontal black padding in the signal, but emulators
|
||||
// often crop this without cropping the vertical padding; a 256x224 [S]NES
|
||||
// frame (8:7 SAR) is intended for a ~4:3 DAR, but a 256x240 frame is not.
|
||||
// The correct [S]NES PAR is 54:47, found by blargg and NewRisingSun:
|
||||
// http://board.zsnes.com/phpBB3/viewtopic.php?f=22&t=11928&start=50
|
||||
// http://forums.nesdev.com/viewtopic.php?p=24815#p24815
|
||||
// For flat output, it's okay to set DAR = [existing] SAR * [correct] PAR
|
||||
// without doing a. or b., but horizontal image borders will be tighter
|
||||
// than vertical ones, messing up curvature and overscan. Fixing the
|
||||
// padding first corrects this.
|
||||
// Overscan: Amount to "zoom in" before cropping. You can zoom uniformly
|
||||
// or adjust x/y independently to e.g. readd horizontal padding, as noted
|
||||
// above: Values < 1.0 zoom out; range (0, inf)
|
||||
static const float2 geom_overscan_static = float2(1.0, 1.0);// * 1.005 * (1.0, 240/224.0)
|
||||
// Compute a proper pixel-space to texture-space matrix even without ddx()/
|
||||
// ddy()? This is ~8.5% slower but improves antialiasing/subpixel filtering
|
||||
// with strong curvature (static option only for now).
|
||||
static const bool geom_force_correct_tangent_matrix = true;
|
||||
|
||||
// BORDERS:
|
||||
// Rounded border size in texture uv coords:
|
||||
static const float border_size_static = 0.015; // range [0, 0.5]
|
||||
// Border darkness: Moderate values darken the border smoothly, and high
|
||||
// values make the image very dark just inside the border:
|
||||
static const float border_darkness_static = 2.0; // range [0, inf)
|
||||
// Border compression: High numbers compress border transitions, narrowing
|
||||
// the dark border area.
|
||||
static const float border_compress_static = 2.5; // range [1, inf)
|
||||
|
||||
|
||||
#endif // USER_SETTINGS_H
|
||||
|
359
crt/shaders/crt-royale/crt-royale-settings-files/user-settings.h
Normal file
|
@ -0,0 +1,359 @@
|
|||
#ifndef USER_SETTINGS_H
|
||||
#define USER_SETTINGS_H
|
||||
|
||||
///////////////////////////// DRIVER CAPABILITIES ////////////////////////////
|
||||
|
||||
// The Cg compiler uses different "profiles" with different capabilities.
|
||||
// This shader requires a Cg compilation profile >= arbfp1, but a few options
|
||||
// require higher profiles like fp30 or fp40. The shader can't detect profile
|
||||
// or driver capabilities, so instead you must comment or uncomment the lines
|
||||
// below with "//" before "#define." Disable an option if you get compilation
|
||||
// errors resembling those listed. Generally speaking, all of these options
|
||||
// will run on nVidia cards, but only DRIVERS_ALLOW_TEX2DBIAS (if that) is
|
||||
// likely to run on ATI/AMD, due to the Cg compiler's profile limitations.
|
||||
|
||||
// Derivatives: Unsupported on fp20, ps_1_1, ps_1_2, ps_1_3, and arbfp1.
|
||||
// Among other things, derivatives help us fix anisotropic filtering artifacts
|
||||
// with curved manually tiled phosphor mask coords. Related errors:
|
||||
// error C3004: function "float2 ddx(float2);" not supported in this profile
|
||||
// error C3004: function "float2 ddy(float2);" not supported in this profile
|
||||
//#define DRIVERS_ALLOW_DERIVATIVES
|
||||
|
||||
// Fine derivatives: Unsupported on older ATI cards.
|
||||
// Fine derivatives enable 2x2 fragment block communication, letting us perform
|
||||
// fast single-pass blur operations. If your card uses coarse derivatives and
|
||||
// these are enabled, blurs could look broken. Derivatives are a prerequisite.
|
||||
#ifdef DRIVERS_ALLOW_DERIVATIVES
|
||||
#define DRIVERS_ALLOW_FINE_DERIVATIVES
|
||||
#endif
|
||||
|
||||
// Dynamic looping: Requires an fp30 or newer profile.
|
||||
// This makes phosphor mask resampling faster in some cases. Related errors:
|
||||
// error C5013: profile does not support "for" statements and "for" could not
|
||||
// be unrolled
|
||||
//#define DRIVERS_ALLOW_DYNAMIC_BRANCHES
|
||||
|
||||
// Without DRIVERS_ALLOW_DYNAMIC_BRANCHES, we need to use unrollable loops.
|
||||
// Using one static loop avoids overhead if the user is right, but if the user
|
||||
// is wrong (loops are allowed), breaking a loop into if-blocked pieces with a
|
||||
// binary search can potentially save some iterations. However, it may fail:
|
||||
// error C6001: Temporary register limit of 32 exceeded; 35 registers
|
||||
// needed to compile program
|
||||
//#define ACCOMODATE_POSSIBLE_DYNAMIC_LOOPS
|
||||
|
||||
// tex2Dlod: Requires an fp40 or newer profile. This can be used to disable
|
||||
// anisotropic filtering, thereby fixing related artifacts. Related errors:
|
||||
// error C3004: function "float4 tex2Dlod(sampler2D, float4);" not supported in
|
||||
// this profile
|
||||
//#define DRIVERS_ALLOW_TEX2DLOD
|
||||
|
||||
// tex2Dbias: Requires an fp30 or newer profile. This can be used to alleviate
|
||||
// artifacts from anisotropic filtering and mipmapping. Related errors:
|
||||
// error C3004: function "float4 tex2Dbias(sampler2D, float4);" not supported
|
||||
// in this profile
|
||||
//#define DRIVERS_ALLOW_TEX2DBIAS
|
||||
|
||||
// Integrated graphics compatibility: Integrated graphics like Intel HD 4000
|
||||
// impose stricter limitations on register counts and instructions. Enable
|
||||
// INTEGRATED_GRAPHICS_COMPATIBILITY_MODE if you still see error C6001 or:
|
||||
// error C6002: Instruction limit of 1024 exceeded: 1523 instructions needed
|
||||
// to compile program.
|
||||
// Enabling integrated graphics compatibility mode will automatically disable:
|
||||
// 1.) PHOSPHOR_MASK_MANUALLY_RESIZE: The phosphor mask will be softer.
|
||||
// (This may be reenabled in a later release.)
|
||||
// 2.) RUNTIME_GEOMETRY_MODE
|
||||
// 3.) The high-quality 4x4 Gaussian resize for the bloom approximation
|
||||
//#define INTEGRATED_GRAPHICS_COMPATIBILITY_MODE
|
||||
|
||||
|
||||
//////////////////////////// USER CODEPATH OPTIONS ///////////////////////////
|
||||
|
||||
// To disable a #define option, turn its line into a comment with "//."
|
||||
|
||||
// RUNTIME VS. COMPILE-TIME OPTIONS (Major Performance Implications):
|
||||
// Enable runtime shader parameters in the Retroarch (etc.) GUI? They override
|
||||
// many of the options in this file and allow real-time tuning, but many of
|
||||
// them are slower. Disabling them and using this text file will boost FPS.
|
||||
#define RUNTIME_SHADER_PARAMS_ENABLE
|
||||
// Specify the phosphor bloom sigma at runtime? This option is 10% slower, but
|
||||
// it's the only way to do a wide-enough full bloom with a runtime dot pitch.
|
||||
#define RUNTIME_PHOSPHOR_BLOOM_SIGMA
|
||||
// Specify antialiasing weight parameters at runtime? (Costs ~20% with cubics)
|
||||
#define RUNTIME_ANTIALIAS_WEIGHTS
|
||||
// Specify subpixel offsets at runtime? (WARNING: EXTREMELY EXPENSIVE!)
|
||||
//#define RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS
|
||||
// Make beam_horiz_filter and beam_horiz_linear_rgb_weight into runtime shader
|
||||
// parameters? This will require more math or dynamic branching.
|
||||
#define RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE
|
||||
// Specify the tilt at runtime? This makes things about 3% slower.
|
||||
#define RUNTIME_GEOMETRY_TILT
|
||||
// Specify the geometry mode at runtime?
|
||||
#define RUNTIME_GEOMETRY_MODE
|
||||
// Specify the phosphor mask type (aperture grille, slot mask, shadow mask) and
|
||||
// mode (Lanczos-resize, hardware resize, or tile 1:1) at runtime, even without
|
||||
// dynamic branches? This is cheap if mask_resize_viewport_scale is small.
|
||||
#define FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
|
||||
|
||||
// PHOSPHOR MASK:
|
||||
// Manually resize the phosphor mask for best results (slower)? Disabling this
|
||||
// removes the option to do so, but it may be faster without dynamic branches.
|
||||
#define PHOSPHOR_MASK_MANUALLY_RESIZE
|
||||
// If we sinc-resize the mask, should we Lanczos-window it (slower but better)?
|
||||
#define PHOSPHOR_MASK_RESIZE_LANCZOS_WINDOW
|
||||
// Larger blurs are expensive, but we need them to blur larger triads. We can
|
||||
// detect the right blur if the triad size is static or our profile allows
|
||||
// dynamic branches, but otherwise we use the largest blur the user indicates
|
||||
// they might need:
|
||||
#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_3_PIXELS
|
||||
//#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_6_PIXELS
|
||||
//#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_9_PIXELS
|
||||
//#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_12_PIXELS
|
||||
// Here's a helpful chart:
|
||||
// MaxTriadSize BlurSize MinTriadCountsByResolution
|
||||
// 3.0 9.0 480/640/960/1920 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
|
||||
// 6.0 17.0 240/320/480/960 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
|
||||
// 9.0 25.0 160/213/320/640 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
|
||||
// 12.0 31.0 120/160/240/480 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
|
||||
// 18.0 43.0 80/107/160/320 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
|
||||
|
||||
|
||||
/////////////////////////////// USER PARAMETERS //////////////////////////////
|
||||
|
||||
// Note: Many of these static parameters are overridden by runtime shader
|
||||
// parameters when those are enabled. However, many others are static codepath
|
||||
// options that were cleaner or more convert to code as static constants.
|
||||
|
||||
// GAMMA:
|
||||
static const float crt_gamma_static = 2.5; // range [1, 5]
|
||||
static const float lcd_gamma_static = 2.2; // range [1, 5]
|
||||
|
||||
// LEVELS MANAGEMENT:
|
||||
// Control the final multiplicative image contrast:
|
||||
static const float levels_contrast_static = 1.0; // range [0, 4)
|
||||
// We auto-dim to avoid clipping between passes and restore brightness
|
||||
// later. Control the dim factor here: Lower values clip less but crush
|
||||
// blacks more (static only for now).
|
||||
static const float levels_autodim_temp = 0.5; // range (0, 1]
|
||||
|
||||
// HALATION/DIFFUSION/BLOOM:
|
||||
// Halation weight: How much energy should be lost to electrons bounding
|
||||
// around under the CRT glass and exciting random phosphors?
|
||||
static const float halation_weight_static = 0.0; // range [0, 1]
|
||||
// Refractive diffusion weight: How much light should spread/diffuse from
|
||||
// refracting through the CRT glass?
|
||||
static const float diffusion_weight_static = 0.075; // range [0, 1]
|
||||
// Underestimate brightness: Bright areas bloom more, but we can base the
|
||||
// bloom brightpass on a lower brightness to sharpen phosphors, or a higher
|
||||
// brightness to soften them. Low values clip, but >= 0.8 looks okay.
|
||||
static const float bloom_underestimate_levels_static = 0.8; // range [0, 5]
|
||||
// Blur all colors more than necessary for a softer phosphor bloom?
|
||||
static const float bloom_excess_static = 0.0; // range [0, 1]
|
||||
// The BLOOM_APPROX pass approximates a phosphor blur early on with a small
|
||||
// blurred resize of the input (convergence offsets are applied as well).
|
||||
// There are three filter options (static option only for now):
|
||||
// 0.) Bilinear resize: A fast, close approximation to a 4x4 resize
|
||||
// if min_allowed_viewport_triads and the BLOOM_APPROX resolution are sane
|
||||
// and beam_max_sigma is low.
|
||||
// 1.) 3x3 resize blur: Medium speed, soft/smeared from bilinear blurring,
|
||||
// always uses a static sigma regardless of beam_max_sigma or
|
||||
// mask_num_triads_desired.
|
||||
// 2.) True 4x4 Gaussian resize: Slowest, technically correct.
|
||||
// These options are more pronounced for the fast, unbloomed shader version.
|
||||
static const float bloom_approx_filter_static = 2.0;
|
||||
|
||||
// ELECTRON BEAM SCANLINE DISTRIBUTION:
|
||||
// How many scanlines should contribute light to each pixel? Using more
|
||||
// scanlines is slower (especially for a generalized Gaussian) but less
|
||||
// distorted with larger beam sigmas (especially for a pure Gaussian). The
|
||||
// max_beam_sigma at which the closest unused weight is guaranteed <
|
||||
// 1.0/255.0 (for a 3x antialiased pure Gaussian) is:
|
||||
// 2 scanlines: max_beam_sigma = 0.2089; distortions begin ~0.34; 141.7 FPS pure, 131.9 FPS generalized
|
||||
// 3 scanlines, max_beam_sigma = 0.3879; distortions begin ~0.52; 137.5 FPS pure; 123.8 FPS generalized
|
||||
// 4 scanlines, max_beam_sigma = 0.5723; distortions begin ~0.70; 134.7 FPS pure; 117.2 FPS generalized
|
||||
// 5 scanlines, max_beam_sigma = 0.7591; distortions begin ~0.89; 131.6 FPS pure; 112.1 FPS generalized
|
||||
// 6 scanlines, max_beam_sigma = 0.9483; distortions begin ~1.08; 127.9 FPS pure; 105.6 FPS generalized
|
||||
static const float beam_num_scanlines = 3.0; // range [2, 6]
|
||||
// A generalized Gaussian beam varies shape with color too, now just width.
|
||||
// It's slower but more flexible (static option only for now).
|
||||
static const bool beam_generalized_gaussian = true;
|
||||
// What kind of scanline antialiasing do you want?
|
||||
// 0: Sample weights at 1x; 1: Sample weights at 3x; 2: Compute an integral
|
||||
// Integrals are slow (especially for generalized Gaussians) and rarely any
|
||||
// better than 3x antialiasing (static option only for now).
|
||||
static const float beam_antialias_level = 1.0; // range [0, 2]
|
||||
// Min/max standard deviations for scanline beams: Higher values widen and
|
||||
// soften scanlines. Depending on other options, low min sigmas can alias.
|
||||
static const float beam_min_sigma_static = 0.02; // range (0, 1]
|
||||
static const float beam_max_sigma_static = 0.3; // range (0, 1]
|
||||
// Beam width varies as a function of color: A power function (0) is more
|
||||
// configurable, but a spherical function (1) gives the widest beam
|
||||
// variability without aliasing (static option only for now).
|
||||
static const float beam_spot_shape_function = 0.0;
|
||||
// Spot shape power: Powers <= 1 give smoother spot shapes but lower
|
||||
// sharpness. Powers >= 1.0 are awful unless mix/max sigmas are close.
|
||||
static const float beam_spot_power_static = 1.0/3.0; // range (0, 16]
|
||||
// Generalized Gaussian max shape parameters: Higher values give flatter
|
||||
// scanline plateaus and steeper dropoffs, simultaneously widening and
|
||||
// sharpening scanlines at the cost of aliasing. 2.0 is pure Gaussian, and
|
||||
// values > ~40.0 cause artifacts with integrals.
|
||||
static const float beam_min_shape_static = 2.0; // range [2, 32]
|
||||
static const float beam_max_shape_static = 4.0; // range [2, 32]
|
||||
// Generalized Gaussian shape power: Affects how quickly the distribution
|
||||
// changes shape from Gaussian to steep/plateaued as color increases from 0
|
||||
// to 1.0. Higher powers appear softer for most colors, and lower powers
|
||||
// appear sharper for most colors.
|
||||
static const float beam_shape_power_static = 1.0/4.0; // range (0, 16]
|
||||
// What filter should be used to sample scanlines horizontally?
|
||||
// 0: Quilez (fast), 1: Gaussian (configurable), 2: Lanczos2 (sharp)
|
||||
static const float beam_horiz_filter_static = 0.0;
|
||||
// Standard deviation for horizontal Gaussian resampling:
|
||||
static const float beam_horiz_sigma_static = 0.35; // range (0, 2/3]
|
||||
// Do horizontal scanline sampling in linear RGB (correct light mixing),
|
||||
// gamma-encoded RGB (darker, hard spot shape, may better match bandwidth-
|
||||
// limiting circuitry in some CRT's), or a weighted avg.?
|
||||
static const float beam_horiz_linear_rgb_weight_static = 1.0; // range [0, 1]
|
||||
// Simulate scanline misconvergence? This needs 3x horizontal texture
|
||||
// samples and 3x texture samples of BLOOM_APPROX and HALATION_BLUR in
|
||||
// later passes (static option only for now).
|
||||
static const bool beam_misconvergence = true;
|
||||
// Convergence offsets in x/y directions for R/G/B scanline beams in units
|
||||
// of scanlines. Positive offsets go right/down; ranges [-2, 2]
|
||||
static const float2 convergence_offsets_r_static = float2(0.1, 0.2);
|
||||
static const float2 convergence_offsets_g_static = float2(0.3, 0.4);
|
||||
static const float2 convergence_offsets_b_static = float2(0.5, 0.6);
|
||||
// Detect interlacing (static option only for now)?
|
||||
static const bool interlace_detect = true;
|
||||
// Assume 1080-line sources are interlaced?
|
||||
static const bool interlace_1080i_static = false;
|
||||
// For interlaced sources, assume TFF (top-field first) or BFF order?
|
||||
// (Whether this matters depends on the nature of the interlaced input.)
|
||||
static const bool interlace_bff_static = false;
|
||||
|
||||
// ANTIALIASING:
|
||||
// What AA level do you want for curvature/overscan/subpixels? Options:
|
||||
// 0x (none), 1x (sample subpixels), 4x, 5x, 6x, 7x, 8x, 12x, 16x, 20x, 24x
|
||||
// (Static option only for now)
|
||||
static const float aa_level = 12.0; // range [0, 24]
|
||||
// What antialiasing filter do you want (static option only)? Options:
|
||||
// 0: Box (separable), 1: Box (cylindrical),
|
||||
// 2: Tent (separable), 3: Tent (cylindrical),
|
||||
// 4: Gaussian (separable), 5: Gaussian (cylindrical),
|
||||
// 6: Cubic* (separable), 7: Cubic* (cylindrical, poor)
|
||||
// 8: Lanczos Sinc (separable), 9: Lanczos Jinc (cylindrical, poor)
|
||||
// * = Especially slow with RUNTIME_ANTIALIAS_WEIGHTS
|
||||
static const float aa_filter = 6.0; // range [0, 9]
|
||||
// Flip the sample grid on odd/even frames (static option only for now)?
|
||||
static const bool aa_temporal = false;
|
||||
// Use RGB subpixel offsets for antialiasing? The pixel is at green, and
|
||||
// the blue offset is the negative r offset; range [0, 0.5]
|
||||
static const float2 aa_subpixel_r_offset_static = float2(-1.0/3.0, 0.0);//float2(0.0);
|
||||
// Cubics: See http://www.imagemagick.org/Usage/filter/#mitchell
|
||||
// 1.) "Keys cubics" with B = 1 - 2C are considered the highest quality.
|
||||
// 2.) C = 0.5 (default) is Catmull-Rom; higher C's apply sharpening.
|
||||
// 3.) C = 1.0/3.0 is the Mitchell-Netravali filter.
|
||||
// 4.) C = 0.0 is a soft spline filter.
|
||||
static const float aa_cubic_c_static = 0.5; // range [0, 4]
|
||||
// Standard deviation for Gaussian antialiasing: Try 0.5/aa_pixel_diameter.
|
||||
static const float aa_gauss_sigma_static = 0.5; // range [0.0625, 1.0]
|
||||
|
||||
// PHOSPHOR MASK:
|
||||
// Mask type: 0 = aperture grille, 1 = slot mask, 2 = EDP shadow mask
|
||||
static const float mask_type_static = 1.0; // range [0, 2]
|
||||
// We can sample the mask three ways. Pick 2/3 from: Pretty/Fast/Flexible.
|
||||
// 0.) Sinc-resize to the desired dot pitch manually (pretty/slow/flexible).
|
||||
// This requires PHOSPHOR_MASK_MANUALLY_RESIZE to be #defined.
|
||||
// 1.) Hardware-resize to the desired dot pitch (ugly/fast/flexible). This
|
||||
// is halfway decent with LUT mipmapping but atrocious without it.
|
||||
// 2.) Tile it without resizing at a 1:1 texel:pixel ratio for flat coords
|
||||
// (pretty/fast/inflexible). Each input LUT has a fixed dot pitch.
|
||||
// This mode reuses the same masks, so triads will be enormous unless
|
||||
// you change the mask LUT filenames in your .cgp file.
|
||||
static const float mask_sample_mode_static = 0.0; // range [0, 2]
|
||||
// Prefer setting the triad size (0.0) or number on the screen (1.0)?
|
||||
// If RUNTIME_PHOSPHOR_BLOOM_SIGMA isn't #defined, the specified triad size
|
||||
// will always be used to calculate the full bloom sigma statically.
|
||||
static const float mask_specify_num_triads_static = 0.0; // range [0, 1]
|
||||
// Specify the phosphor triad size, in pixels. Each tile (usually with 8
|
||||
// triads) will be rounded to the nearest integer tile size and clamped to
|
||||
// obey minimum size constraints (imposed to reduce downsize taps) and
|
||||
// maximum size constraints (imposed to have a sane MASK_RESIZE FBO size).
|
||||
// To increase the size limit, double the viewport-relative scales for the
|
||||
// two MASK_RESIZE passes in crt-royale.cgp and user-cgp-contants.h.
|
||||
// range [1, mask_texture_small_size/mask_triads_per_tile]
|
||||
static const float mask_triad_size_desired_static = 24.0 / 8.0;
|
||||
// If mask_specify_num_triads is 1.0/true, we'll go by this instead (the
|
||||
// final size will be rounded and constrained as above); default 480.0
|
||||
static const float mask_num_triads_desired_static = 480.0;
|
||||
// How many lobes should the sinc/Lanczos resizer use? More lobes require
|
||||
// more samples and avoid moire a bit better, but some is unavoidable
|
||||
// depending on the destination size (static option for now).
|
||||
static const float mask_sinc_lobes = 3.0; // range [2, 4]
|
||||
// The mask is resized using a variable number of taps in each dimension,
|
||||
// but some Cg profiles always fetch a constant number of taps no matter
|
||||
// what (no dynamic branching). We can limit the maximum number of taps if
|
||||
// we statically limit the minimum phosphor triad size. Larger values are
|
||||
// faster, but the limit IS enforced (static option only, forever);
|
||||
// range [1, mask_texture_small_size/mask_triads_per_tile]
|
||||
// TODO: Make this 1.0 and compensate with smarter sampling!
|
||||
static const float mask_min_allowed_triad_size = 2.0;
|
||||
|
||||
// GEOMETRY:
|
||||
// Geometry mode:
|
||||
// 0: Off (default), 1: Spherical mapping (like cgwg's),
|
||||
// 2: Alt. spherical mapping (more bulbous), 3: Cylindrical/Trinitron
|
||||
static const float geom_mode_static = 0.0; // range [0, 3]
|
||||
// Radius of curvature: Measured in units of your viewport's diagonal size.
|
||||
static const float geom_radius_static = 2.0; // range [1/(2*pi), 1024]
|
||||
// View dist is the distance from the player to their physical screen, in
|
||||
// units of the viewport's diagonal size. It controls the field of view.
|
||||
static const float geom_view_dist_static = 2.0; // range [0.5, 1024]
|
||||
// Tilt angle in radians (clockwise around up and right vectors):
|
||||
static const float2 geom_tilt_angle_static = float2(0.0, 0.0); // range [-pi, pi]
|
||||
// Aspect ratio: When the true viewport size is unknown, this value is used
|
||||
// to help convert between the phosphor triad size and count, along with
|
||||
// the mask_resize_viewport_scale constant from user-cgp-constants.h. Set
|
||||
// this equal to Retroarch's display aspect ratio (DAR) for best results;
|
||||
// range [1, geom_max_aspect_ratio from user-cgp-constants.h];
|
||||
// default (256/224)*(54/47) = 1.313069909 (see below)
|
||||
static const float geom_aspect_ratio_static = 1.313069909;
|
||||
// Before getting into overscan, here's some general aspect ratio info:
|
||||
// - DAR = display aspect ratio = SAR * PAR; as in your Retroarch setting
|
||||
// - SAR = storage aspect ratio = DAR / PAR; square pixel emulator frame AR
|
||||
// - PAR = pixel aspect ratio = DAR / SAR; holds regardless of cropping
|
||||
// Geometry processing has to "undo" the screen-space 2D DAR to calculate
|
||||
// 3D view vectors, then reapplies the aspect ratio to the simulated CRT in
|
||||
// uv-space. To ensure the source SAR is intended for a ~4:3 DAR, either:
|
||||
// a.) Enable Retroarch's "Crop Overscan"
|
||||
// b.) Readd horizontal padding: Set overscan to e.g. N*(1.0, 240.0/224.0)
|
||||
// Real consoles use horizontal black padding in the signal, but emulators
|
||||
// often crop this without cropping the vertical padding; a 256x224 [S]NES
|
||||
// frame (8:7 SAR) is intended for a ~4:3 DAR, but a 256x240 frame is not.
|
||||
// The correct [S]NES PAR is 54:47, found by blargg and NewRisingSun:
|
||||
// http://board.zsnes.com/phpBB3/viewtopic.php?f=22&t=11928&start=50
|
||||
// http://forums.nesdev.com/viewtopic.php?p=24815#p24815
|
||||
// For flat output, it's okay to set DAR = [existing] SAR * [correct] PAR
|
||||
// without doing a. or b., but horizontal image borders will be tighter
|
||||
// than vertical ones, messing up curvature and overscan. Fixing the
|
||||
// padding first corrects this.
|
||||
// Overscan: Amount to "zoom in" before cropping. You can zoom uniformly
|
||||
// or adjust x/y independently to e.g. readd horizontal padding, as noted
|
||||
// above: Values < 1.0 zoom out; range (0, inf)
|
||||
static const float2 geom_overscan_static = float2(1.0, 1.0);// * 1.005 * (1.0, 240/224.0)
|
||||
// Compute a proper pixel-space to texture-space matrix even without ddx()/
|
||||
// ddy()? This is ~8.5% slower but improves antialiasing/subpixel filtering
|
||||
// with strong curvature (static option only for now).
|
||||
static const bool geom_force_correct_tangent_matrix = true;
|
||||
|
||||
// BORDERS:
|
||||
// Rounded border size in texture uv coords:
|
||||
static const float border_size_static = 0.015; // range [0, 0.5]
|
||||
// Border darkness: Moderate values darken the border smoothly, and high
|
||||
// values make the image very dark just inside the border:
|
||||
static const float border_darkness_static = 2.0; // range [0, inf)
|
||||
// Border compression: High numbers compress border transitions, narrowing
|
||||
// the dark border area.
|
||||
static const float border_compress_static = 2.5; // range [1, inf)
|
||||
|
||||
|
||||
#endif // USER_SETTINGS_H
|
||||
|
247
crt/shaders/crt-royale/src/bind-shader-params.h
Normal file
|
@ -0,0 +1,247 @@
|
|||
#ifndef BIND_SHADER_PARAMS_H
|
||||
#define BIND_SHADER_PARAMS_H
|
||||
|
||||
///////////////////////////// GPL LICENSE NOTICE /////////////////////////////
|
||||
|
||||
// crt-royale: A full-featured CRT shader, with cheese.
|
||||
// Copyright (C) 2014 TroggleMonkey <trogglemonkey@gmx.com>
|
||||
//
|
||||
// This program is free software; you can redistribute it and/or modify it
|
||||
// under the terms of the GNU General Public License as published by the Free
|
||||
// Software Foundation; either version 2 of the License, or any later version.
|
||||
//
|
||||
// This program is distributed in the hope that it will be useful, but WITHOUT
|
||||
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
||||
// more details.
|
||||
//
|
||||
// You should have received a copy of the GNU General Public License along with
|
||||
// this program; if not, write to the Free Software Foundation, Inc., 59 Temple
|
||||
// Place, Suite 330, Boston, MA 02111-1307 USA
|
||||
|
||||
|
||||
///////////////////////////// SETTINGS MANAGEMENT ////////////////////////////
|
||||
|
||||
#include "../user-settings.h"
|
||||
#include "derived-settings-and-constants.h"
|
||||
|
||||
// Override some parameters for gamma-management.h and tex2Dantialias.h:
|
||||
#define OVERRIDE_DEVICE_GAMMA
|
||||
const float gba_gamma = 3.5; // Irrelevant but necessary to define.
|
||||
#define ANTIALIAS_OVERRIDE_BASICS
|
||||
#define ANTIALIAS_OVERRIDE_PARAMETERS
|
||||
|
||||
// Disable runtime shader params if the user doesn't explicitly want them.
|
||||
// Static constants will be defined in place of uniforms of the same name.
|
||||
#ifndef RUNTIME_SHADER_PARAMS_ENABLE
|
||||
#undef PARAMETER_UNIFORM
|
||||
#endif
|
||||
|
||||
// Bind option names to shader parameter uniforms or static constants.
|
||||
#ifdef PARAMETER_UNIFORM
|
||||
uniform float crt_gamma;
|
||||
uniform float lcd_gamma;
|
||||
uniform float levels_contrast;
|
||||
uniform float halation_weight;
|
||||
uniform float diffusion_weight;
|
||||
uniform float bloom_underestimate_levels;
|
||||
uniform float bloom_excess;
|
||||
uniform float beam_min_sigma;
|
||||
uniform float beam_max_sigma;
|
||||
uniform float beam_spot_power;
|
||||
uniform float beam_min_shape;
|
||||
uniform float beam_max_shape;
|
||||
uniform float beam_shape_power;
|
||||
uniform float beam_horiz_sigma;
|
||||
#ifdef RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE
|
||||
uniform float beam_horiz_filter;
|
||||
uniform float beam_horiz_linear_rgb_weight;
|
||||
#else
|
||||
const float beam_horiz_filter = clamp(beam_horiz_filter_static, 0.0, 2.0);
|
||||
const float beam_horiz_linear_rgb_weight = clamp(beam_horiz_linear_rgb_weight_static, 0.0, 1.0);
|
||||
#endif
|
||||
uniform float convergence_offset_x_r;
|
||||
uniform float convergence_offset_x_g;
|
||||
uniform float convergence_offset_x_b;
|
||||
uniform float convergence_offset_y_r;
|
||||
uniform float convergence_offset_y_g;
|
||||
uniform float convergence_offset_y_b;
|
||||
#ifdef RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
|
||||
uniform float mask_type;
|
||||
#else
|
||||
const float mask_type = clamp(mask_type_static, 0.0, 2.0);
|
||||
#endif
|
||||
uniform float mask_sample_mode_desired;
|
||||
uniform float mask_specify_num_triads;
|
||||
uniform float mask_triad_size_desired;
|
||||
uniform float mask_num_triads_desired;
|
||||
uniform float aa_subpixel_r_offset_x_runtime;
|
||||
uniform float aa_subpixel_r_offset_y_runtime;
|
||||
#ifdef RUNTIME_ANTIALIAS_WEIGHTS
|
||||
uniform float aa_cubic_c;
|
||||
uniform float aa_gauss_sigma;
|
||||
#else
|
||||
const float aa_cubic_c = aa_cubic_c_static; // Clamp to [0, 4]?
|
||||
const float aa_gauss_sigma = max(FIX_ZERO(0.0), aa_gauss_sigma_static); // Clamp to [FIXZERO(0), 1]?
|
||||
#endif
|
||||
uniform float geom_mode_runtime;
|
||||
uniform float geom_radius;
|
||||
uniform float geom_view_dist;
|
||||
uniform float geom_tilt_angle_x;
|
||||
uniform float geom_tilt_angle_y;
|
||||
uniform float geom_aspect_ratio_x;
|
||||
uniform float geom_aspect_ratio_y;
|
||||
uniform float geom_overscan_x;
|
||||
uniform float geom_overscan_y;
|
||||
uniform float border_size;
|
||||
uniform float border_darkness;
|
||||
uniform float border_compress;
|
||||
uniform float interlace_bff;
|
||||
uniform float interlace_1080i;
|
||||
#else
|
||||
// Use constants from user-settings.h, and limit ranges appropriately:
|
||||
const float crt_gamma = max(0.0, crt_gamma_static);
|
||||
const float lcd_gamma = max(0.0, lcd_gamma_static);
|
||||
const float levels_contrast = clamp(levels_contrast_static, 0.0, 4.0);
|
||||
const float halation_weight = clamp(halation_weight_static, 0.0, 1.0);
|
||||
const float diffusion_weight = clamp(diffusion_weight_static, 0.0, 1.0);
|
||||
const float bloom_underestimate_levels = max(FIX_ZERO(0.0), bloom_underestimate_levels_static);
|
||||
const float bloom_excess = clamp(bloom_excess_static, 0.0, 1.0);
|
||||
const float beam_min_sigma = max(FIX_ZERO(0.0), beam_min_sigma_static);
|
||||
const float beam_max_sigma = max(beam_min_sigma, beam_max_sigma_static);
|
||||
const float beam_spot_power = max(beam_spot_power_static, 0.0);
|
||||
const float beam_min_shape = max(2.0, beam_min_shape_static);
|
||||
const float beam_max_shape = max(beam_min_shape, beam_max_shape_static);
|
||||
const float beam_shape_power = max(0.0, beam_shape_power_static);
|
||||
const float beam_horiz_filter = clamp(beam_horiz_filter_static, 0.0, 2.0);
|
||||
const float beam_horiz_sigma = max(FIX_ZERO(0.0), beam_horiz_sigma_static);
|
||||
const float beam_horiz_linear_rgb_weight = clamp(beam_horiz_linear_rgb_weight_static, 0.0, 1.0);
|
||||
// Unpack vector elements to match scalar uniforms:
|
||||
const float convergence_offset_x_r = clamp(convergence_offsets_r_static.x, -4.0, 4.0);
|
||||
const float convergence_offset_x_g = clamp(convergence_offsets_g_static.x, -4.0, 4.0);
|
||||
const float convergence_offset_x_b = clamp(convergence_offsets_b_static.x, -4.0, 4.0);
|
||||
const float convergence_offset_y_r = clamp(convergence_offsets_r_static.y, -4.0, 4.0);
|
||||
const float convergence_offset_y_g = clamp(convergence_offsets_g_static.y, -4.0, 4.0);
|
||||
const float convergence_offset_y_b = clamp(convergence_offsets_b_static.y, -4.0, 4.0);
|
||||
const float mask_type = clamp(mask_type_static, 0.0, 2.0);
|
||||
const float mask_sample_mode_desired = clamp(mask_sample_mode_static, 0.0, 2.0);
|
||||
const float mask_specify_num_triads = clamp(mask_specify_num_triads_static, 0.0, 1.0);
|
||||
const float mask_triad_size_desired = clamp(mask_triad_size_desired_static, 1.0, 18.0);
|
||||
const float mask_num_triads_desired = clamp(mask_num_triads_desired_static, 342.0, 1920.0);
|
||||
const float aa_subpixel_r_offset_x_runtime = clamp(aa_subpixel_r_offset_static.x, -0.5, 0.5);
|
||||
const float aa_subpixel_r_offset_y_runtime = clamp(aa_subpixel_r_offset_static.y, -0.5, 0.5);
|
||||
const float aa_cubic_c = aa_cubic_c_static; // Clamp to [0, 4]?
|
||||
const float aa_gauss_sigma = max(FIX_ZERO(0.0), aa_gauss_sigma_static); // Clamp to [FIXZERO(0), 1]?
|
||||
const float geom_mode_runtime = clamp(geom_mode_static, 0.0, 3.0);
|
||||
const float geom_radius = max(1.0/(2.0*pi), geom_radius_static); // Clamp to [1/(2*pi), 1024]?
|
||||
const float geom_view_dist = max(0.5, geom_view_dist_static); // Clamp to [0.5, 1024]?
|
||||
const float geom_tilt_angle_x = clamp(geom_tilt_angle_static.x, -pi, pi);
|
||||
const float geom_tilt_angle_y = clamp(geom_tilt_angle_static.y, -pi, pi);
|
||||
const float geom_aspect_ratio_x = geom_aspect_ratio_static; // Force >= 1?
|
||||
const float geom_aspect_ratio_y = 1.0;
|
||||
const float geom_overscan_x = max(FIX_ZERO(0.0), geom_overscan_static.x);
|
||||
const float geom_overscan_y = max(FIX_ZERO(0.0), geom_overscan_static.y);
|
||||
const float border_size = clamp(border_size_static, 0.0, 0.5); // 0.5 reaches to image center
|
||||
const float border_darkness = max(0.0, border_darkness_static);
|
||||
const float border_compress = max(1.0, border_compress_static); // < 1.0 darkens whole image
|
||||
const float interlace_bff = float(interlace_bff_static);
|
||||
const float interlace_1080i = float(interlace_1080i_static);
|
||||
#endif
|
||||
|
||||
|
||||
// Provide accessors for vector constants that pack scalar uniforms:
|
||||
vec2 get_aspect_vector(const float geom_aspect_ratio)
|
||||
{
|
||||
// Get an aspect ratio vector. Enforce geom_max_aspect_ratio, and prevent
|
||||
// the absolute scale from affecting the uv-mapping for curvature:
|
||||
const float geom_clamped_aspect_ratio =
|
||||
min(geom_aspect_ratio, geom_max_aspect_ratio);
|
||||
const vec2 geom_aspect =
|
||||
normalize(vec2(geom_clamped_aspect_ratio, 1.0));
|
||||
return geom_aspect;
|
||||
}
|
||||
|
||||
vec2 get_geom_overscan_vector()
|
||||
{
|
||||
return vec2(geom_overscan_x, geom_overscan_y);
|
||||
}
|
||||
|
||||
vec2 get_geom_tilt_angle_vector()
|
||||
{
|
||||
return vec2(geom_tilt_angle_x, geom_tilt_angle_y);
|
||||
}
|
||||
|
||||
vec3 get_convergence_offsets_x_vector()
|
||||
{
|
||||
return vec3(convergence_offset_x_r, convergence_offset_x_g,
|
||||
convergence_offset_x_b);
|
||||
}
|
||||
|
||||
vec3 get_convergence_offsets_y_vector()
|
||||
{
|
||||
return vec3(convergence_offset_y_r, convergence_offset_y_g,
|
||||
convergence_offset_y_b);
|
||||
}
|
||||
|
||||
vec2 get_convergence_offsets_r_vector()
|
||||
{
|
||||
return vec2(convergence_offset_x_r, convergence_offset_y_r);
|
||||
}
|
||||
|
||||
vec2 get_convergence_offsets_g_vector()
|
||||
{
|
||||
return vec2(convergence_offset_x_g, convergence_offset_y_g);
|
||||
}
|
||||
|
||||
vec2 get_convergence_offsets_b_vector()
|
||||
{
|
||||
return vec2(convergence_offset_x_b, convergence_offset_y_b);
|
||||
}
|
||||
|
||||
vec2 get_aa_subpixel_r_offset()
|
||||
{
|
||||
#ifdef RUNTIME_ANTIALIAS_WEIGHTS
|
||||
#ifdef RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS
|
||||
// WARNING: THIS IS EXTREMELY EXPENSIVE.
|
||||
return vec2(aa_subpixel_r_offset_x_runtime,
|
||||
aa_subpixel_r_offset_y_runtime);
|
||||
#else
|
||||
return aa_subpixel_r_offset_static;
|
||||
#endif
|
||||
#else
|
||||
return aa_subpixel_r_offset_static;
|
||||
#endif
|
||||
}
|
||||
|
||||
// Provide accessors settings which still need "cooking:"
|
||||
float get_mask_amplify()
|
||||
{
|
||||
const float mask_grille_amplify = 1.0/mask_grille_avg_color;
|
||||
const float mask_slot_amplify = 1.0/mask_slot_avg_color;
|
||||
const float mask_shadow_amplify = 1.0/mask_shadow_avg_color;
|
||||
return mask_type < 0.5 ? mask_grille_amplify :
|
||||
mask_type < 1.5 ? mask_slot_amplify :
|
||||
mask_shadow_amplify;
|
||||
}
|
||||
|
||||
float get_mask_sample_mode()
|
||||
{
|
||||
#ifdef RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
|
||||
#ifdef PHOSPHOR_MASK_MANUALLY_RESIZE
|
||||
return mask_sample_mode_desired;
|
||||
#else
|
||||
return clamp(mask_sample_mode_desired, 1.0, 2.0);
|
||||
#endif
|
||||
#else
|
||||
#ifdef PHOSPHOR_MASK_MANUALLY_RESIZE
|
||||
return mask_sample_mode_static;
|
||||
#else
|
||||
return clamp(mask_sample_mode_static, 1.0, 2.0);
|
||||
#endif
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
#endif // BIND_SHADER_PARAMS_H
|
||||
|
||||
|
|
@ -0,0 +1,403 @@
|
|||
#version 450
|
||||
|
||||
layout(push_constant) uniform Push
|
||||
{
|
||||
vec4 SourceSize;
|
||||
uint FrameCount;
|
||||
} registers;
|
||||
|
||||
layout(std140, set = 0, binding = 0) uniform UBO
|
||||
{
|
||||
mat4 MVP;
|
||||
float crt_gamma;
|
||||
float lcd_gamma;
|
||||
float levels_contrast;
|
||||
float halation_weight;
|
||||
float diffusion_weight;
|
||||
float bloom_underestimate_levels;
|
||||
float bloom_excess;
|
||||
float beam_min_sigma;
|
||||
float beam_max_sigma;
|
||||
float beam_spot_power;
|
||||
float beam_min_shape;
|
||||
float beam_max_shape;
|
||||
float beam_shape_power;
|
||||
float beam_horiz_filter;
|
||||
float beam_horiz_sigma;
|
||||
float beam_horiz_linear_rgb_weight;
|
||||
float convergence_offset_x_r;
|
||||
float convergence_offset_x_g;
|
||||
float convergence_offset_x_b;
|
||||
float convergence_offset_y_r;
|
||||
float convergence_offset_y_g;
|
||||
float convergence_offset_y_b;
|
||||
float mask_type;
|
||||
float mask_sample_mode_desired;
|
||||
float mask_specify_num_triads;
|
||||
float mask_triad_size_desired;
|
||||
float mask_num_triads_desired;
|
||||
float aa_subpixel_r_offset_x_runtime;
|
||||
float aa_subpixel_r_offset_y_runtime;
|
||||
float aa_cubic_c;
|
||||
float aa_gauss_sigma;
|
||||
float geom_mode_runtime;
|
||||
float geom_radius;
|
||||
float geom_view_dist;
|
||||
float geom_tilt_angle_x;
|
||||
float geom_tilt_angle_y;
|
||||
float geom_aspect_ratio_x;
|
||||
float geom_aspect_ratio_y;
|
||||
float geom_overscan_x;
|
||||
float geom_overscan_y;
|
||||
float border_size;
|
||||
float border_darkness;
|
||||
float border_compress;
|
||||
float interlace_bff;
|
||||
float interlace_1080i;
|
||||
} params;
|
||||
|
||||
///////////////////////////// GPL LICENSE NOTICE /////////////////////////////
|
||||
|
||||
// crt-royale: A full-featured CRT shader, with cheese.
|
||||
// Copyright (C) 2014 TroggleMonkey <trogglemonkey@gmx.com>
|
||||
//
|
||||
// This program is free software; you can redistribute it and/or modify it
|
||||
// under the terms of the GNU General Public License as published by the Free
|
||||
// Software Foundation; either version 2 of the License, or any later version.
|
||||
//
|
||||
// This program is distributed in the hope that it will be useful, but WITHOUT
|
||||
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
||||
// more details.
|
||||
//
|
||||
// You should have received a copy of the GNU General Public License along with
|
||||
// this program; if not, write to the Free Software Foundation, Inc., 59 Temple
|
||||
// Place, Suite 330, Boston, MA 02111-1307 USA
|
||||
|
||||
|
||||
///////////////////////////// SETTINGS MANAGEMENT ////////////////////////////
|
||||
|
||||
// PASS SETTINGS:
|
||||
// gamma-management.h needs to know what kind of pipeline we're using and
|
||||
// what pass this is in that pipeline. This will become obsolete if/when we
|
||||
// can #define things like this in the preset file.
|
||||
#define FIRST_PASS
|
||||
#define SIMULATE_CRT_ON_LCD
|
||||
|
||||
// Set shader params for all passes here:
|
||||
#pragma parameter crt_gamma "crt_gamma" 2.5 1.0 5.0 0.025
|
||||
#pragma parameter lcd_gamma "lcd_gamma" 2.2 1.0 5.0 0.025
|
||||
#pragma parameter levels_contrast "levels_contrast" 1.0 0.0 4.0 0.015625
|
||||
#pragma parameter halation_weight "halation_weight" 0.0 0.0 1.0 0.005
|
||||
#pragma parameter diffusion_weight "diffusion_weight" 0.075 0.0 1.0 0.005
|
||||
#pragma parameter bloom_underestimate_levels "bloom_underestimate_levels" 0.8 0.0 5.0 0.01
|
||||
#pragma parameter bloom_excess "bloom_excess" 0.0 0.0 1.0 0.005
|
||||
#pragma parameter beam_min_sigma "beam_min_sigma" 0.02 0.005 1.0 0.005
|
||||
#pragma parameter beam_max_sigma "beam_max_sigma" 0.3 0.005 1.0 0.005
|
||||
#pragma parameter beam_spot_power "beam_spot_power" 0.33 0.01 16.0 0.01
|
||||
#pragma parameter beam_min_shape "beam_min_shape" 2.0 2.0 32.0 0.1
|
||||
#pragma parameter beam_max_shape "beam_max_shape" 4.0 2.0 32.0 0.1
|
||||
#pragma parameter beam_shape_power "beam_shape_power" 0.25 0.01 16.0 0.01
|
||||
#pragma parameter beam_horiz_filter "beam_horiz_filter" 0.0 0.0 2.0 1.0
|
||||
#pragma parameter beam_horiz_sigma "beam_horiz_sigma" 0.35 0.0 0.67 0.005
|
||||
#pragma parameter beam_horiz_linear_rgb_weight "beam_horiz_linear_rgb_weight" 1.0 0.0 1.0 0.01
|
||||
#pragma parameter convergence_offset_x_r "convergence_offset_x_r" 0.0 -4.0 4.0 0.05
|
||||
#pragma parameter convergence_offset_x_g "convergence_offset_x_g" 0.0 -4.0 4.0 0.05
|
||||
#pragma parameter convergence_offset_x_b "convergence_offset_x_b" 0.0 -4.0 4.0 0.05
|
||||
#pragma parameter convergence_offset_y_r "convergence_offset_y_r" 0.0 -2.0 2.0 0.05
|
||||
#pragma parameter convergence_offset_y_g "convergence_offset_y_g" 0.0 -2.0 2.0 0.05
|
||||
#pragma parameter convergence_offset_y_b "convergence_offset_y_b" 0.0 -2.0 2.0 0.05
|
||||
#pragma parameter mask_type "mask_type" 1.0 0.0 2.0 1.0
|
||||
#pragma parameter mask_sample_mode_desired "mask_sample_mode" 0.0 0.0 2.0 1.0 // Consider blocking mode 2.
|
||||
#pragma parameter mask_specify_num_triads "mask_specify_num_triads" 0.0 0.0 1.0 1.0
|
||||
#pragma parameter mask_triad_size_desired "mask_triad_size_desired" 3.0 1.0 18.0 0.125
|
||||
#pragma parameter mask_num_triads_desired "mask_num_triads_desired" 480.0 342.0 1920.0 1.0
|
||||
#pragma parameter aa_subpixel_r_offset_x_runtime "aa_subpixel_r_offset_x" -0.333333333 -0.333333333 0.333333333 0.333333333
|
||||
#pragma parameter aa_subpixel_r_offset_y_runtime "aa_subpixel_r_offset_y" 0.0 -0.333333333 0.333333333 0.333333333
|
||||
#pragma parameter aa_cubic_c "antialias_cubic_sharpness" 0.5 0.0 4.0 0.015625
|
||||
#pragma parameter aa_gauss_sigma "antialias_gauss_sigma" 0.5 0.0625 1.0 0.015625
|
||||
#pragma parameter geom_mode_runtime "geom_mode" 0.0 0.0 3.0 1.0
|
||||
#pragma parameter geom_radius "geom_radius" 2.0 0.16 1024.0 0.1
|
||||
#pragma parameter geom_view_dist "geom_view_dist" 2.0 0.5 1024.0 0.25
|
||||
#pragma parameter geom_tilt_angle_x "geom_tilt_angle_x" 0.0 -3.14159265 3.14159265 0.017453292519943295
|
||||
#pragma parameter geom_tilt_angle_y "geom_tilt_angle_y" 0.0 -3.14159265 3.14159265 0.017453292519943295
|
||||
#pragma parameter geom_aspect_ratio_x "geom_aspect_ratio_x" 432.0 1.0 512.0 1.0
|
||||
#pragma parameter geom_aspect_ratio_y "geom_aspect_ratio_y" 329.0 1.0 512.0 1.0
|
||||
#pragma parameter geom_overscan_x "geom_overscan_x" 1.0 0.00390625 4.0 0.00390625
|
||||
#pragma parameter geom_overscan_y "geom_overscan_y" 1.0 0.00390625 4.0 0.00390625
|
||||
#pragma parameter border_size "border_size" 0.015 0.0000001 0.5 0.005
|
||||
#pragma parameter border_darkness "border_darkness" 2.0 0.0 16.0 0.0625
|
||||
#pragma parameter border_compress "border_compress" 2.5 1.0 64.0 0.0625
|
||||
#pragma parameter interlace_bff "interlace_bff" 0.0 0.0 1.0 1.0
|
||||
#pragma parameter interlace_1080i "interlace_1080i" 0.0 0.0 1.0 1.0
|
||||
|
||||
////////////////////////////////// INCLUDES //////////////////////////////////
|
||||
|
||||
#include "../user-settings.h"
|
||||
#include "bind-shader-params.h"
|
||||
//#include "../../../../include/gamma-management.h"
|
||||
//#include "scanline-functions.h"
|
||||
|
||||
// from scanline-functions.h //
|
||||
bool is_interlaced(float num_lines)
|
||||
{
|
||||
// Detect interlacing based on the number of lines in the source.
|
||||
if(interlace_detect)
|
||||
{
|
||||
// NTSC: 525 lines, 262.5/field; 486 active (2 half-lines), 243/field
|
||||
// NTSC Emulators: Typically 224 or 240 lines
|
||||
// PAL: 625 lines, 312.5/field; 576 active (typical), 288/field
|
||||
// PAL Emulators: ?
|
||||
// ATSC: 720p, 1080i, 1080p
|
||||
// Where do we place our cutoffs? Assumptions:
|
||||
// 1.) We only need to care about active lines.
|
||||
// 2.) Anything > 288 and <= 576 lines is probably interlaced.
|
||||
// 3.) Anything > 576 lines is probably not interlaced...
|
||||
// 4.) ...except 1080 lines, which is a crapshoot (user decision).
|
||||
// 5.) Just in case the main program uses calculated video sizes,
|
||||
// we should nudge the float thresholds a bit.
|
||||
bool sd_interlace;
|
||||
if (num_lines > 288.5 && num_lines < 576.5)
|
||||
{sd_interlace = true;}
|
||||
else
|
||||
{sd_interlace = false;}
|
||||
bool hd_interlace;
|
||||
if (num_lines > 1079.5 && num_lines < 1080.5)
|
||||
{hd_interlace = true;}
|
||||
else
|
||||
{hd_interlace = false;}
|
||||
return (sd_interlace || hd_interlace);
|
||||
}
|
||||
else
|
||||
{
|
||||
return false;
|
||||
}
|
||||
}
|
||||
// end scanline-functions.h //
|
||||
|
||||
// from gamma-management.h //
|
||||
/////////////////////////////// BASE CONSTANTS ///////////////////////////////
|
||||
|
||||
// Set standard gamma constants, but allow users to override them:
|
||||
#ifndef OVERRIDE_STANDARD_GAMMA
|
||||
// Standard encoding gammas:
|
||||
const float ntsc_gamma = 2.2; // Best to use NTSC for PAL too?
|
||||
const float pal_gamma = 2.8; // Never actually 2.8 in practice
|
||||
// Typical device decoding gammas (only use for emulating devices):
|
||||
// CRT/LCD reference gammas are higher than NTSC and Rec.709 video standard
|
||||
// gammas: The standards purposely undercorrected for an analog CRT's
|
||||
// assumed 2.5 reference display gamma to maintain contrast in assumed
|
||||
// [dark] viewing conditions: http://www.poynton.com/PDFs/GammaFAQ.pdf
|
||||
// These unstated assumptions about display gamma and perceptual rendering
|
||||
// intent caused a lot of confusion, and more modern CRT's seemed to target
|
||||
// NTSC 2.2 gamma with circuitry. LCD displays seem to have followed suit
|
||||
// (they struggle near black with 2.5 gamma anyway), especially PC/laptop
|
||||
// displays designed to view sRGB in bright environments. (Standards are
|
||||
// also in flux again with BT.1886, but it's underspecified for displays.)
|
||||
const float crt_reference_gamma_high = 2.5; // In (2.35, 2.55)
|
||||
const float crt_reference_gamma_low = 2.35; // In (2.35, 2.55)
|
||||
const float lcd_reference_gamma = 2.5; // To match CRT
|
||||
const float crt_office_gamma = 2.2; // Circuitry-adjusted for NTSC
|
||||
const float lcd_office_gamma = 2.2; // Approximates sRGB
|
||||
#endif // OVERRIDE_STANDARD_GAMMA
|
||||
|
||||
// Assuming alpha == 1.0 might make it easier for users to avoid some bugs,
|
||||
// but only if they're aware of it.
|
||||
#ifndef OVERRIDE_ALPHA_ASSUMPTIONS
|
||||
const bool assume_opaque_alpha = false;
|
||||
#endif
|
||||
|
||||
|
||||
/////////////////////// DERIVED CONSTANTS AS FUNCTIONS ///////////////////////
|
||||
|
||||
// gamma-management.h should be compatible with overriding gamma values with
|
||||
// runtime user parameters, but we can only define other global constants in
|
||||
// terms of static constants, not uniform user parameters. To get around this
|
||||
// limitation, we need to define derived constants using functions.
|
||||
|
||||
// Set device gamma constants, but allow users to override them:
|
||||
#ifdef OVERRIDE_DEVICE_GAMMA
|
||||
// The user promises to globally define the appropriate constants:
|
||||
float get_crt_gamma() { return crt_gamma; }
|
||||
float get_gba_gamma() { return gba_gamma; }
|
||||
float get_lcd_gamma() { return lcd_gamma; }
|
||||
#else
|
||||
float get_crt_gamma() { return crt_reference_gamma_high; }
|
||||
float get_gba_gamma() { return 3.5; } // Game Boy Advance; in (3.0, 4.0)
|
||||
float get_lcd_gamma() { return lcd_office_gamma; }
|
||||
#endif // OVERRIDE_DEVICE_GAMMA
|
||||
|
||||
// Set decoding/encoding gammas for the first/lass passes, but allow overrides:
|
||||
#ifdef OVERRIDE_FINAL_GAMMA
|
||||
// The user promises to globally define the appropriate constants:
|
||||
float get_intermediate_gamma() { return intermediate_gamma; }
|
||||
float get_input_gamma() { return input_gamma; }
|
||||
float get_output_gamma() { return output_gamma; }
|
||||
#else
|
||||
// If we gamma-correct every pass, always use ntsc_gamma between passes to
|
||||
// ensure middle passes don't need to care if anything is being simulated:
|
||||
float get_intermediate_gamma() { return ntsc_gamma; }
|
||||
#ifdef SIMULATE_CRT_ON_LCD
|
||||
float get_input_gamma() { return get_crt_gamma(); }
|
||||
float get_output_gamma() { return get_lcd_gamma(); }
|
||||
#else
|
||||
#ifdef SIMULATE_GBA_ON_LCD
|
||||
float get_input_gamma() { return get_gba_gamma(); }
|
||||
float get_output_gamma() { return get_lcd_gamma(); }
|
||||
#else
|
||||
#ifdef SIMULATE_LCD_ON_CRT
|
||||
float get_input_gamma() { return get_lcd_gamma(); }
|
||||
float get_output_gamma() { return get_crt_gamma(); }
|
||||
#else
|
||||
#ifdef SIMULATE_GBA_ON_CRT
|
||||
float get_input_gamma() { return get_gba_gamma(); }
|
||||
float get_output_gamma() { return get_crt_gamma(); }
|
||||
#else // Don't simulate anything:
|
||||
float get_input_gamma() { return ntsc_gamma; }
|
||||
float get_output_gamma() { return ntsc_gamma; }
|
||||
#endif // SIMULATE_GBA_ON_CRT
|
||||
#endif // SIMULATE_LCD_ON_CRT
|
||||
#endif // SIMULATE_GBA_ON_LCD
|
||||
#endif // SIMULATE_CRT_ON_LCD
|
||||
#endif // OVERRIDE_FINAL_GAMMA
|
||||
|
||||
#ifndef GAMMA_ENCODE_EVERY_FBO
|
||||
#ifdef FIRST_PASS
|
||||
const bool linearize_input = true;
|
||||
float get_pass_input_gamma() { return get_input_gamma(); }
|
||||
#else
|
||||
const bool linearize_input = false;
|
||||
float get_pass_input_gamma() { return 1.0; }
|
||||
#endif
|
||||
#ifdef LAST_PASS
|
||||
const bool gamma_encode_output = true;
|
||||
float get_pass_output_gamma() { return get_output_gamma(); }
|
||||
#else
|
||||
const bool gamma_encode_output = false;
|
||||
float get_pass_output_gamma() { return 1.0; }
|
||||
#endif
|
||||
#else
|
||||
const bool linearize_input = true;
|
||||
const bool gamma_encode_output = true;
|
||||
#ifdef FIRST_PASS
|
||||
float get_pass_input_gamma() { return get_input_gamma(); }
|
||||
#else
|
||||
float get_pass_input_gamma() { return get_intermediate_gamma(); }
|
||||
#endif
|
||||
#ifdef LAST_PASS
|
||||
float get_pass_output_gamma() { return get_output_gamma(); }
|
||||
#else
|
||||
float get_pass_output_gamma() { return get_intermediate_gamma(); }
|
||||
#endif
|
||||
#endif
|
||||
|
||||
vec4 decode_input(const vec4 color)
|
||||
{
|
||||
if(linearize_input)
|
||||
{
|
||||
if(assume_opaque_alpha)
|
||||
{
|
||||
return vec4(pow(color.rgb, vec3(get_pass_input_gamma())), 1.0);
|
||||
}
|
||||
else
|
||||
{
|
||||
return vec4(pow(color.rgb, vec3(get_pass_input_gamma())), color.a);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
return color;
|
||||
}
|
||||
}
|
||||
|
||||
vec4 encode_output(const vec4 color)
|
||||
{
|
||||
if(gamma_encode_output)
|
||||
{
|
||||
if(assume_opaque_alpha)
|
||||
{
|
||||
return vec4(pow(color.rgb, vec3(1.0/get_pass_output_gamma())), 1.0);
|
||||
}
|
||||
else
|
||||
{
|
||||
return vec4(pow(color.rgb, vec3(1.0/get_pass_output_gamma())), color.a);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
return color;
|
||||
}
|
||||
}
|
||||
|
||||
#define tex2D_linearize(C, D) decode_input(vec4(texture(C, D)))
|
||||
//vec4 tex2D_linearize(const sampler2D tex, const vec2 tex_coords)
|
||||
//{ return decode_input(vec4(texture(tex, tex_coords))); }
|
||||
|
||||
//#define tex2D_linearize(C, D, E) decode_input(vec4(texture(C, D, E)))
|
||||
//vec4 tex2D_linearize(const sampler2D tex, const vec2 tex_coords, const int texel_off)
|
||||
//{ return decode_input(vec4(texture(tex, tex_coords, texel_off))); }
|
||||
|
||||
// end gamma-management.h //
|
||||
|
||||
#pragma stage vertex
|
||||
layout(location = 0) in vec4 Position;
|
||||
layout(location = 1) in vec2 TexCoord;
|
||||
layout(location = 0) out vec2 tex_uv;
|
||||
layout(location = 1) out vec2 uv_step;
|
||||
|
||||
void main()
|
||||
{
|
||||
gl_Position = params.MVP * Position;
|
||||
tex_uv = TexCoord;
|
||||
|
||||
// Save the uv distance between texels:
|
||||
uv_step = vec2(1.0) * registers.SourceSize.zw;
|
||||
}
|
||||
|
||||
#pragma stage fragment
|
||||
layout(location = 0) in vec2 tex_uv;
|
||||
layout(location = 1) in vec2 uv_step;
|
||||
layout(location = 0) out vec4 FragColor;
|
||||
layout(set = 0, binding = 2) uniform sampler2D Source;
|
||||
|
||||
void main()
|
||||
{
|
||||
// Detect interlacing: 1.0 = true, 0.0 = false.
|
||||
const vec2 video_size = registers.SourceSize.xy;
|
||||
bool interlaced = is_interlaced(video_size.y);
|
||||
|
||||
// Linearize the input based on CRT gamma and bob interlaced fields.
|
||||
// Bobbing ensures we can immediately blur without getting artifacts.
|
||||
// Note: TFF/BFF won't matter for sources that double-weave or similar.
|
||||
if(interlace_detect)
|
||||
{
|
||||
// Sample the current line and an average of the previous/next line;
|
||||
// tex2D_linearize will decode CRT gamma. Don't bother branching:
|
||||
// const vec2 tex_uv = tex_uv;
|
||||
const vec2 v_step = vec2(0.0, uv_step.y);
|
||||
const vec3 curr_line = tex2D_linearize(
|
||||
Source, tex_uv).rgb;
|
||||
const vec3 last_line = tex2D_linearize(
|
||||
Source, tex_uv - v_step).rgb;
|
||||
const vec3 next_line = tex2D_linearize(
|
||||
Source, tex_uv + v_step).rgb;
|
||||
const vec3 interpolated_line = 0.5 * (last_line + next_line);
|
||||
// If we're interlacing, determine which field curr_line is in:
|
||||
float interlace_check = 0.0;
|
||||
if (interlaced = true) interlace_check = 1.0;
|
||||
const float modulus = interlace_check + 1.0;
|
||||
const float field_offset =
|
||||
mod(registers.FrameCount + float(params.interlace_bff), modulus);
|
||||
const float curr_line_texel = tex_uv.y * registers.SourceSize.y;
|
||||
// Use under_half to fix a rounding bug around exact texel locations.
|
||||
const float line_num_last = floor(curr_line_texel - under_half);
|
||||
const float wrong_field = mod(line_num_last + field_offset, modulus);
|
||||
// Select the correct color, and output the result:
|
||||
const vec3 color = mix(curr_line, interpolated_line, wrong_field);
|
||||
FragColor = encode_output(vec4(color, 1.0));
|
||||
}
|
||||
else
|
||||
{
|
||||
FragColor = encode_output(tex2D_linearize(Source, tex_uv));
|
||||
}
|
||||
}
|
315
crt/shaders/crt-royale/src/derived-settings-and-constants.h
Normal file
|
@ -0,0 +1,315 @@
|
|||
#ifndef DERIVED_SETTINGS_AND_CONSTANTS_H
|
||||
#define DERIVED_SETTINGS_AND_CONSTANTS_H
|
||||
|
||||
///////////////////////////// GPL LICENSE NOTICE /////////////////////////////
|
||||
|
||||
// crt-royale: A full-featured CRT shader, with cheese.
|
||||
// Copyright (C) 2014 TroggleMonkey <trogglemonkey@gmx.com>
|
||||
//
|
||||
// This program is free software; you can redistribute it and/or modify it
|
||||
// under the terms of the GNU General Public License as published by the Free
|
||||
// Software Foundation; either version 2 of the License, or any later version.
|
||||
//
|
||||
// This program is distributed in the hope that it will be useful, but WITHOUT
|
||||
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
||||
// more details.
|
||||
//
|
||||
// You should have received a copy of the GNU General Public License along with
|
||||
// this program; if not, write to the Free Software Foundation, Inc., 59 Temple
|
||||
// Place, Suite 330, Boston, MA 02111-1307 USA
|
||||
|
||||
|
||||
///////////////////////////////// DESCRIPTION ////////////////////////////////
|
||||
|
||||
// These macros and constants can be used across the whole codebase.
|
||||
// Unlike the values in user-settings.cgh, end users shouldn't modify these.
|
||||
|
||||
|
||||
////////////////////////////////// INCLUDES //////////////////////////////////
|
||||
|
||||
#include "../user-settings.h"
|
||||
#include "user-preset-constants.h"
|
||||
|
||||
|
||||
/////////////////////////////// FIXED SETTINGS ///////////////////////////////
|
||||
|
||||
// Avoid dividing by zero; using a macro overloads for float, vec2, etc.:
|
||||
#define FIX_ZERO(c) (max(abs(c), 0.0000152587890625)) // 2^-16
|
||||
|
||||
// Ensure the first pass decodes CRT gamma and the last encodes LCD gamma.
|
||||
#ifndef SIMULATE_CRT_ON_LCD
|
||||
#define SIMULATE_CRT_ON_LCD
|
||||
#endif
|
||||
|
||||
// Manually tiling a manually resized texture creates texture coord derivative
|
||||
// discontinuities and confuses anisotropic filtering, causing discolored tile
|
||||
// seams in the phosphor mask. Workarounds:
|
||||
// a.) Using tex2Dlod disables anisotropic filtering for tiled masks. It's
|
||||
// downgraded to tex2Dbias without DRIVERS_ALLOW_TEX2DLOD #defined and
|
||||
// disabled without DRIVERS_ALLOW_TEX2DBIAS #defined either.
|
||||
// b.) "Tile flat twice" requires drawing two full tiles without border padding
|
||||
// to the resized mask FBO, and it's incompatible with same-pass curvature.
|
||||
// (Same-pass curvature isn't used but could be in the future...maybe.)
|
||||
// c.) "Fix discontinuities" requires derivatives and drawing one tile with
|
||||
// border padding to the resized mask FBO, but it works with same-pass
|
||||
// curvature. It's disabled without DRIVERS_ALLOW_DERIVATIVES #defined.
|
||||
// Precedence: a, then, b, then c (if multiple strategies are #defined).
|
||||
#define ANISOTROPIC_TILING_COMPAT_TEX2DLOD // 129.7 FPS, 4x, flat; 101.8 at fullscreen
|
||||
#define ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE // 128.1 FPS, 4x, flat; 101.5 at fullscreen
|
||||
#define ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES // 124.4 FPS, 4x, flat; 97.4 at fullscreen
|
||||
// Also, manually resampling the phosphor mask is slightly blurrier with
|
||||
// anisotropic filtering. (Resampling with mipmapping is even worse: It
|
||||
// creates artifacts, but only with the fully bloomed shader.) The difference
|
||||
// is subtle with small triads, but you can fix it for a small cost.
|
||||
//#define ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
|
||||
|
||||
|
||||
////////////////////////////// DERIVED SETTINGS //////////////////////////////
|
||||
|
||||
// Intel HD 4000 GPU's can't handle manual mask resizing (for now), setting the
|
||||
// geometry mode at runtime, or a 4x4 true Gaussian resize. Disable
|
||||
// incompatible settings ASAP. (INTEGRATED_GRAPHICS_COMPATIBILITY_MODE may be
|
||||
// #defined by either user-settings.h or a wrapper .cg that #includes the
|
||||
// current .cg pass.)
|
||||
#ifdef INTEGRATED_GRAPHICS_COMPATIBILITY_MODE
|
||||
#ifdef PHOSPHOR_MASK_MANUALLY_RESIZE
|
||||
#undef PHOSPHOR_MASK_MANUALLY_RESIZE
|
||||
#endif
|
||||
#ifdef RUNTIME_GEOMETRY_MODE
|
||||
#undef RUNTIME_GEOMETRY_MODE
|
||||
#endif
|
||||
// Mode 2 (4x4 Gaussian resize) won't work, and mode 1 (3x3 blur) is
|
||||
// inferior in most cases, so replace 2.0 with 0.0:
|
||||
const float bloom_approx_filter =
|
||||
bloom_approx_filter_static > 1.5 ? 0.0 : bloom_approx_filter_static;
|
||||
#else
|
||||
const float bloom_approx_filter = bloom_approx_filter_static;
|
||||
#endif
|
||||
|
||||
// Disable slow runtime paths if static parameters are used. Most of these
|
||||
// won't be a problem anyway once the params are disabled, but some will.
|
||||
#ifndef RUNTIME_SHADER_PARAMS_ENABLE
|
||||
#ifdef RUNTIME_PHOSPHOR_BLOOM_SIGMA
|
||||
#undef RUNTIME_PHOSPHOR_BLOOM_SIGMA
|
||||
#endif
|
||||
#ifdef RUNTIME_ANTIALIAS_WEIGHTS
|
||||
#undef RUNTIME_ANTIALIAS_WEIGHTS
|
||||
#endif
|
||||
#ifdef RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS
|
||||
#undef RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS
|
||||
#endif
|
||||
#ifdef RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE
|
||||
#undef RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE
|
||||
#endif
|
||||
#ifdef RUNTIME_GEOMETRY_TILT
|
||||
#undef RUNTIME_GEOMETRY_TILT
|
||||
#endif
|
||||
#ifdef RUNTIME_GEOMETRY_MODE
|
||||
#undef RUNTIME_GEOMETRY_MODE
|
||||
#endif
|
||||
#ifdef FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
|
||||
#undef FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
|
||||
#endif
|
||||
#endif
|
||||
|
||||
// Make tex2Dbias a backup for tex2Dlod for wider compatibility.
|
||||
#ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
|
||||
#define ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
|
||||
#endif
|
||||
#ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
|
||||
#define ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
|
||||
#endif
|
||||
// Rule out unavailable anisotropic compatibility strategies:
|
||||
#ifndef DRIVERS_ALLOW_DERIVATIVES
|
||||
#ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
|
||||
#undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
|
||||
#endif
|
||||
#endif
|
||||
#ifndef DRIVERS_ALLOW_TEX2DLOD
|
||||
#ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
|
||||
#undef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
|
||||
#endif
|
||||
#ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
|
||||
#undef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
|
||||
#endif
|
||||
#ifdef ANTIALIAS_DISABLE_ANISOTROPIC
|
||||
#undef ANTIALIAS_DISABLE_ANISOTROPIC
|
||||
#endif
|
||||
#endif
|
||||
#ifndef DRIVERS_ALLOW_TEX2DBIAS
|
||||
#ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
|
||||
#undef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
|
||||
#endif
|
||||
#ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
|
||||
#undef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
|
||||
#endif
|
||||
#endif
|
||||
// Prioritize anisotropic tiling compatibility strategies by performance and
|
||||
// disable unused strategies. This concentrates all the nesting in one place.
|
||||
#ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
|
||||
#ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
|
||||
#undef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
|
||||
#endif
|
||||
#ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
|
||||
#undef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
|
||||
#endif
|
||||
#ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
|
||||
#undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
|
||||
#endif
|
||||
#else
|
||||
#ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
|
||||
#ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
|
||||
#undef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
|
||||
#endif
|
||||
#ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
|
||||
#undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
|
||||
#endif
|
||||
#else
|
||||
// ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE is only compatible with
|
||||
// flat texture coords in the same pass, but that's all we use.
|
||||
#ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
|
||||
#ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
|
||||
#undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
|
||||
#endif
|
||||
#endif
|
||||
#endif
|
||||
#endif
|
||||
// The tex2Dlod and tex2Dbias strategies share a lot in common, and we can
|
||||
// reduce some #ifdef nesting in the next section by essentially OR'ing them:
|
||||
#ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
|
||||
#define ANISOTROPIC_TILING_COMPAT_TEX2DLOD_FAMILY
|
||||
#endif
|
||||
#ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
|
||||
#define ANISOTROPIC_TILING_COMPAT_TEX2DLOD_FAMILY
|
||||
#endif
|
||||
// Prioritize anisotropic resampling compatibility strategies the same way:
|
||||
#ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
|
||||
#ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
|
||||
#undef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
|
||||
#endif
|
||||
#endif
|
||||
|
||||
|
||||
/////////////////////// DERIVED PHOSPHOR MASK CONSTANTS //////////////////////
|
||||
|
||||
// If we can use the large mipmapped LUT without mipmapping artifacts, we
|
||||
// should: It gives us more options for using fewer samples.
|
||||
#ifdef DRIVERS_ALLOW_TEX2DLOD
|
||||
#ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
|
||||
// TODO: Take advantage of this!
|
||||
#define PHOSPHOR_MASK_RESIZE_MIPMAPPED_LUT
|
||||
const vec2 mask_resize_src_lut_size = mask_texture_large_size;
|
||||
#else
|
||||
const vec2 mask_resize_src_lut_size = mask_texture_small_size;
|
||||
#endif
|
||||
#else
|
||||
const vec2 mask_resize_src_lut_size = mask_texture_small_size;
|
||||
#endif
|
||||
|
||||
|
||||
// tex2D's sampler2D parameter MUST be a uniform global, a uniform input to
|
||||
// main_fragment, or a static alias of one of the above. This makes it hard
|
||||
// to select the phosphor mask at runtime: We can't even assign to a uniform
|
||||
// global in the vertex shader or select a sampler2D in the vertex shader and
|
||||
// pass it to the fragment shader (even with explicit TEXUNIT# bindings),
|
||||
// because it just gives us the input texture or a black screen. However, we
|
||||
// can get around these limitations by calling tex2D three times with different
|
||||
// uniform samplers (or resizing the phosphor mask three times altogether).
|
||||
// With dynamic branches, we can process only one of these branches on top of
|
||||
// quickly discarding fragments we don't need (cgc seems able to overcome
|
||||
// limigations around dependent texture fetches inside of branches). Without
|
||||
// dynamic branches, we have to process every branch for every fragment...which
|
||||
// is slower. Runtime sampling mode selection is slower without dynamic
|
||||
// branches as well. Let the user's static #defines decide if it's worth it.
|
||||
#ifdef DRIVERS_ALLOW_DYNAMIC_BRANCHES
|
||||
#define RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
|
||||
#else
|
||||
#ifdef FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
|
||||
#define RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
|
||||
#endif
|
||||
#endif
|
||||
|
||||
// We need to render some minimum number of tiles in the resize passes.
|
||||
// We need at least 1.0 just to repeat a single tile, and we need extra
|
||||
// padding beyond that for anisotropic filtering, discontinuitity fixing,
|
||||
// antialiasing, same-pass curvature (not currently used), etc. First
|
||||
// determine how many border texels and tiles we need, based on how the result
|
||||
// will be sampled:
|
||||
#ifdef GEOMETRY_EARLY
|
||||
const float max_subpixel_offset = aa_subpixel_r_offset_static.x;
|
||||
// Most antialiasing filters have a base radius of 4.0 pixels:
|
||||
const float max_aa_base_pixel_border = 4.0 +
|
||||
max_subpixel_offset;
|
||||
#else
|
||||
const float max_aa_base_pixel_border = 0.0;
|
||||
#endif
|
||||
// Anisotropic filtering adds about 0.5 to the pixel border:
|
||||
#ifndef ANISOTROPIC_TILING_COMPAT_TEX2DLOD_FAMILY
|
||||
const float max_aniso_pixel_border = max_aa_base_pixel_border + 0.5;
|
||||
#else
|
||||
const float max_aniso_pixel_border = max_aa_base_pixel_border;
|
||||
#endif
|
||||
// Fixing discontinuities adds 1.0 more to the pixel border:
|
||||
#ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
|
||||
const float max_tiled_pixel_border = max_aniso_pixel_border + 1.0;
|
||||
#else
|
||||
const float max_tiled_pixel_border = max_aniso_pixel_border;
|
||||
#endif
|
||||
// Convert the pixel border to an integer texel border. Assume same-pass
|
||||
// curvature about triples the texel frequency:
|
||||
#ifdef GEOMETRY_EARLY
|
||||
const float max_mask_texel_border =
|
||||
ceil(max_tiled_pixel_border * 3.0);
|
||||
#else
|
||||
const float max_mask_texel_border = ceil(max_tiled_pixel_border);
|
||||
#endif
|
||||
// Convert the texel border to a tile border using worst-case assumptions:
|
||||
const float max_mask_tile_border = max_mask_texel_border/
|
||||
(mask_min_allowed_triad_size * mask_triads_per_tile);
|
||||
|
||||
// Finally, set the number of resized tiles to render to MASK_RESIZE, and set
|
||||
// the starting texel (inside borders) for sampling it.
|
||||
#ifndef GEOMETRY_EARLY
|
||||
#ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
|
||||
// Special case: Render two tiles without borders. Anisotropic
|
||||
// filtering doesn't seem to be a problem here.
|
||||
const float mask_resize_num_tiles = 1.0 + 1.0;
|
||||
const float mask_start_texels = 0.0;
|
||||
#else
|
||||
const float mask_resize_num_tiles = 1.0 +
|
||||
2.0 * max_mask_tile_border;
|
||||
const float mask_start_texels = max_mask_texel_border;
|
||||
#endif
|
||||
#else
|
||||
const float mask_resize_num_tiles = 1.0 + 2.0*max_mask_tile_border;
|
||||
const float mask_start_texels = max_mask_texel_border;
|
||||
#endif
|
||||
|
||||
// We have to fit mask_resize_num_tiles into an FBO with a viewport scale of
|
||||
// mask_resize_viewport_scale. This limits the maximum final triad size.
|
||||
// Estimate the minimum number of triads we can split the screen into in each
|
||||
// dimension (we'll be as correct as mask_resize_viewport_scale is):
|
||||
const float mask_resize_num_triads =
|
||||
mask_resize_num_tiles * mask_triads_per_tile;
|
||||
const vec2 min_allowed_viewport_triads =
|
||||
vec2(mask_resize_num_triads) / mask_resize_viewport_scale;
|
||||
|
||||
|
||||
//////////////////////// COMMON MATHEMATICAL CONSTANTS ///////////////////////
|
||||
|
||||
const float pi = 3.141592653589;
|
||||
// We often want to find the location of the previous texel, e.g.:
|
||||
// const vec2 curr_texel = uv * texture_size;
|
||||
// const vec2 prev_texel = floor(curr_texel - vec2(0.5)) + vec2(0.5);
|
||||
// const vec2 prev_texel_uv = prev_texel / texture_size;
|
||||
// However, many GPU drivers round incorrectly around exact texel locations.
|
||||
// We need to subtract a little less than 0.5 before flooring, and some GPU's
|
||||
// require this value to be farther from 0.5 than others; define it here.
|
||||
// const vec2 prev_texel =
|
||||
// floor(curr_texel - vec2(under_half)) + vec2(0.5);
|
||||
const float under_half = 0.4995;
|
||||
|
||||
|
||||
#endif // DERIVED_SETTINGS_AND_CONSTANTS_H
|
||||
|
693
crt/shaders/crt-royale/src/geometry-functions.h
Normal file
|
@ -0,0 +1,693 @@
|
|||
#ifndef GEOMETRY_FUNCTIONS_H
|
||||
#define GEOMETRY_FUNCTIONS_H
|
||||
|
||||
///////////////////////////// GPL LICENSE NOTICE /////////////////////////////
|
||||
|
||||
// crt-royale: A full-featured CRT shader, with cheese.
|
||||
// Copyright (C) 2014 TroggleMonkey <trogglemonkey@gmx.com>
|
||||
//
|
||||
// This program is free software; you can redistribute it and/or modify it
|
||||
// under the terms of the GNU General Public License as published by the Free
|
||||
// Software Foundation; either version 2 of the License, or any later version.
|
||||
//
|
||||
// This program is distributed in the hope that it will be useful, but WITHOUT
|
||||
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
||||
// more details.
|
||||
//
|
||||
// You should have received a copy of the GNU General Public License along with
|
||||
// this program; if not, write to the Free Software Foundation, Inc., 59 Temple
|
||||
// Place, Suite 330, Boston, MA 02111-1307 USA
|
||||
|
||||
|
||||
////////////////////////////////// INCLUDES //////////////////////////////////
|
||||
|
||||
#include "../user-settings.h"
|
||||
#include "derived-settings-and-constants.h"
|
||||
#include "bind-shader-params.h"
|
||||
|
||||
|
||||
//////////////////////////// MACROS AND CONSTANTS ////////////////////////////
|
||||
|
||||
// Curvature-related constants:
|
||||
#define MAX_POINT_CLOUD_SIZE 9
|
||||
|
||||
|
||||
///////////////////////////// CURVATURE FUNCTIONS /////////////////////////////
|
||||
|
||||
vec2 quadratic_solve(const float a, const float b_over_2, const float c)
|
||||
{
|
||||
// Requires: 1.) a, b, and c are quadratic formula coefficients
|
||||
// 2.) b_over_2 = b/2.0 (simplifies terms to factor 2 out)
|
||||
// 3.) b_over_2 must be guaranteed < 0.0 (avoids a branch)
|
||||
// Returns: Returns vec2(first_solution, discriminant), so the caller
|
||||
// can choose how to handle the "no intersection" case. The
|
||||
// Kahan or Citardauq formula is used for numerical robustness.
|
||||
const float discriminant = b_over_2*b_over_2 - a*c;
|
||||
const float solution0 = c/(-b_over_2 + sqrt(discriminant));
|
||||
return vec2(solution0, discriminant);
|
||||
}
|
||||
|
||||
vec2 intersect_sphere(const vec3 view_vec, const vec3 eye_pos_vec)
|
||||
{
|
||||
// Requires: 1.) view_vec and eye_pos_vec are 3D vectors in the sphere's
|
||||
// local coordinate frame (eye_pos_vec is a position, i.e.
|
||||
// a vector from the origin to the eye/camera)
|
||||
// 2.) geom_radius is a global containing the sphere's radius
|
||||
// Returns: Cast a ray of direction view_vec from eye_pos_vec at a
|
||||
// sphere of radius geom_radius, and return the distance to
|
||||
// the first intersection in units of length(view_vec).
|
||||
// http://wiki.cgsociety.org/index.php/Ray_Sphere_Intersection
|
||||
// Quadratic formula coefficients (b_over_2 is guaranteed negative):
|
||||
const float a = dot(view_vec, view_vec);
|
||||
const float b_over_2 = dot(view_vec, eye_pos_vec); // * 2.0 factored out
|
||||
const float c = dot(eye_pos_vec, eye_pos_vec) - geom_radius*geom_radius;
|
||||
return quadratic_solve(a, b_over_2, c);
|
||||
}
|
||||
|
||||
vec2 intersect_cylinder(const vec3 view_vec, const vec3 eye_pos_vec)
|
||||
{
|
||||
// Requires: 1.) view_vec and eye_pos_vec are 3D vectors in the sphere's
|
||||
// local coordinate frame (eye_pos_vec is a position, i.e.
|
||||
// a vector from the origin to the eye/camera)
|
||||
// 2.) geom_radius is a global containing the cylinder's radius
|
||||
// Returns: Cast a ray of direction view_vec from eye_pos_vec at a
|
||||
// cylinder of radius geom_radius, and return the distance to
|
||||
// the first intersection in units of length(view_vec). The
|
||||
// derivation of the coefficients is in Christer Ericson's
|
||||
// Real-Time Collision Detection, p. 195-196, and this version
|
||||
// uses LaGrange's identity to reduce operations.
|
||||
// Arbitrary "cylinder top" reference point for an infinite cylinder:
|
||||
const vec3 cylinder_top_vec = vec3(0.0, geom_radius, 0.0);
|
||||
const vec3 cylinder_axis_vec = vec3(0.0, 1.0, 0.0);//vec3(0.0, 2.0*geom_radius, 0.0);
|
||||
const vec3 top_to_eye_vec = eye_pos_vec - cylinder_top_vec;
|
||||
const vec3 axis_x_view = cross(cylinder_axis_vec, view_vec);
|
||||
const vec3 axis_x_top_to_eye = cross(cylinder_axis_vec, top_to_eye_vec);
|
||||
// Quadratic formula coefficients (b_over_2 is guaranteed negative):
|
||||
const float a = dot(axis_x_view, axis_x_view);
|
||||
const float b_over_2 = dot(axis_x_top_to_eye, axis_x_view);
|
||||
const float c = dot(axis_x_top_to_eye, axis_x_top_to_eye) -
|
||||
geom_radius*geom_radius;//*dot(cylinder_axis_vec, cylinder_axis_vec);
|
||||
return quadratic_solve(a, b_over_2, c);
|
||||
}
|
||||
|
||||
vec2 cylinder_xyz_to_uv(const vec3 intersection_pos_local,
|
||||
const vec2 geom_aspect)
|
||||
{
|
||||
// Requires: An xyz intersection position on a cylinder.
|
||||
// Returns: video_uv coords mapped to range [-0.5, 0.5]
|
||||
// Mapping: Define square_uv.x to be the signed arc length in xz-space,
|
||||
// and define square_uv.y = -intersection_pos_local.y (+v = -y).
|
||||
// Start with a numerically robust arc length calculation.
|
||||
const float angle_from_image_center = atan2(intersection_pos_local.x,
|
||||
intersection_pos_local.z);
|
||||
const float signed_arc_len = angle_from_image_center * geom_radius;
|
||||
// Get a uv-mapping where [-0.5, 0.5] maps to a "square" area, then divide
|
||||
// by the aspect ratio to stretch the mapping appropriately:
|
||||
const vec2 square_uv = vec2(signed_arc_len, -intersection_pos_local.y);
|
||||
const vec2 video_uv = square_uv / geom_aspect;
|
||||
return video_uv;
|
||||
}
|
||||
|
||||
vec3 cylinder_uv_to_xyz(const vec2 video_uv, const vec2 geom_aspect)
|
||||
{
|
||||
// Requires: video_uv coords mapped to range [-0.5, 0.5]
|
||||
// Returns: An xyz intersection position on a cylinder. This is the
|
||||
// inverse of cylinder_xyz_to_uv().
|
||||
// Expand video_uv by the aspect ratio to get proportionate x/y lengths,
|
||||
// then calculate an xyz position for the cylindrical mapping above.
|
||||
const vec2 square_uv = video_uv * geom_aspect;
|
||||
const float arc_len = square_uv.x;
|
||||
const float angle_from_image_center = arc_len / geom_radius;
|
||||
const float x_pos = sin(angle_from_image_center) * geom_radius;
|
||||
const float z_pos = cos(angle_from_image_center) * geom_radius;
|
||||
// Or: z = sqrt(geom_radius**2 - x**2)
|
||||
// Or: z = geom_radius/sqrt(1.0 + tan(angle)**2), x = z * tan(angle)
|
||||
const vec3 intersection_pos_local = vec3(x_pos, -square_uv.y, z_pos);
|
||||
return intersection_pos_local;
|
||||
}
|
||||
|
||||
vec2 sphere_xyz_to_uv(const vec3 intersection_pos_local,
|
||||
const vec2 geom_aspect)
|
||||
{
|
||||
// Requires: An xyz intersection position on a sphere.
|
||||
// Returns: video_uv coords mapped to range [-0.5, 0.5]
|
||||
// Mapping: First define square_uv.x/square_uv.y ==
|
||||
// intersection_pos_local.x/intersection_pos_local.y. Then,
|
||||
// length(square_uv) is the arc length from the image center
|
||||
// at (0.0, 0.0, geom_radius) along the tangent great circle.
|
||||
// Credit for this mapping goes to cgwg: I never managed to
|
||||
// understand his code, but he told me his mapping was based on
|
||||
// great circle distances when I asked him about it, which
|
||||
// informed this very similar (almost identical) mapping.
|
||||
// Start with a numerically robust arc length calculation between the ray-
|
||||
// sphere intersection point and the image center using a method posted by
|
||||
// Roger Stafford on comp.soft-sys.matlab:
|
||||
// https://groups.google.com/d/msg/comp.soft-sys.matlab/zNbUui3bjcA/c0HV_bHSx9cJ
|
||||
const vec3 image_center_pos_local = vec3(0.0, 0.0, geom_radius);
|
||||
const float cp_len =
|
||||
length(cross(intersection_pos_local, image_center_pos_local));
|
||||
const float dp = dot(intersection_pos_local, image_center_pos_local);
|
||||
const float angle_from_image_center = atan2(cp_len, dp);
|
||||
const float arc_len = angle_from_image_center * geom_radius;
|
||||
// Get a uv-mapping where [-0.5, 0.5] maps to a "square" area, then divide
|
||||
// by the aspect ratio to stretch the mapping appropriately:
|
||||
const vec2 square_uv_unit = normalize(vec2(intersection_pos_local.x,
|
||||
-intersection_pos_local.y));
|
||||
const vec2 square_uv = arc_len * square_uv_unit;
|
||||
const vec2 video_uv = square_uv / geom_aspect;
|
||||
return video_uv;
|
||||
}
|
||||
|
||||
vec3 sphere_uv_to_xyz(const vec2 video_uv, const vec2 geom_aspect)
|
||||
{
|
||||
// Requires: video_uv coords mapped to range [-0.5, 0.5]
|
||||
// Returns: An xyz intersection position on a sphere. This is the
|
||||
// inverse of sphere_xyz_to_uv().
|
||||
// Expand video_uv by the aspect ratio to get proportionate x/y lengths,
|
||||
// then calculate an xyz position for the spherical mapping above.
|
||||
const vec2 square_uv = video_uv * geom_aspect;
|
||||
// Using length or sqrt here butchers the framerate on my 8800GTS if
|
||||
// this function is called too many times, and so does taking the max
|
||||
// component of square_uv/square_uv_unit (program length threshold?).
|
||||
//float arc_len = length(square_uv);
|
||||
const vec2 square_uv_unit = normalize(square_uv);
|
||||
const float arc_len = square_uv.y/square_uv_unit.y;
|
||||
const float angle_from_image_center = arc_len / geom_radius;
|
||||
const float xy_dist_from_sphere_center =
|
||||
sin(angle_from_image_center) * geom_radius;
|
||||
//vec2 xy_pos = xy_dist_from_sphere_center * (square_uv/FIX_ZERO(arc_len));
|
||||
const vec2 xy_pos = xy_dist_from_sphere_center * square_uv_unit;
|
||||
const float z_pos = cos(angle_from_image_center) * geom_radius;
|
||||
const vec3 intersection_pos_local = vec3(xy_pos.x, -xy_pos.y, z_pos);
|
||||
return intersection_pos_local;
|
||||
}
|
||||
|
||||
vec2 sphere_alt_xyz_to_uv(const vec3 intersection_pos_local,
|
||||
const vec2 geom_aspect)
|
||||
{
|
||||
// Requires: An xyz intersection position on a cylinder.
|
||||
// Returns: video_uv coords mapped to range [-0.5, 0.5]
|
||||
// Mapping: Define square_uv.x to be the signed arc length in xz-space,
|
||||
// and define square_uv.y == signed arc length in yz-space.
|
||||
// See cylinder_xyz_to_uv() for implementation details (very similar).
|
||||
const vec2 angle_from_image_center = atan2(
|
||||
vec2(intersection_pos_local.x, -intersection_pos_local.y),
|
||||
intersection_pos_local.zz);
|
||||
const vec2 signed_arc_len = angle_from_image_center * geom_radius;
|
||||
const vec2 video_uv = signed_arc_len / geom_aspect;
|
||||
return video_uv;
|
||||
}
|
||||
|
||||
vec3 sphere_alt_uv_to_xyz(const vec2 video_uv, const vec2 geom_aspect)
|
||||
{
|
||||
// Requires: video_uv coords mapped to range [-0.5, 0.5]
|
||||
// Returns: An xyz intersection position on a sphere. This is the
|
||||
// inverse of sphere_alt_xyz_to_uv().
|
||||
// See cylinder_uv_to_xyz() for implementation details (very similar).
|
||||
const vec2 square_uv = video_uv * geom_aspect;
|
||||
const vec2 arc_len = square_uv;
|
||||
const vec2 angle_from_image_center = arc_len / geom_radius;
|
||||
const vec2 xy_pos = sin(angle_from_image_center) * geom_radius;
|
||||
const float z_pos = sqrt(geom_radius*geom_radius - dot(xy_pos, xy_pos));
|
||||
return vec3(xy_pos.x, -xy_pos.y, z_pos);
|
||||
}
|
||||
|
||||
inline vec2 intersect(const vec3 view_vec_local, const vec3 eye_pos_local,
|
||||
const float geom_mode)
|
||||
{
|
||||
return geom_mode < 2.5 ? intersect_sphere(view_vec_local, eye_pos_local) :
|
||||
intersect_cylinder(view_vec_local, eye_pos_local);
|
||||
}
|
||||
|
||||
inline vec2 xyz_to_uv(const vec3 intersection_pos_local,
|
||||
const vec2 geom_aspect, const float geom_mode)
|
||||
{
|
||||
return geom_mode < 1.5 ?
|
||||
sphere_xyz_to_uv(intersection_pos_local, geom_aspect) :
|
||||
geom_mode < 2.5 ?
|
||||
sphere_alt_xyz_to_uv(intersection_pos_local, geom_aspect) :
|
||||
cylinder_xyz_to_uv(intersection_pos_local, geom_aspect);
|
||||
}
|
||||
|
||||
inline vec3 uv_to_xyz(const vec2 uv, const vec2 geom_aspect,
|
||||
const float geom_mode)
|
||||
{
|
||||
return geom_mode < 1.5 ? sphere_uv_to_xyz(uv, geom_aspect) :
|
||||
geom_mode < 2.5 ? sphere_alt_uv_to_xyz(uv, geom_aspect) :
|
||||
cylinder_uv_to_xyz(uv, geom_aspect);
|
||||
}
|
||||
|
||||
vec2 view_vec_to_uv(const vec3 view_vec_local, const vec3 eye_pos_local,
|
||||
const vec2 geom_aspect, const float geom_mode, out vec3 intersection_pos)
|
||||
{
|
||||
// Get the intersection point on the primitive, given an eye position
|
||||
// and view vector already in its local coordinate frame:
|
||||
const vec2 intersect_dist_and_discriminant = intersect(view_vec_local,
|
||||
eye_pos_local, geom_mode);
|
||||
const vec3 intersection_pos_local = eye_pos_local +
|
||||
view_vec_local * intersect_dist_and_discriminant.x;
|
||||
// Save the intersection position to an output parameter:
|
||||
intersection_pos = intersection_pos_local;
|
||||
// Transform into uv coords, but give out-of-range coords if the
|
||||
// view ray doesn't intersect the primitive in the first place:
|
||||
return intersect_dist_and_discriminant.y > 0.005 ?
|
||||
xyz_to_uv(intersection_pos_local, geom_aspect, geom_mode) : vec2(1.0);
|
||||
}
|
||||
|
||||
vec3 get_ideal_global_eye_pos_for_points(vec3 eye_pos,
|
||||
const vec2 geom_aspect, const vec3 global_coords[MAX_POINT_CLOUD_SIZE],
|
||||
const int num_points)
|
||||
{
|
||||
// Requires: Parameters:
|
||||
// 1.) Starting eye_pos is a global 3D position at which the
|
||||
// camera contains all points in global_coords[] in its FOV
|
||||
// 2.) geom_aspect = get_aspect_vector(
|
||||
// IN.output_size.x / IN.output_size.y);
|
||||
// 3.) global_coords is a point cloud containing global xyz
|
||||
// coords of extreme points on the simulated CRT screen.
|
||||
// Globals:
|
||||
// 1.) geom_view_dist must be > 0.0. It controls the "near
|
||||
// plane" used to interpret flat_video_uv as a view
|
||||
// vector, which controls the field of view (FOV).
|
||||
// Eyespace coordinate frame: +x = right, +y = up, +z = back
|
||||
// Returns: Return an eye position at which the point cloud spans as
|
||||
// much of the screen as possible (given the FOV controlled by
|
||||
// geom_view_dist) without being cropped or sheared.
|
||||
// Algorithm:
|
||||
// 1.) Move the eye laterally to a point which attempts to maximize the
|
||||
// the amount we can move forward without clipping the CRT screen.
|
||||
// 2.) Move forward by as much as possible without clipping the CRT.
|
||||
// Get the allowed movement range by solving for the eye_pos offsets
|
||||
// that result in each point being projected to a screen edge/corner in
|
||||
// pseudo-normalized device coords (where xy ranges from [-0.5, 0.5]
|
||||
// and z = eyespace z):
|
||||
// pndc_coord = vec3(vec2(eyespace_xyz.x, -eyespace_xyz.y)*
|
||||
// geom_view_dist / (geom_aspect * -eyespace_xyz.z), eyespace_xyz.z);
|
||||
// Notes:
|
||||
// The field of view is controlled by geom_view_dist's magnitude relative to
|
||||
// the view vector's x and y components:
|
||||
// view_vec.xy ranges from [-0.5, 0.5] * geom_aspect
|
||||
// view_vec.z = -geom_view_dist
|
||||
// But for the purposes of perspective divide, it should be considered:
|
||||
// view_vec.xy ranges from [-0.5, 0.5] * geom_aspect / geom_view_dist
|
||||
// view_vec.z = -1.0
|
||||
const int max_centering_iters = 1; // Keep for easy testing.
|
||||
for(int iter = 0; iter < max_centering_iters; iter++)
|
||||
{
|
||||
// 0.) Get the eyespace coordinates of our point cloud:
|
||||
vec3 eyespace_coords[MAX_POINT_CLOUD_SIZE];
|
||||
for(int i = 0; i < num_points; i++)
|
||||
{
|
||||
eyespace_coords[i] = global_coords[i] - eye_pos;
|
||||
}
|
||||
// 1a.)For each point, find out how far we can move eye_pos in each
|
||||
// lateral direction without the point clipping the frustum.
|
||||
// Eyespace +y = up, screenspace +y = down, so flip y after
|
||||
// applying the eyespace offset (on the way to "clip space").
|
||||
// Solve for two offsets per point based on:
|
||||
// (eyespace_xyz.xy - offset_dr) * vec2(1.0, -1.0) *
|
||||
// geom_view_dist / (geom_aspect * -eyespace_xyz.z) = vec2(-0.5)
|
||||
// (eyespace_xyz.xy - offset_dr) * vec2(1.0, -1.0) *
|
||||
// geom_view_dist / (geom_aspect * -eyespace_xyz.z) = vec2(0.5)
|
||||
// offset_ul and offset_dr represent the farthest we can move the
|
||||
// eye_pos up-left and down-right. Save the min of all offset_dr's
|
||||
// and the max of all offset_ul's (since it's negative).
|
||||
float abs_radius = abs(geom_radius); // In case anyone gets ideas. ;)
|
||||
vec2 offset_dr_min = vec2(10.0 * abs_radius, 10.0 * abs_radius);
|
||||
vec2 offset_ul_max = vec2(-10.0 * abs_radius, -10.0 * abs_radius);
|
||||
for(int i = 0; i < num_points; i++)
|
||||
{
|
||||
const vec2 flipy = vec2(1.0, -1.0);
|
||||
vec3 eyespace_xyz = eyespace_coords[i];
|
||||
vec2 offset_dr = eyespace_xyz.xy - vec2(-0.5) *
|
||||
(geom_aspect * -eyespace_xyz.z) / (geom_view_dist * flipy);
|
||||
vec2 offset_ul = eyespace_xyz.xy - vec2(0.5) *
|
||||
(geom_aspect * -eyespace_xyz.z) / (geom_view_dist * flipy);
|
||||
offset_dr_min = min(offset_dr_min, offset_dr);
|
||||
offset_ul_max = max(offset_ul_max, offset_ul);
|
||||
}
|
||||
// 1b.)Update eye_pos: Adding the average of offset_ul_max and
|
||||
// offset_dr_min gives it equal leeway on the top vs. bottom
|
||||
// and left vs. right. Recalculate eyespace_coords accordingly.
|
||||
vec2 center_offset = 0.5 * (offset_ul_max + offset_dr_min);
|
||||
eye_pos.xy += center_offset;
|
||||
for(int i = 0; i < num_points; i++)
|
||||
{
|
||||
eyespace_coords[i] = global_coords[i] - eye_pos;
|
||||
}
|
||||
// 2a.)For each point, find out how far we can move eye_pos forward
|
||||
// without the point clipping the frustum. Flip the y
|
||||
// direction in advance (matters for a later step, not here).
|
||||
// Solve for four offsets per point based on:
|
||||
// eyespace_xyz_flipy.x * geom_view_dist /
|
||||
// (geom_aspect.x * (offset_z - eyespace_xyz_flipy.z)) =-0.5
|
||||
// eyespace_xyz_flipy.y * geom_view_dist /
|
||||
// (geom_aspect.y * (offset_z - eyespace_xyz_flipy.z)) =-0.5
|
||||
// eyespace_xyz_flipy.x * geom_view_dist /
|
||||
// (geom_aspect.x * (offset_z - eyespace_xyz_flipy.z)) = 0.5
|
||||
// eyespace_xyz_flipy.y * geom_view_dist /
|
||||
// (geom_aspect.y * (offset_z - eyespace_xyz_flipy.z)) = 0.5
|
||||
// We'll vectorize the actual computation. Take the maximum of
|
||||
// these four for a single offset, and continue taking the max
|
||||
// for every point (use max because offset.z is negative).
|
||||
float offset_z_max = -10.0 * geom_radius * geom_view_dist;
|
||||
for(int i = 0; i < num_points; i++)
|
||||
{
|
||||
vec3 eyespace_xyz_flipy = eyespace_coords[i] *
|
||||
vec3(1.0, -1.0, 1.0);
|
||||
vec4 offset_zzzz = eyespace_xyz_flipy.zzzz +
|
||||
(eyespace_xyz_flipy.xyxy * geom_view_dist) /
|
||||
(vec4(-0.5, -0.5, 0.5, 0.5) * vec4(geom_aspect, geom_aspect));
|
||||
// Ignore offsets that push positive x/y values to opposite
|
||||
// boundaries, and vice versa, and don't let the camera move
|
||||
// past a point in the dead center of the screen:
|
||||
offset_z_max = (eyespace_xyz_flipy.x < 0.0) ?
|
||||
max(offset_z_max, offset_zzzz.x) : offset_z_max;
|
||||
offset_z_max = (eyespace_xyz_flipy.y < 0.0) ?
|
||||
max(offset_z_max, offset_zzzz.y) : offset_z_max;
|
||||
offset_z_max = (eyespace_xyz_flipy.x > 0.0) ?
|
||||
max(offset_z_max, offset_zzzz.z) : offset_z_max;
|
||||
offset_z_max = (eyespace_xyz_flipy.y > 0.0) ?
|
||||
max(offset_z_max, offset_zzzz.w) : offset_z_max;
|
||||
offset_z_max = max(offset_z_max, eyespace_xyz_flipy.z);
|
||||
}
|
||||
// 2b.)Update eye_pos: Add the maximum (smallest negative) z offset.
|
||||
eye_pos.z += offset_z_max;
|
||||
}
|
||||
return eye_pos;
|
||||
}
|
||||
|
||||
vec3 get_ideal_global_eye_pos(const vec3x3 local_to_global,
|
||||
const vec2 geom_aspect, const float geom_mode)
|
||||
{
|
||||
// Start with an initial eye_pos that includes the entire primitive
|
||||
// (sphere or cylinder) in its field-of-view:
|
||||
const vec3 high_view = vec3(0.0, geom_aspect.y, -geom_view_dist);
|
||||
const vec3 low_view = high_view * vec3(1.0, -1.0, 1.0);
|
||||
const float len_sq = dot(high_view, high_view);
|
||||
const float fov = abs(acos(dot(high_view, low_view)/len_sq));
|
||||
// Trigonometry/similar triangles say distance = geom_radius/sin(fov/2):
|
||||
const float eye_z_spherical = geom_radius/sin(fov*0.5);
|
||||
const vec3 eye_pos = geom_mode < 2.5 ?
|
||||
vec3(0.0, 0.0, eye_z_spherical) :
|
||||
vec3(0.0, 0.0, max(geom_view_dist, eye_z_spherical));
|
||||
|
||||
// Get global xyz coords of extreme sample points on the simulated CRT
|
||||
// screen. Start with the center, edge centers, and corners of the
|
||||
// video image. We can't ignore backfacing points: They're occluded
|
||||
// by closer points on the primitive, but they may NOT be occluded by
|
||||
// the convex hull of the remaining samples (i.e. the remaining convex
|
||||
// hull might not envelope points that do occlude a back-facing point.)
|
||||
const int num_points = MAX_POINT_CLOUD_SIZE;
|
||||
vec3 global_coords[MAX_POINT_CLOUD_SIZE];
|
||||
global_coords[0] = mul(local_to_global, uv_to_xyz(vec2(0.0, 0.0), geom_aspect, geom_mode));
|
||||
global_coords[1] = mul(local_to_global, uv_to_xyz(vec2(0.0, -0.5), geom_aspect, geom_mode));
|
||||
global_coords[2] = mul(local_to_global, uv_to_xyz(vec2(0.0, 0.5), geom_aspect, geom_mode));
|
||||
global_coords[3] = mul(local_to_global, uv_to_xyz(vec2(-0.5, 0.0), geom_aspect, geom_mode));
|
||||
global_coords[4] = mul(local_to_global, uv_to_xyz(vec2(0.5, 0.0), geom_aspect, geom_mode));
|
||||
global_coords[5] = mul(local_to_global, uv_to_xyz(vec2(-0.5, -0.5), geom_aspect, geom_mode));
|
||||
global_coords[6] = mul(local_to_global, uv_to_xyz(vec2(0.5, -0.5), geom_aspect, geom_mode));
|
||||
global_coords[7] = mul(local_to_global, uv_to_xyz(vec2(-0.5, 0.5), geom_aspect, geom_mode));
|
||||
global_coords[8] = mul(local_to_global, uv_to_xyz(vec2(0.5, 0.5), geom_aspect, geom_mode));
|
||||
// Adding more inner image points could help in extreme cases, but too many
|
||||
// points will kille the framerate. For safety, default to the initial
|
||||
// eye_pos if any z coords are negative:
|
||||
float num_negative_z_coords = 0.0;
|
||||
for(int i = 0; i < num_points; i++)
|
||||
{
|
||||
num_negative_z_coords += float(global_coords[0].z < 0.0);
|
||||
}
|
||||
// Outsource the optimized eye_pos calculation:
|
||||
return num_negative_z_coords > 0.5 ? eye_pos :
|
||||
get_ideal_global_eye_pos_for_points(eye_pos, geom_aspect,
|
||||
global_coords, num_points);
|
||||
}
|
||||
|
||||
vec3x3 get_pixel_to_object_matrix(const vec3x3 global_to_local,
|
||||
const vec3 eye_pos_local, const vec3 view_vec_global,
|
||||
const vec3 intersection_pos_local, const vec3 normal,
|
||||
const vec2 output_size_inv)
|
||||
{
|
||||
// Requires: See get_curved_video_uv_coords_and_tangent_matrix for
|
||||
// descriptions of each parameter.
|
||||
// Returns: Return a transformation matrix from 2D pixel-space vectors
|
||||
// (where (+1.0, +1.0) is a vector to one pixel down-right,
|
||||
// i.e. same directionality as uv texels) to 3D object-space
|
||||
// vectors in the CRT's local coordinate frame (right-handed)
|
||||
// ***which are tangent to the CRT surface at the intersection
|
||||
// position.*** (Basically, we want to convert pixel-space
|
||||
// vectors to 3D vectors along the CRT's surface, for later
|
||||
// conversion to uv vectors.)
|
||||
// Shorthand inputs:
|
||||
const vec3 pos = intersection_pos_local;
|
||||
const vec3 eye_pos = eye_pos_local;
|
||||
// Get a piecewise-linear matrix transforming from "pixelspace" offset
|
||||
// vectors (1.0 = one pixel) to object space vectors in the tangent
|
||||
// plane (faster than finding 3 view-object intersections).
|
||||
// 1.) Get the local view vecs for the pixels to the right and down:
|
||||
const vec3 view_vec_right_global = view_vec_global +
|
||||
vec3(output_size_inv.x, 0.0, 0.0);
|
||||
const vec3 view_vec_down_global = view_vec_global +
|
||||
vec3(0.0, -output_size_inv.y, 0.0);
|
||||
const vec3 view_vec_right_local =
|
||||
mul(global_to_local, view_vec_right_global);
|
||||
const vec3 view_vec_down_local =
|
||||
mul(global_to_local, view_vec_down_global);
|
||||
// 2.) Using the true intersection point, intersect the neighboring
|
||||
// view vectors with the tangent plane:
|
||||
const vec3 intersection_vec_dot_normal = dot(pos - eye_pos, normal);
|
||||
const vec3 right_pos = eye_pos + (intersection_vec_dot_normal /
|
||||
dot(view_vec_right_local, normal))*view_vec_right_local;
|
||||
const vec3 down_pos = eye_pos + (intersection_vec_dot_normal /
|
||||
dot(view_vec_down_local, normal))*view_vec_down_local;
|
||||
// 3.) Subtract the original intersection pos from its neighbors; the
|
||||
// resulting vectors are object-space vectors tangent to the plane.
|
||||
// These vectors are the object-space transformations of (1.0, 0.0)
|
||||
// and (0.0, 1.0) pixel offsets, so they form the first two basis
|
||||
// vectors of a pixelspace to object space transformation. This
|
||||
// transformation is 2D to 3D, so use (0, 0, 0) for the third vector.
|
||||
const vec3 object_right_vec = right_pos - pos;
|
||||
const vec3 object_down_vec = down_pos - pos;
|
||||
const vec3x3 pixel_to_object = vec3x3(
|
||||
object_right_vec.x, object_down_vec.x, 0.0,
|
||||
object_right_vec.y, object_down_vec.y, 0.0,
|
||||
object_right_vec.z, object_down_vec.z, 0.0);
|
||||
return pixel_to_object;
|
||||
}
|
||||
|
||||
vec3x3 get_object_to_tangent_matrix(const vec3 intersection_pos_local,
|
||||
const vec3 normal, const vec2 geom_aspect, const float geom_mode)
|
||||
{
|
||||
// Requires: See get_curved_video_uv_coords_and_tangent_matrix for
|
||||
// descriptions of each parameter.
|
||||
// Returns: Return a transformation matrix from 3D object-space vectors
|
||||
// in the CRT's local coordinate frame (right-handed, +y = up)
|
||||
// to 2D video_uv vectors (+v = down).
|
||||
// Description:
|
||||
// The TBN matrix formed by the [tangent, bitangent, normal] basis
|
||||
// vectors transforms ordinary vectors from tangent->object space.
|
||||
// The cotangent matrix formed by the [cotangent, cobitangent, normal]
|
||||
// basis vectors transforms normal vectors (covectors) from
|
||||
// tangent->object space. It's the inverse-transpose of the TBN matrix.
|
||||
// We want the inverse of the TBN matrix (transpose of the cotangent
|
||||
// matrix), which transforms ordinary vectors from object->tangent space.
|
||||
// Start by calculating the relevant basis vectors in accordance with
|
||||
// Christian Schüler's blog post "Followup: Normal Mapping Without
|
||||
// Precomputed Tangents": http://www.thetenthplanet.de/archives/1180
|
||||
// With our particular uv mapping, the scale of the u and v directions
|
||||
// is determined entirely by the aspect ratio for cylindrical and ordinary
|
||||
// spherical mappings, and so tangent and bitangent lengths are also
|
||||
// determined by it (the alternate mapping is more complex). Therefore, we
|
||||
// must ensure appropriate cotangent and cobitangent lengths as well.
|
||||
// Base these off the uv<=>xyz mappings for each primitive.
|
||||
const vec3 pos = intersection_pos_local;
|
||||
const vec3 x_vec = vec3(1.0, 0.0, 0.0);
|
||||
const vec3 y_vec = vec3(0.0, 1.0, 0.0);
|
||||
// The tangent and bitangent vectors correspond with increasing u and v,
|
||||
// respectively. Mathematically we'd base the cotangent/cobitangent on
|
||||
// those, but we'll compute the cotangent/cobitangent directly when we can.
|
||||
vec3 cotangent_unscaled, cobitangent_unscaled;
|
||||
// geom_mode should be constant-folded without RUNTIME_GEOMETRY_MODE.
|
||||
if(geom_mode < 1.5)
|
||||
{
|
||||
// Sphere:
|
||||
// tangent = normalize(cross(normal, cross(x_vec, pos))) * geom_aspect.x
|
||||
// bitangent = normalize(cross(cross(y_vec, pos), normal)) * geom_aspect.y
|
||||
// inv_determinant = 1.0/length(cross(bitangent, tangent))
|
||||
// cotangent = cross(normal, bitangent) * inv_determinant
|
||||
// == normalize(cross(y_vec, pos)) * geom_aspect.y * inv_determinant
|
||||
// cobitangent = cross(tangent, normal) * inv_determinant
|
||||
// == normalize(cross(x_vec, pos)) * geom_aspect.x * inv_determinant
|
||||
// Simplified (scale by inv_determinant below):
|
||||
cotangent_unscaled = normalize(cross(y_vec, pos)) * geom_aspect.y;
|
||||
cobitangent_unscaled = normalize(cross(x_vec, pos)) * geom_aspect.x;
|
||||
}
|
||||
else if(geom_mode < 2.5)
|
||||
{
|
||||
// Sphere, alternate mapping:
|
||||
// This mapping works a bit like the cylindrical mapping in two
|
||||
// directions, which makes the lengths and directions more complex.
|
||||
// Unfortunately, I can't find much of a shortcut:
|
||||
const vec3 tangent = normalize(
|
||||
cross(y_vec, vec3(pos.x, 0.0, pos.z))) * geom_aspect.x;
|
||||
const vec3 bitangent = normalize(
|
||||
cross(x_vec, vec3(0.0, pos.yz))) * geom_aspect.y;
|
||||
cotangent_unscaled = cross(normal, bitangent);
|
||||
cobitangent_unscaled = cross(tangent, normal);
|
||||
}
|
||||
else
|
||||
{
|
||||
// Cylinder:
|
||||
// tangent = normalize(cross(y_vec, normal)) * geom_aspect.x;
|
||||
// bitangent = vec3(0.0, -geom_aspect.y, 0.0);
|
||||
// inv_determinant = 1.0/length(cross(bitangent, tangent))
|
||||
// cotangent = cross(normal, bitangent) * inv_determinant
|
||||
// == normalize(cross(y_vec, pos)) * geom_aspect.y * inv_determinant
|
||||
// cobitangent = cross(tangent, normal) * inv_determinant
|
||||
// == vec3(0.0, -geom_aspect.x, 0.0) * inv_determinant
|
||||
cotangent_unscaled = cross(y_vec, normal) * geom_aspect.y;
|
||||
cobitangent_unscaled = vec3(0.0, -geom_aspect.x, 0.0);
|
||||
}
|
||||
const vec3 computed_normal =
|
||||
cross(cobitangent_unscaled, cotangent_unscaled);
|
||||
const float inv_determinant = rsqrt(dot(computed_normal, computed_normal));
|
||||
const vec3 cotangent = cotangent_unscaled * inv_determinant;
|
||||
const vec3 cobitangent = cobitangent_unscaled * inv_determinant;
|
||||
// The [cotangent, cobitangent, normal] column vecs form the cotangent
|
||||
// frame, i.e. the inverse-transpose TBN matrix. Get its transpose:
|
||||
const vec3x3 object_to_tangent = vec3x3(cotangent, cobitangent, normal);
|
||||
return object_to_tangent;
|
||||
}
|
||||
|
||||
vec2 get_curved_video_uv_coords_and_tangent_matrix(
|
||||
const vec2 flat_video_uv, const vec3 eye_pos_local,
|
||||
const vec2 output_size_inv, const vec2 geom_aspect,
|
||||
const float geom_mode, const vec3x3 global_to_local,
|
||||
out vec2x2 pixel_to_tangent_video_uv)
|
||||
{
|
||||
// Requires: Parameters:
|
||||
// 1.) flat_video_uv coords are in range [0.0, 1.0], where
|
||||
// (0.0, 0.0) is the top-left corner of the screen and
|
||||
// (1.0, 1.0) is the bottom-right corner.
|
||||
// 2.) eye_pos_local is the 3D camera position in the simulated
|
||||
// CRT's local coordinate frame. For best results, it must
|
||||
// be computed based on the same geom_view_dist used here.
|
||||
// 3.) output_size_inv = vec2(1.0)/IN.output_size
|
||||
// 4.) geom_aspect = get_aspect_vector(
|
||||
// IN.output_size.x / IN.output_size.y);
|
||||
// 5.) geom_mode is a static or runtime mode setting:
|
||||
// 0 = off, 1 = sphere, 2 = sphere alt., 3 = cylinder
|
||||
// 6.) global_to_local is a 3x3 matrix transforming (ordinary)
|
||||
// worldspace vectors to the CRT's local coordinate frame
|
||||
// Globals:
|
||||
// 1.) geom_view_dist must be > 0.0. It controls the "near
|
||||
// plane" used to interpret flat_video_uv as a view
|
||||
// vector, which controls the field of view (FOV).
|
||||
// Returns: Return final uv coords in [0.0, 1.0], and return a pixel-
|
||||
// space to video_uv tangent-space matrix in the out parameter.
|
||||
// (This matrix assumes pixel-space +y = down, like +v = down.)
|
||||
// We'll transform flat_video_uv into a view vector, project
|
||||
// the view vector from the camera/eye, intersect with a sphere
|
||||
// or cylinder representing the simulated CRT, and convert the
|
||||
// intersection position into final uv coords and a local
|
||||
// transformation matrix.
|
||||
// First get the 3D view vector (geom_aspect and geom_view_dist are globals):
|
||||
// 1.) Center uv around (0.0, 0.0) and make (-0.5, -0.5) and (0.5, 0.5)
|
||||
// correspond to the top-left/bottom-right output screen corners.
|
||||
// 2.) Multiply by geom_aspect to preemptively "undo" Retroarch's screen-
|
||||
// space 2D aspect correction. We'll reapply it in uv-space.
|
||||
// 3.) (x, y) = (u, -v), because +v is down in 2D screenspace, but +y
|
||||
// is up in 3D worldspace (enforce a right-handed system).
|
||||
// 4.) The view vector z controls the "near plane" distance and FOV.
|
||||
// For the effect of "looking through a window" at a CRT, it should be
|
||||
// set equal to the user's distance from their physical screen, in
|
||||
// units of the viewport's physical diagonal size.
|
||||
const vec2 view_uv = (flat_video_uv - vec2(0.5)) * geom_aspect;
|
||||
const vec3 view_vec_global =
|
||||
vec3(view_uv.x, -view_uv.y, -geom_view_dist);
|
||||
// Transform the view vector into the CRT's local coordinate frame, convert
|
||||
// to video_uv coords, and get the local 3D intersection position:
|
||||
const vec3 view_vec_local = mul(global_to_local, view_vec_global);
|
||||
vec3 pos;
|
||||
const vec2 centered_uv = view_vec_to_uv(
|
||||
view_vec_local, eye_pos_local, geom_aspect, geom_mode, pos);
|
||||
const vec2 video_uv = centered_uv + vec2(0.5);
|
||||
// Get a pixel-to-tangent-video-uv matrix. The caller could deal with
|
||||
// all but one of these cases, but that would be more complicated.
|
||||
#ifdef DRIVERS_ALLOW_DERIVATIVES
|
||||
// Derivatives obtain a matrix very fast, but the direction of pixel-
|
||||
// space +y seems to depend on the pass. Enforce the correct direction
|
||||
// on a best-effort basis (but it shouldn't matter for antialiasing).
|
||||
const vec2 duv_dx = ddx(video_uv);
|
||||
const vec2 duv_dy = ddy(video_uv);
|
||||
#ifdef LAST_PASS
|
||||
pixel_to_tangent_video_uv = vec2x2(
|
||||
duv_dx.x, duv_dy.x,
|
||||
-duv_dx.y, -duv_dy.y);
|
||||
#else
|
||||
pixel_to_tangent_video_uv = vec2x2(
|
||||
duv_dx.x, duv_dy.x,
|
||||
duv_dx.y, duv_dy.y);
|
||||
#endif
|
||||
#else
|
||||
// Manually define a transformation matrix. We'll assume pixel-space
|
||||
// +y = down, just like +v = down.
|
||||
if(geom_force_correct_tangent_matrix)
|
||||
{
|
||||
// Get the surface normal based on the local intersection position:
|
||||
const vec3 normal_base = geom_mode < 2.5 ? pos :
|
||||
vec3(pos.x, 0.0, pos.z);
|
||||
const vec3 normal = normalize(normal_base);
|
||||
// Get pixel-to-object and object-to-tangent matrices and combine
|
||||
// them into a 2x2 pixel-to-tangent matrix for video_uv offsets:
|
||||
const vec3x3 pixel_to_object = get_pixel_to_object_matrix(
|
||||
global_to_local, eye_pos_local, view_vec_global, pos, normal,
|
||||
output_size_inv);
|
||||
const vec3x3 object_to_tangent = get_object_to_tangent_matrix(
|
||||
pos, normal, geom_aspect, geom_mode);
|
||||
const vec3x3 pixel_to_tangent3x3 =
|
||||
mul(object_to_tangent, pixel_to_object);
|
||||
pixel_to_tangent_video_uv = vec2x2(
|
||||
pixel_to_tangent3x3._m00_m01_m10_m11);
|
||||
}
|
||||
else
|
||||
{
|
||||
// Ignore curvature, and just consider flat scaling. The
|
||||
// difference is only apparent with strong curvature:
|
||||
pixel_to_tangent_video_uv = vec2x2(
|
||||
output_size_inv.x, 0.0, 0.0, output_size_inv.y);
|
||||
}
|
||||
#endif
|
||||
return video_uv;
|
||||
}
|
||||
|
||||
float get_border_dim_factor(const vec2 video_uv, const vec2 geom_aspect)
|
||||
{
|
||||
// COPYRIGHT NOTE FOR THIS FUNCTION:
|
||||
// Copyright (C) 2010-2012 cgwg, 2014 TroggleMonkey
|
||||
// This function uses an algorithm first coded in several of cgwg's GPL-
|
||||
// licensed lines in crt-geom-curved.cg and its ancestors. The line
|
||||
// between algorithm and code is nearly indistinguishable here, so it's
|
||||
// unclear whether I could even release this project under a non-GPL
|
||||
// license with this function included.
|
||||
|
||||
// Calculate border_dim_factor from the proximity to uv-space image
|
||||
// borders; geom_aspect/border_size/border/darkness/border_compress are globals:
|
||||
const vec2 edge_dists = min(video_uv, vec2(1.0) - video_uv) *
|
||||
geom_aspect;
|
||||
const vec2 border_penetration =
|
||||
max(vec2(border_size) - edge_dists, vec2(0.0));
|
||||
const float penetration_ratio = length(border_penetration)/border_size;
|
||||
const float border_escape_ratio = max(1.0 - penetration_ratio, 0.0);
|
||||
const float border_dim_factor =
|
||||
pow(border_escape_ratio, border_darkness) * max(1.0, border_compress);
|
||||
return min(border_dim_factor, 1.0);
|
||||
}
|
||||
|
||||
|
||||
|
||||
#endif // GEOMETRY_FUNCTIONS_H
|
||||
|
||||
|
||||
|
677
crt/shaders/crt-royale/src/phosphor-mask-resizing.h
Normal file
|
@ -0,0 +1,677 @@
|
|||
#ifndef PHOSPHOR_MASK_RESIZING_H
|
||||
#define PHOSPHOR_MASK_RESIZING_H
|
||||
|
||||
///////////////////////////// GPL LICENSE NOTICE /////////////////////////////
|
||||
|
||||
// crt-royale: A full-featured CRT shader, with cheese.
|
||||
// Copyright (C) 2014 TroggleMonkey <trogglemonkey@gmx.com>
|
||||
//
|
||||
// This program is free software; you can redistribute it and/or modify it
|
||||
// under the terms of the GNU General Public License as published by the Free
|
||||
// Software Foundation; either version 2 of the License, or any later version.
|
||||
//
|
||||
// This program is distributed in the hope that it will be useful, but WITHOUT
|
||||
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
||||
// more details.
|
||||
//
|
||||
// You should have received a copy of the GNU General Public License along with
|
||||
// this program; if not, write to the Free Software Foundation, Inc., 59 Temple
|
||||
// Place, Suite 330, Boston, MA 02111-1307 USA
|
||||
|
||||
|
||||
////////////////////////////////// INCLUDES //////////////////////////////////
|
||||
|
||||
#include "../user-settings.h"
|
||||
#include "derived-settings-and-constants.h"
|
||||
|
||||
///////////////////////////// CODEPATH SELECTION /////////////////////////////
|
||||
|
||||
// Choose a looping strategy based on what's allowed:
|
||||
// Dynamic loops not allowed: Use a flat static loop.
|
||||
// Dynamic loops accomodated: Coarsely branch around static loops.
|
||||
// Dynamic loops assumed allowed: Use a flat dynamic loop.
|
||||
#ifndef DRIVERS_ALLOW_DYNAMIC_BRANCHES
|
||||
#ifdef ACCOMODATE_POSSIBLE_DYNAMIC_LOOPS
|
||||
#define BREAK_LOOPS_INTO_PIECES
|
||||
#else
|
||||
#define USE_SINGLE_STATIC_LOOP
|
||||
#endif
|
||||
#endif // No else needed: Dynamic loops assumed.
|
||||
|
||||
|
||||
////////////////////////////////// CONSTANTS /////////////////////////////////
|
||||
|
||||
// The larger the resized tile, the fewer samples we'll need for downsizing.
|
||||
// See if we can get a static min tile size > mask_min_allowed_tile_size:
|
||||
const float mask_min_allowed_tile_size = ceil(
|
||||
mask_min_allowed_triad_size * mask_triads_per_tile);
|
||||
const float mask_min_expected_tile_size =
|
||||
mask_min_allowed_tile_size;
|
||||
// Limit the number of sinc resize taps by the maximum minification factor:
|
||||
const float pi_over_lobes = pi/mask_sinc_lobes;
|
||||
const float max_sinc_resize_samples_float = 2.0 * mask_sinc_lobes *
|
||||
mask_resize_src_lut_size.x/mask_min_expected_tile_size;
|
||||
// Vectorized loops sample in multiples of 4. Round up to be safe:
|
||||
const float max_sinc_resize_samples_m4 = ceil(
|
||||
max_sinc_resize_samples_float * 0.25) * 4.0;
|
||||
|
||||
|
||||
///////////////////////// RESAMPLING FUNCTION HELPERS ////////////////////////
|
||||
|
||||
inline float get_dynamic_loop_size(const float magnification_scale)
|
||||
{
|
||||
// Requires: The following global constants must be defined:
|
||||
// 1.) mask_sinc_lobes
|
||||
// 2.) max_sinc_resize_samples_m4
|
||||
// Returns: The minimum number of texture samples for a correct downsize
|
||||
// at magnification_scale.
|
||||
// We're downsizing, so the filter is sized across 2*lobes output pixels
|
||||
// (not 2*lobes input texels). This impacts distance measurements and the
|
||||
// minimum number of input samples needed.
|
||||
const float min_samples_float = 2.0 * mask_sinc_lobes / magnification_scale;
|
||||
const float min_samples_m4 = ceil(min_samples_float * 0.25) * 4.0;
|
||||
#ifdef DRIVERS_ALLOW_DYNAMIC_BRANCHES
|
||||
const float max_samples_m4 = max_sinc_resize_samples_m4;
|
||||
#else // ifdef BREAK_LOOPS_INTO_PIECES
|
||||
// Simulating loops with branches imposes a 128-sample limit.
|
||||
const float max_samples_m4 = min(128.0, max_sinc_resize_samples_m4);
|
||||
#endif
|
||||
return min(min_samples_m4, max_samples_m4);
|
||||
}
|
||||
|
||||
vec2 get_first_texel_tile_uv_and_dist(const vec2 tex_uv,
|
||||
const vec2 texture_size, const float dr,
|
||||
const float input_tiles_per_texture_r, const float samples,
|
||||
const bool vertical)
|
||||
{
|
||||
// Requires: 1.) dr == du == 1.0/texture_size.x or
|
||||
// dr == dv == 1.0/texture_size.y
|
||||
// (whichever direction we're resampling in).
|
||||
// It's a scalar to save register space.
|
||||
// 2.) input_tiles_per_texture_r is the number of input tiles
|
||||
// that can fit in the input texture in the direction we're
|
||||
// resampling this pass.
|
||||
// 3.) vertical indicates whether we're resampling vertically
|
||||
// this pass (or horizontally).
|
||||
// Returns: Pack and return the first sample's tile_uv coord in [0, 1]
|
||||
// and its texel distance from the destination pixel, in the
|
||||
// resized dimension only.
|
||||
// We'll start with the topmost or leftmost sample and work down or right,
|
||||
// so get the first sample location and distance. Modify both dimensions
|
||||
// as if we're doing a one-pass 2D resize; we'll throw away the unneeded
|
||||
// (and incorrect) dimension at the end.
|
||||
const vec2 curr_texel = tex_uv * texture_size;
|
||||
const vec2 prev_texel =
|
||||
floor(curr_texel - vec2(under_half)) + vec2(0.5);
|
||||
const vec2 first_texel = prev_texel - vec2(samples/2.0 - 1.0);
|
||||
const vec2 first_texel_uv_wrap_2D = first_texel * dr;
|
||||
const vec2 first_texel_dist_2D = curr_texel - first_texel;
|
||||
// Convert from tex_uv to tile_uv coords so we can sub fracs for fmods.
|
||||
const vec2 first_texel_tile_uv_wrap_2D =
|
||||
first_texel_uv_wrap_2D * input_tiles_per_texture_r;
|
||||
// Project wrapped coordinates to the [0, 1] range. We'll do this with all
|
||||
// samples,but the first texel is special, since it might be negative.
|
||||
const vec2 coord_negative =
|
||||
vec2(first_texel_tile_uv_wrap_2D < vec2(0.0));
|
||||
const vec2 first_texel_tile_uv_2D =
|
||||
frac(first_texel_tile_uv_wrap_2D) + coord_negative;
|
||||
// Pack the first texel's tile_uv coord and texel distance in 1D:
|
||||
const vec2 tile_u_and_dist =
|
||||
vec2(first_texel_tile_uv_2D.x, first_texel_dist_2D.x);
|
||||
const vec2 tile_v_and_dist =
|
||||
vec2(first_texel_tile_uv_2D.y, first_texel_dist_2D.y);
|
||||
return vertical ? tile_v_and_dist : tile_u_and_dist;
|
||||
//return lerp(tile_u_and_dist, tile_v_and_dist, float(vertical));
|
||||
}
|
||||
|
||||
inline vec4 tex2Dlod0try(const sampler2D tex, const vec2 tex_uv)
|
||||
{
|
||||
// Mipmapping and anisotropic filtering get confused by sinc-resampling.
|
||||
// One [slow] workaround is to select the lowest mip level:
|
||||
#ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
|
||||
return tex2Dlod(tex, vec4(tex_uv, 0.0, 0.0));
|
||||
#else
|
||||
#ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
|
||||
return tex2Dbias(tex, vec4(tex_uv, 0.0, -16.0));
|
||||
#else
|
||||
return texture(tex, tex_uv);
|
||||
#endif
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
////////////////////////////// LOOP BODY MACROS //////////////////////////////
|
||||
|
||||
// Using inline functions can exceed the temporary register limit, so we're
|
||||
// stuck with #define macros (I'm TRULY sorry). They're declared here instead
|
||||
// of above to be closer to the actual invocation sites. Steps:
|
||||
// 1.) Get the exact texel location.
|
||||
// 2.) Sample the phosphor mask (already assumed encoded in linear RGB).
|
||||
// 3.) Get the distance from the current pixel and sinc weight:
|
||||
// sinc(dist) = sin(pi * dist)/(pi * dist)
|
||||
// We can also use the slower/smoother Lanczos instead:
|
||||
// L(x) = sinc(dist) * sinc(dist / lobes)
|
||||
// 4.) Accumulate the weight sum in weights, and accumulate the weighted texels
|
||||
// in pixel_color (we'll normalize outside the loop at the end).
|
||||
// We vectorize the loop to help reduce the Lanczos window's cost.
|
||||
|
||||
// The r coord is the coord in the dimension we're resizing along (u or v),
|
||||
// and first_texel_tile_uv_rrrr is a vec4 of the first texel's u or v
|
||||
// tile_uv coord in [0, 1]. tex_uv_r will contain the tile_uv u or v coord
|
||||
// for four new texel samples.
|
||||
#define CALCULATE_R_COORD_FOR_4_SAMPLES \
|
||||
const vec4 true_i = vec4(i_base + i) + vec4(0.0, 1.0, 2.0, 3.0); \
|
||||
const vec4 tile_uv_r = frac( \
|
||||
first_texel_tile_uv_rrrr + true_i * tile_dr); \
|
||||
const vec4 tex_uv_r = tile_uv_r * tile_size_uv_r;
|
||||
|
||||
#ifdef PHOSPHOR_MASK_RESIZE_LANCZOS_WINDOW
|
||||
#define CALCULATE_SINC_RESAMPLE_WEIGHTS \
|
||||
const vec4 pi_dist_over_lobes = pi_over_lobes * dist; \
|
||||
const vec4 weights = min(sin(pi_dist) * sin(pi_dist_over_lobes) /\
|
||||
(pi_dist*pi_dist_over_lobes), vec4(1.0));
|
||||
#else
|
||||
#define CALCULATE_SINC_RESAMPLE_WEIGHTS \
|
||||
const vec4 weights = min(sin(pi_dist)/pi_dist, vec4(1.0));
|
||||
#endif
|
||||
|
||||
#define UPDATE_COLOR_AND_WEIGHT_SUMS \
|
||||
const vec4 dist = magnification_scale * \
|
||||
abs(first_dist_unscaled - true_i); \
|
||||
const vec4 pi_dist = pi * dist; \
|
||||
CALCULATE_SINC_RESAMPLE_WEIGHTS; \
|
||||
pixel_color += new_sample0 * weights.xxx; \
|
||||
pixel_color += new_sample1 * weights.yyy; \
|
||||
pixel_color += new_sample2 * weights.zzz; \
|
||||
pixel_color += new_sample3 * weights.www; \
|
||||
weight_sum += weights;
|
||||
|
||||
#define VERTICAL_SINC_RESAMPLE_LOOP_BODY \
|
||||
CALCULATE_R_COORD_FOR_4_SAMPLES; \
|
||||
const vec3 new_sample0 = tex2Dlod0try(texture, \
|
||||
vec2(tex_uv.x, tex_uv_r.x)).rgb; \
|
||||
const vec3 new_sample1 = tex2Dlod0try(texture, \
|
||||
vec2(tex_uv.x, tex_uv_r.y)).rgb; \
|
||||
const vec3 new_sample2 = tex2Dlod0try(texture, \
|
||||
vec2(tex_uv.x, tex_uv_r.z)).rgb; \
|
||||
const vec3 new_sample3 = tex2Dlod0try(texture, \
|
||||
vec2(tex_uv.x, tex_uv_r.w)).rgb; \
|
||||
UPDATE_COLOR_AND_WEIGHT_SUMS;
|
||||
|
||||
#define HORIZONTAL_SINC_RESAMPLE_LOOP_BODY \
|
||||
CALCULATE_R_COORD_FOR_4_SAMPLES; \
|
||||
const vec3 new_sample0 = tex2Dlod0try(texture, \
|
||||
vec2(tex_uv_r.x, tex_uv.y)).rgb; \
|
||||
const vec3 new_sample1 = tex2Dlod0try(texture, \
|
||||
vec2(tex_uv_r.y, tex_uv.y)).rgb; \
|
||||
const vec3 new_sample2 = tex2Dlod0try(texture, \
|
||||
vec2(tex_uv_r.z, tex_uv.y)).rgb; \
|
||||
const vec3 new_sample3 = tex2Dlod0try(texture, \
|
||||
vec2(tex_uv_r.w, tex_uv.y)).rgb; \
|
||||
UPDATE_COLOR_AND_WEIGHT_SUMS;
|
||||
|
||||
|
||||
//////////////////////////// RESAMPLING FUNCTIONS ////////////////////////////
|
||||
|
||||
vec3 downsample_vertical_sinc_tiled(const sampler2D texture,
|
||||
const vec2 tex_uv, const vec2 texture_size, const float dr,
|
||||
const float magnification_scale, const float tile_size_uv_r)
|
||||
{
|
||||
// Requires: 1.) dr == du == 1.0/texture_size.x or
|
||||
// dr == dv == 1.0/texture_size.y
|
||||
// (whichever direction we're resampling in).
|
||||
// It's a scalar to save register space.
|
||||
// 2.) tile_size_uv_r is the number of texels an input tile
|
||||
// takes up in the input texture, in the direction we're
|
||||
// resampling this pass.
|
||||
// 3.) magnification_scale must be <= 1.0.
|
||||
// Returns: Return a [Lanczos] sinc-resampled pixel of a vertically
|
||||
// downsized input tile embedded in an input texture. (The
|
||||
// vertical version is special-cased though: It assumes the
|
||||
// tile size equals the [static] texture size, since it's used
|
||||
// on an LUT texture input containing one tile. For more
|
||||
// generic use, eliminate the "static" in the parameters.)
|
||||
// The "r" in "dr," "tile_size_uv_r," etc. refers to the dimension
|
||||
// we're resizing along, e.g. "dy" in this case.
|
||||
#ifdef USE_SINGLE_STATIC_LOOP
|
||||
// A static loop can be faster, but it might blur too much from using
|
||||
// more samples than it should.
|
||||
const int samples = int(max_sinc_resize_samples_m4);
|
||||
#else
|
||||
const int samples = int(get_dynamic_loop_size(magnification_scale));
|
||||
#endif
|
||||
|
||||
// Get the first sample location (scalar tile uv coord along the resized
|
||||
// dimension) and distance from the output location (in texels):
|
||||
const float input_tiles_per_texture_r = 1.0/tile_size_uv_r;
|
||||
// true = vertical resize:
|
||||
const vec2 first_texel_tile_r_and_dist = get_first_texel_tile_uv_and_dist(
|
||||
tex_uv, texture_size, dr, input_tiles_per_texture_r, samples, true);
|
||||
const vec4 first_texel_tile_uv_rrrr = first_texel_tile_r_and_dist.xxxx;
|
||||
const vec4 first_dist_unscaled = first_texel_tile_r_and_dist.yyyy;
|
||||
// Get the tile sample offset:
|
||||
const float tile_dr = dr * input_tiles_per_texture_r;
|
||||
|
||||
// Sum up each weight and weighted sample color, varying the looping
|
||||
// strategy based on our expected dynamic loop capabilities. See the
|
||||
// loop body macros above.
|
||||
int i_base = 0;
|
||||
vec4 weight_sum = vec4(0.0);
|
||||
vec3 pixel_color = vec3(0.0);
|
||||
const int i_step = 4;
|
||||
#ifdef BREAK_LOOPS_INTO_PIECES
|
||||
if(samples - i_base >= 64)
|
||||
{
|
||||
for(int i = 0; i < 64; i += i_step)
|
||||
{
|
||||
VERTICAL_SINC_RESAMPLE_LOOP_BODY;
|
||||
}
|
||||
i_base += 64;
|
||||
}
|
||||
if(samples - i_base >= 32)
|
||||
{
|
||||
for(int i = 0; i < 32; i += i_step)
|
||||
{
|
||||
VERTICAL_SINC_RESAMPLE_LOOP_BODY;
|
||||
}
|
||||
i_base += 32;
|
||||
}
|
||||
if(samples - i_base >= 16)
|
||||
{
|
||||
for(int i = 0; i < 16; i += i_step)
|
||||
{
|
||||
VERTICAL_SINC_RESAMPLE_LOOP_BODY;
|
||||
}
|
||||
i_base += 16;
|
||||
}
|
||||
if(samples - i_base >= 8)
|
||||
{
|
||||
for(int i = 0; i < 8; i += i_step)
|
||||
{
|
||||
VERTICAL_SINC_RESAMPLE_LOOP_BODY;
|
||||
}
|
||||
i_base += 8;
|
||||
}
|
||||
if(samples - i_base >= 4)
|
||||
{
|
||||
for(int i = 0; i < 4; i += i_step)
|
||||
{
|
||||
VERTICAL_SINC_RESAMPLE_LOOP_BODY;
|
||||
}
|
||||
i_base += 4;
|
||||
}
|
||||
// Do another 4-sample block for a total of 128 max samples.
|
||||
if(samples - i_base > 0)
|
||||
{
|
||||
for(int i = 0; i < 4; i += i_step)
|
||||
{
|
||||
VERTICAL_SINC_RESAMPLE_LOOP_BODY;
|
||||
}
|
||||
}
|
||||
#else
|
||||
for(int i = 0; i < samples; i += i_step)
|
||||
{
|
||||
VERTICAL_SINC_RESAMPLE_LOOP_BODY;
|
||||
}
|
||||
#endif
|
||||
// Normalize so the weight_sum == 1.0, and return:
|
||||
const vec2 weight_sum_reduce = weight_sum.xy + weight_sum.zw;
|
||||
const vec3 scalar_weight_sum = vec3(weight_sum_reduce.x +
|
||||
weight_sum_reduce.y);
|
||||
return (pixel_color/scalar_weight_sum);
|
||||
}
|
||||
|
||||
vec3 downsample_horizontal_sinc_tiled(const sampler2D texture,
|
||||
const vec2 tex_uv, const vec2 texture_size, const float dr,
|
||||
const float magnification_scale, const float tile_size_uv_r)
|
||||
{
|
||||
// Differences from downsample_horizontal_sinc_tiled:
|
||||
// 1.) The dr and tile_size_uv_r parameters are not static consts.
|
||||
// 2.) The "vertical" parameter to get_first_texel_tile_uv_and_dist is
|
||||
// set to false instead of true.
|
||||
// 3.) The horizontal version of the loop body is used.
|
||||
// TODO: If we can get guaranteed compile-time dead code elimination,
|
||||
// we can combine the vertical/horizontal downsampling functions by:
|
||||
// 1.) Add an extra static const bool parameter called "vertical."
|
||||
// 2.) Supply it with the result of get_first_texel_tile_uv_and_dist().
|
||||
// 3.) Use a conditional assignment in the loop body macro. This is the
|
||||
// tricky part: We DO NOT want to incur the extra conditional
|
||||
// assignment in the inner loop at runtime!
|
||||
// The "r" in "dr," "tile_size_uv_r," etc. refers to the dimension
|
||||
// we're resizing along, e.g. "dx" in this case.
|
||||
#ifdef USE_SINGLE_STATIC_LOOP
|
||||
// If we have to load all samples, we might as well use them.
|
||||
const int samples = int(max_sinc_resize_samples_m4);
|
||||
#else
|
||||
const int samples = int(get_dynamic_loop_size(magnification_scale));
|
||||
#endif
|
||||
|
||||
// Get the first sample location (scalar tile uv coord along resized
|
||||
// dimension) and distance from the output location (in texels):
|
||||
const float input_tiles_per_texture_r = 1.0/tile_size_uv_r;
|
||||
// false = horizontal resize:
|
||||
const vec2 first_texel_tile_r_and_dist = get_first_texel_tile_uv_and_dist(
|
||||
tex_uv, texture_size, dr, input_tiles_per_texture_r, samples, false);
|
||||
const vec4 first_texel_tile_uv_rrrr = first_texel_tile_r_and_dist.xxxx;
|
||||
const vec4 first_dist_unscaled = first_texel_tile_r_and_dist.yyyy;
|
||||
// Get the tile sample offset:
|
||||
const float tile_dr = dr * input_tiles_per_texture_r;
|
||||
|
||||
// Sum up each weight and weighted sample color, varying the looping
|
||||
// strategy based on our expected dynamic loop capabilities. See the
|
||||
// loop body macros above.
|
||||
int i_base = 0;
|
||||
vec4 weight_sum = vec4(0.0);
|
||||
vec3 pixel_color = vec3(0.0);
|
||||
const int i_step = 4;
|
||||
#ifdef BREAK_LOOPS_INTO_PIECES
|
||||
if(samples - i_base >= 64)
|
||||
{
|
||||
for(int i = 0; i < 64; i += i_step)
|
||||
{
|
||||
HORIZONTAL_SINC_RESAMPLE_LOOP_BODY;
|
||||
}
|
||||
i_base += 64;
|
||||
}
|
||||
if(samples - i_base >= 32)
|
||||
{
|
||||
for(int i = 0; i < 32; i += i_step)
|
||||
{
|
||||
HORIZONTAL_SINC_RESAMPLE_LOOP_BODY;
|
||||
}
|
||||
i_base += 32;
|
||||
}
|
||||
if(samples - i_base >= 16)
|
||||
{
|
||||
for(int i = 0; i < 16; i += i_step)
|
||||
{
|
||||
HORIZONTAL_SINC_RESAMPLE_LOOP_BODY;
|
||||
}
|
||||
i_base += 16;
|
||||
}
|
||||
if(samples - i_base >= 8)
|
||||
{
|
||||
for(int i = 0; i < 8; i += i_step)
|
||||
{
|
||||
HORIZONTAL_SINC_RESAMPLE_LOOP_BODY;
|
||||
}
|
||||
i_base += 8;
|
||||
}
|
||||
if(samples - i_base >= 4)
|
||||
{
|
||||
for(int i = 0; i < 4; i += i_step)
|
||||
{
|
||||
HORIZONTAL_SINC_RESAMPLE_LOOP_BODY;
|
||||
}
|
||||
i_base += 4;
|
||||
}
|
||||
// Do another 4-sample block for a total of 128 max samples.
|
||||
if(samples - i_base > 0)
|
||||
{
|
||||
for(int i = 0; i < 4; i += i_step)
|
||||
{
|
||||
HORIZONTAL_SINC_RESAMPLE_LOOP_BODY;
|
||||
}
|
||||
}
|
||||
#else
|
||||
for(int i = 0; i < samples; i += i_step)
|
||||
{
|
||||
HORIZONTAL_SINC_RESAMPLE_LOOP_BODY;
|
||||
}
|
||||
#endif
|
||||
// Normalize so the weight_sum == 1.0, and return:
|
||||
const vec2 weight_sum_reduce = weight_sum.xy + weight_sum.zw;
|
||||
const vec3 scalar_weight_sum = vec3(weight_sum_reduce.x +
|
||||
weight_sum_reduce.y);
|
||||
return (pixel_color/scalar_weight_sum);
|
||||
}
|
||||
|
||||
|
||||
//////////////////////////// TILE SIZE CALCULATION ///////////////////////////
|
||||
|
||||
vec2 get_resized_mask_tile_size(const vec2 estimated_viewport_size,
|
||||
const vec2 estimated_mask_resize_output_size,
|
||||
const bool solemnly_swear_same_inputs_for_every_pass)
|
||||
{
|
||||
// Requires: The following global constants must be defined according to
|
||||
// certain constraints:
|
||||
// 1.) mask_resize_num_triads: Must be high enough that our
|
||||
// mask sampling method won't have artifacts later
|
||||
// (long story; see derived-settings-and-constants.h)
|
||||
// 2.) mask_resize_src_lut_size: Texel size of our mask LUT
|
||||
// 3.) mask_triads_per_tile: Num horizontal triads in our LUT
|
||||
// 4.) mask_min_allowed_triad_size: User setting (the more
|
||||
// restrictive it is, the faster the resize will go)
|
||||
// 5.) mask_min_allowed_tile_size_x < mask_resize_src_lut_size.x
|
||||
// 6.) mask_triad_size_desired_{runtime, static}
|
||||
// 7.) mask_num_triads_desired_{runtime, static}
|
||||
// 8.) mask_specify_num_triads must be 0.0/1.0 (false/true)
|
||||
// The function parameters must be defined as follows:
|
||||
// 1.) estimated_viewport_size == (final viewport size);
|
||||
// If mask_specify_num_triads is 1.0/true and the viewport
|
||||
// estimate is wrong, the number of triads will differ from
|
||||
// the user's preference by about the same factor.
|
||||
// 2.) estimated_mask_resize_output_size: Must equal the
|
||||
// output size of the MASK_RESIZE pass.
|
||||
// Exception: The x component may be estimated garbage if
|
||||
// and only if the caller throws away the x result.
|
||||
// 3.) solemnly_swear_same_inputs_for_every_pass: Set to false,
|
||||
// unless you can guarantee that every call across every
|
||||
// pass will use the same sizes for the other parameters.
|
||||
// When calling this across multiple passes, always use the
|
||||
// same y viewport size/scale, and always use the same x
|
||||
// viewport size/scale when using the x result.
|
||||
// Returns: Return the final size of a manually resized mask tile, after
|
||||
// constraining the desired size to avoid artifacts. Under
|
||||
// unusual circumstances, tiles may become stretched vertically
|
||||
// (see wall of text below).
|
||||
// Stated tile properties must be correct:
|
||||
const float tile_aspect_ratio_inv =
|
||||
mask_resize_src_lut_size.y/mask_resize_src_lut_size.x;
|
||||
const float tile_aspect_ratio = 1.0/tile_aspect_ratio_inv;
|
||||
const vec2 tile_aspect = vec2(1.0, tile_aspect_ratio_inv);
|
||||
// If mask_specify_num_triads is 1.0/true and estimated_viewport_size.x is
|
||||
// wrong, the user preference will be misinterpreted:
|
||||
const float desired_tile_size_x = mask_triads_per_tile * lerp(
|
||||
mask_triad_size_desired,
|
||||
estimated_viewport_size.x / mask_num_triads_desired,
|
||||
mask_specify_num_triads);
|
||||
if(get_mask_sample_mode() > 0.5)
|
||||
{
|
||||
// We don't need constraints unless we're sampling MASK_RESIZE.
|
||||
return desired_tile_size_x * tile_aspect;
|
||||
}
|
||||
// Make sure we're not upsizing:
|
||||
const float temp_tile_size_x =
|
||||
min(desired_tile_size_x, mask_resize_src_lut_size.x);
|
||||
// Enforce min_tile_size and max_tile_size in both dimensions:
|
||||
const vec2 temp_tile_size = temp_tile_size_x * tile_aspect;
|
||||
const vec2 min_tile_size =
|
||||
mask_min_allowed_tile_size * tile_aspect;
|
||||
const vec2 max_tile_size =
|
||||
estimated_mask_resize_output_size / mask_resize_num_tiles;
|
||||
const vec2 clamped_tile_size =
|
||||
clamp(temp_tile_size, min_tile_size, max_tile_size);
|
||||
// Try to maintain tile_aspect_ratio. This is the tricky part:
|
||||
// If we're currently resizing in the y dimension, the x components
|
||||
// could be MEANINGLESS. (If estimated_mask_resize_output_size.x is
|
||||
// bogus, then so is max_tile_size.x and clamped_tile_size.x.)
|
||||
// We can't adjust the y size based on clamped_tile_size.x. If it
|
||||
// clamps when it shouldn't, it won't clamp again when later passes
|
||||
// call this function with the correct sizes, and the discrepancy will
|
||||
// break the sampling coords in MASKED_SCANLINES. Instead, we'll limit
|
||||
// the x size based on the y size, but not vice versa, unless the
|
||||
// caller swears the parameters were the same (correct) in every pass.
|
||||
// As a result, triads could appear vertically stretched if:
|
||||
// a.) mask_resize_src_lut_size.x > mask_resize_src_lut_size.y: Wide
|
||||
// LUT's might clamp x more than y (all provided LUT's are square)
|
||||
// b.) true_viewport_size.x < true_viewport_size.y: The user is playing
|
||||
// with a vertically oriented screen (not accounted for anyway)
|
||||
// c.) mask_resize_viewport_scale.x < masked_resize_viewport_scale.y:
|
||||
// Viewport scales are equal by default.
|
||||
// If any of these are the case, you can fix the stretching by setting:
|
||||
// mask_resize_viewport_scale.x = mask_resize_viewport_scale.y *
|
||||
// (1.0 / min_expected_aspect_ratio) *
|
||||
// (mask_resize_src_lut_size.x / mask_resize_src_lut_size.y)
|
||||
const float x_tile_size_from_y =
|
||||
clamped_tile_size.y * tile_aspect_ratio;
|
||||
const float y_tile_size_from_x = lerp(clamped_tile_size.y,
|
||||
clamped_tile_size.x * tile_aspect_ratio_inv,
|
||||
float(solemnly_swear_same_inputs_for_every_pass));
|
||||
const vec2 reclamped_tile_size = vec2(
|
||||
min(clamped_tile_size.x, x_tile_size_from_y),
|
||||
min(clamped_tile_size.y, y_tile_size_from_x));
|
||||
// We need integer tile sizes in both directions for tiled sampling to
|
||||
// work correctly. Use floor (to make sure we don't round up), but be
|
||||
// careful to avoid a rounding bug where floor decreases whole numbers:
|
||||
const vec2 final_resized_tile_size =
|
||||
floor(reclamped_tile_size + vec2(FIX_ZERO(0.0)));
|
||||
return final_resized_tile_size;
|
||||
}
|
||||
|
||||
|
||||
///////////////////////// FINAL MASK SAMPLING HELPERS ////////////////////////
|
||||
|
||||
vec4 get_mask_sampling_parameters(const vec2 mask_resize_texture_size,
|
||||
const vec2 mask_resize_video_size, const vec2 true_viewport_size,
|
||||
out vec2 mask_tiles_per_screen)
|
||||
{
|
||||
// Requires: 1.) Requirements of get_resized_mask_tile_size() must be
|
||||
// met, particularly regarding global constants.
|
||||
// The function parameters must be defined as follows:
|
||||
// 1.) mask_resize_texture_size == MASK_RESIZE.texture_size
|
||||
// if get_mask_sample_mode() is 0 (otherwise anything)
|
||||
// 2.) mask_resize_video_size == MASK_RESIZE.video_size
|
||||
// if get_mask_sample_mode() is 0 (otherwise anything)
|
||||
// 3.) true_viewport_size == IN.output_size for a pass set to
|
||||
// 1.0 viewport scale (i.e. it must be correct)
|
||||
// Returns: Return a vec4 containing:
|
||||
// xy: tex_uv coords for the start of the mask tile
|
||||
// zw: tex_uv size of the mask tile from start to end
|
||||
// mask_tiles_per_screen is an out parameter containing the
|
||||
// number of mask tiles that will fit on the screen.
|
||||
// First get the final resized tile size. The viewport size and mask
|
||||
// resize viewport scale must be correct, but don't solemnly swear they
|
||||
// were correct in both mask resize passes unless you know it's true.
|
||||
// (We can better ensure a correct tile aspect ratio if the parameters are
|
||||
// guaranteed correct in all passes...but if we lie, we'll get inconsistent
|
||||
// sizes across passes, resulting in broken texture coordinates.)
|
||||
const float mask_sample_mode = get_mask_sample_mode();
|
||||
const vec2 mask_resize_tile_size = get_resized_mask_tile_size(
|
||||
true_viewport_size, mask_resize_video_size, false);
|
||||
if(mask_sample_mode < 0.5)
|
||||
{
|
||||
// Sample MASK_RESIZE: The resized tile is a fraction of the texture
|
||||
// size and starts at a nonzero offset to allow for border texels:
|
||||
const vec2 mask_tile_uv_size = mask_resize_tile_size /
|
||||
mask_resize_texture_size;
|
||||
const vec2 skipped_tiles = mask_start_texels/mask_resize_tile_size;
|
||||
const vec2 mask_tile_start_uv = skipped_tiles * mask_tile_uv_size;
|
||||
// mask_tiles_per_screen must be based on the *true* viewport size:
|
||||
mask_tiles_per_screen = true_viewport_size / mask_resize_tile_size;
|
||||
return vec4(mask_tile_start_uv, mask_tile_uv_size);
|
||||
}
|
||||
else
|
||||
{
|
||||
// If we're tiling at the original size (1:1 pixel:texel), redefine a
|
||||
// "tile" to be the full texture containing many triads. Otherwise,
|
||||
// we're hardware-resampling an LUT, and the texture truly contains a
|
||||
// single unresized phosphor mask tile anyway.
|
||||
const vec2 mask_tile_uv_size = vec2(1.0);
|
||||
const vec2 mask_tile_start_uv = vec2(0.0);
|
||||
if(mask_sample_mode > 1.5)
|
||||
{
|
||||
// Repeat the full LUT at a 1:1 pixel:texel ratio without resizing:
|
||||
mask_tiles_per_screen = true_viewport_size/mask_texture_large_size;
|
||||
}
|
||||
else
|
||||
{
|
||||
// Hardware-resize the original LUT:
|
||||
mask_tiles_per_screen = true_viewport_size / mask_resize_tile_size;
|
||||
}
|
||||
return vec4(mask_tile_start_uv, mask_tile_uv_size);
|
||||
}
|
||||
}
|
||||
|
||||
vec2 fix_tiling_discontinuities_normalized(const vec2 tile_uv,
|
||||
vec2 duv_dx, vec2 duv_dy)
|
||||
{
|
||||
// Requires: 1.) duv_dx == ddx(tile_uv)
|
||||
// 2.) duv_dy == ddy(tile_uv)
|
||||
// 3.) tile_uv contains tile-relative uv coords in [0, 1],
|
||||
// such that (0.5, 0.5) is the center of a tile, etc.
|
||||
// ("Tile" can mean texture, the video embedded in the
|
||||
// texture, or some other "tile" embedded in a texture.)
|
||||
// Returns: Return new tile_uv coords that contain no discontinuities
|
||||
// across a 2x2 pixel quad.
|
||||
// Description:
|
||||
// When uv coords wrap from 1.0 to 0.0, they create a discontinuity in the
|
||||
// derivatives, which we assume happened if the absolute difference between
|
||||
// any fragment in a 2x2 block is > ~half a tile. If the current block has
|
||||
// a u or v discontinuity and the current fragment is in the first half of
|
||||
// the tile along that axis (i.e. it wrapped from 1.0 to 0.0), add a tile
|
||||
// to that coord to make the 2x2 block continuous. (It will now have a
|
||||
// coord > 1.0 in the padding area beyond the tile.) This function takes
|
||||
// derivatives as parameters so the caller can reuse them.
|
||||
// In case we're using high-quality (nVidia-style) derivatives, ensure
|
||||
// diagonically opposite fragments see each other for correctness:
|
||||
duv_dx = abs(duv_dx) + abs(ddy(duv_dx));
|
||||
duv_dy = abs(duv_dy) + abs(ddx(duv_dy));
|
||||
const vec2 pixel_in_first_half_tile = vec2(tile_uv < vec2(0.5));
|
||||
const vec2 jump_exists = vec2(duv_dx + duv_dy > vec2(0.5));
|
||||
return tile_uv + jump_exists * pixel_in_first_half_tile;
|
||||
}
|
||||
|
||||
vec2 convert_phosphor_tile_uv_wrap_to_tex_uv(const vec2 tile_uv_wrap,
|
||||
const vec4 mask_tile_start_uv_and_size)
|
||||
{
|
||||
// Requires: 1.) tile_uv_wrap contains tile-relative uv coords, where the
|
||||
// tile spans from [0, 1], such that (0.5, 0.5) is at the
|
||||
// tile center. The input coords can range from [0, inf],
|
||||
// and their fractional parts map to a repeated tile.
|
||||
// ("Tile" can mean texture, the video embedded in the
|
||||
// texture, or some other "tile" embedded in a texture.)
|
||||
// 2.) mask_tile_start_uv_and_size.xy contains tex_uv coords
|
||||
// for the start of the embedded tile in the full texture.
|
||||
// 3.) mask_tile_start_uv_and_size.zw contains the [fractional]
|
||||
// tex_uv size of the embedded tile in the full texture.
|
||||
// Returns: Return tex_uv coords (used for texture sampling)
|
||||
// corresponding to tile_uv_wrap.
|
||||
if(get_mask_sample_mode() < 0.5)
|
||||
{
|
||||
// Manually repeat the resized mask tile to fill the screen:
|
||||
// First get fractional tile_uv coords. Using frac/fmod on coords
|
||||
// confuses anisotropic filtering; fix it as user options dictate.
|
||||
// derived-settings-and-constants.h disables incompatible options.
|
||||
#ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
|
||||
vec2 tile_uv = frac(tile_uv_wrap * 0.5) * 2.0;
|
||||
#else
|
||||
vec2 tile_uv = frac(tile_uv_wrap);
|
||||
#endif
|
||||
#ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
|
||||
const vec2 tile_uv_dx = ddx(tile_uv);
|
||||
const vec2 tile_uv_dy = ddy(tile_uv);
|
||||
tile_uv = fix_tiling_discontinuities_normalized(tile_uv,
|
||||
tile_uv_dx, tile_uv_dy);
|
||||
#endif
|
||||
// The tile is embedded in a padded FBO, and it may start at a
|
||||
// nonzero offset if border texels are used to avoid artifacts:
|
||||
const vec2 mask_tex_uv = mask_tile_start_uv_and_size.xy +
|
||||
tile_uv * mask_tile_start_uv_and_size.zw;
|
||||
return mask_tex_uv;
|
||||
}
|
||||
else
|
||||
{
|
||||
// Sample from the input phosphor mask texture with hardware tiling.
|
||||
// If we're tiling at the original size (mode 2), the "tile" is the
|
||||
// whole texture, and it contains a large number of triads mapped with
|
||||
// a 1:1 pixel:texel ratio. OTHERWISE, the texture contains a single
|
||||
// unresized tile. tile_uv_wrap already has correct coords for both!
|
||||
return tile_uv_wrap;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
#endif // PHOSPHOR_MASK_RESIZING_H
|
||||
|
572
crt/shaders/crt-royale/src/scanline-functions.h
Normal file
|
@ -0,0 +1,572 @@
|
|||
#ifndef SCANLINE_FUNCTIONS_H
|
||||
#define SCANLINE_FUNCTIONS_H
|
||||
|
||||
///////////////////////////// GPL LICENSE NOTICE /////////////////////////////
|
||||
|
||||
// crt-royale: A full-featured CRT shader, with cheese.
|
||||
// Copyright (C) 2014 TroggleMonkey <trogglemonkey@gmx.com>
|
||||
//
|
||||
// This program is free software; you can redistribute it and/or modify it
|
||||
// under the terms of the GNU General Public License as published by the Free
|
||||
// Software Foundation; either version 2 of the License, or any later version.
|
||||
//
|
||||
// This program is distributed in the hope that it will be useful, but WITHOUT
|
||||
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
||||
// more details.
|
||||
//
|
||||
// You should have received a copy of the GNU General Public License along with
|
||||
// this program; if not, write to the Free Software Foundation, Inc., 59 Temple
|
||||
// Place, Suite 330, Boston, MA 02111-1307 USA
|
||||
|
||||
|
||||
////////////////////////////////// INCLUDES //////////////////////////////////
|
||||
|
||||
#include "../user-settings.h"
|
||||
#include "derived-settings-and-constants.h"
|
||||
#include "../../../../include/special-functions.h"
|
||||
#include "../../../../include/gamma-management.h"
|
||||
|
||||
|
||||
///////////////////////////// SCANLINE FUNCTIONS /////////////////////////////
|
||||
/*
|
||||
inline float3 get_gaussian_sigma(const float3 color, const float sigma_range)
|
||||
{
|
||||
// Requires: Globals:
|
||||
// 1.) beam_min_sigma and beam_max_sigma are global floats
|
||||
// containing the desired minimum and maximum beam standard
|
||||
// deviations, for dim and bright colors respectively.
|
||||
// 2.) beam_max_sigma must be > 0.0
|
||||
// 3.) beam_min_sigma must be in (0.0, beam_max_sigma]
|
||||
// 4.) beam_spot_power must be defined as a global float.
|
||||
// Parameters:
|
||||
// 1.) color is the underlying source color along a scanline
|
||||
// 2.) sigma_range = beam_max_sigma - beam_min_sigma; we take
|
||||
// sigma_range as a parameter to avoid repeated computation
|
||||
// when beam_{min, max}_sigma are runtime shader parameters
|
||||
// Optional: Users may set beam_spot_shape_function to 1 to define the
|
||||
// inner f(color) subfunction (see below) as:
|
||||
// f(color) = sqrt(1.0 - (color - 1.0)*(color - 1.0))
|
||||
// Otherwise (technically, if beam_spot_shape_function < 0.5):
|
||||
// f(color) = pow(color, beam_spot_power)
|
||||
// Returns: The standard deviation of the Gaussian beam for "color:"
|
||||
// sigma = beam_min_sigma + sigma_range * f(color)
|
||||
// Details/Discussion:
|
||||
// The beam's spot shape vaguely resembles an aspect-corrected f() in the
|
||||
// range [0, 1] (not quite, but it's related). f(color) = color makes
|
||||
// spots look like diamonds, and a spherical function or cube balances
|
||||
// between variable width and a soft/realistic shape. A beam_spot_power
|
||||
// > 1.0 can produce an ugly spot shape and more initial clipping, but the
|
||||
// final shape also differs based on the horizontal resampling filter and
|
||||
// the phosphor bloom. For instance, resampling horizontally in nonlinear
|
||||
// light and/or with a sharp (e.g. Lanczos) filter will sharpen the spot
|
||||
// shape, but a sixth root is still quite soft. A power function (default
|
||||
// 1.0/3.0 beam_spot_power) is most flexible, but a fixed spherical curve
|
||||
// has the highest variability without an awful spot shape.
|
||||
//
|
||||
// beam_min_sigma affects scanline sharpness/aliasing in dim areas, and its
|
||||
// difference from beam_max_sigma affects beam width variability. It only
|
||||
// affects clipping [for pure Gaussians] if beam_spot_power > 1.0 (which is
|
||||
// a conservative estimate for a more complex constraint).
|
||||
//
|
||||
// beam_max_sigma affects clipping and increasing scanline width/softness
|
||||
// as color increases. The wider this is, the more scanlines need to be
|
||||
// evaluated to avoid distortion. For a pure Gaussian, the max_beam_sigma
|
||||
// at which the first unused scanline always has a weight < 1.0/255.0 is:
|
||||
// num scanlines = 2, max_beam_sigma = 0.2089; distortions begin ~0.34
|
||||
// num scanlines = 3, max_beam_sigma = 0.3879; distortions begin ~0.52
|
||||
// num scanlines = 4, max_beam_sigma = 0.5723; distortions begin ~0.70
|
||||
// num scanlines = 5, max_beam_sigma = 0.7591; distortions begin ~0.89
|
||||
// num scanlines = 6, max_beam_sigma = 0.9483; distortions begin ~1.08
|
||||
// Generalized Gaussians permit more leeway here as steepness increases.
|
||||
if(beam_spot_shape_function < 0.5)
|
||||
{
|
||||
// Use a power function:
|
||||
return float3(beam_min_sigma) + sigma_range *
|
||||
pow(color, beam_spot_power);
|
||||
}
|
||||
else
|
||||
{
|
||||
// Use a spherical function:
|
||||
const float3 color_minus_1 = color - float3(1.0);
|
||||
return float3(beam_min_sigma) + sigma_range *
|
||||
sqrt(float3(1.0) - color_minus_1*color_minus_1);
|
||||
}
|
||||
}
|
||||
|
||||
inline float3 get_generalized_gaussian_beta(const float3 color,
|
||||
const float shape_range)
|
||||
{
|
||||
// Requires: Globals:
|
||||
// 1.) beam_min_shape and beam_max_shape are global floats
|
||||
// containing the desired min/max generalized Gaussian
|
||||
// beta parameters, for dim and bright colors respectively.
|
||||
// 2.) beam_max_shape must be >= 2.0
|
||||
// 3.) beam_min_shape must be in [2.0, beam_max_shape]
|
||||
// 4.) beam_shape_power must be defined as a global float.
|
||||
// Parameters:
|
||||
// 1.) color is the underlying source color along a scanline
|
||||
// 2.) shape_range = beam_max_shape - beam_min_shape; we take
|
||||
// shape_range as a parameter to avoid repeated computation
|
||||
// when beam_{min, max}_shape are runtime shader parameters
|
||||
// Returns: The type-I generalized Gaussian "shape" parameter beta for
|
||||
// the given color.
|
||||
// Details/Discussion:
|
||||
// Beta affects the scanline distribution as follows:
|
||||
// a.) beta < 2.0 narrows the peak to a spike with a discontinuous slope
|
||||
// b.) beta == 2.0 just degenerates to a Gaussian
|
||||
// c.) beta > 2.0 flattens and widens the peak, then drops off more steeply
|
||||
// than a Gaussian. Whereas high sigmas widen and soften peaks, high
|
||||
// beta widen and sharpen peaks at the risk of aliasing.
|
||||
// Unlike high beam_spot_powers, high beam_shape_powers actually soften shape
|
||||
// transitions, whereas lower ones sharpen them (at the risk of aliasing).
|
||||
return beam_min_shape + shape_range * pow(color, beam_shape_power);
|
||||
}
|
||||
|
||||
float3 scanline_gaussian_integral_contrib(const float3 dist,
|
||||
const float3 color, const float pixel_height, const float sigma_range)
|
||||
{
|
||||
// Requires: 1.) dist is the distance of the [potentially separate R/G/B]
|
||||
// point(s) from a scanline in units of scanlines, where
|
||||
// 1.0 means the sample point straddles the next scanline.
|
||||
// 2.) color is the underlying source color along a scanline.
|
||||
// 3.) pixel_height is the output pixel height in scanlines.
|
||||
// 4.) Requirements of get_gaussian_sigma() must be met.
|
||||
// Returns: Return a scanline's light output over a given pixel.
|
||||
// Details:
|
||||
// The CRT beam profile follows a roughly Gaussian distribution which is
|
||||
// wider for bright colors than dark ones. The integral over the full
|
||||
// range of a Gaussian function is always 1.0, so we can vary the beam
|
||||
// with a standard deviation without affecting brightness. 'x' = distance:
|
||||
// gaussian sample = 1/(sigma*sqrt(2*pi)) * e**(-(x**2)/(2*sigma**2))
|
||||
// gaussian integral = 0.5 (1.0 + erf(x/(sigma * sqrt(2))))
|
||||
// Use a numerical approximation of the "error function" (the Gaussian
|
||||
// indefinite integral) to find the definite integral of the scanline's
|
||||
// average brightness over a given pixel area. Even if curved coords were
|
||||
// used in this pass, a flat scalar pixel height works almost as well as a
|
||||
// pixel height computed from a full pixel-space to scanline-space matrix.
|
||||
const float3 sigma = get_gaussian_sigma(color, sigma_range);
|
||||
const float3 ph_offset = float3(pixel_height * 0.5);
|
||||
const float3 denom_inv = 1.0/(sigma*sqrt(2.0));
|
||||
const float3 integral_high = erf((dist + ph_offset)*denom_inv);
|
||||
const float3 integral_low = erf((dist - ph_offset)*denom_inv);
|
||||
return color * 0.5*(integral_high - integral_low)/pixel_height;
|
||||
}
|
||||
|
||||
float3 scanline_generalized_gaussian_integral_contrib(const float3 dist,
|
||||
const float3 color, const float pixel_height, const float sigma_range,
|
||||
const float shape_range)
|
||||
{
|
||||
// Requires: 1.) Requirements of scanline_gaussian_integral_contrib()
|
||||
// must be met.
|
||||
// 2.) Requirements of get_gaussian_sigma() must be met.
|
||||
// 3.) Requirements of get_generalized_gaussian_beta() must be
|
||||
// met.
|
||||
// Returns: Return a scanline's light output over a given pixel.
|
||||
// A generalized Gaussian distribution allows the shape (beta) to vary
|
||||
// as well as the width (alpha). "gamma" refers to the gamma function:
|
||||
// generalized sample =
|
||||
// beta/(2*alpha*gamma(1/beta)) * e**(-(|x|/alpha)**beta)
|
||||
// ligamma(s, z) is the lower incomplete gamma function, for which we only
|
||||
// implement two of four branches (because we keep 1/beta <= 0.5):
|
||||
// generalized integral = 0.5 + 0.5* sign(x) *
|
||||
// ligamma(1/beta, (|x|/alpha)**beta)/gamma(1/beta)
|
||||
// See get_generalized_gaussian_beta() for a discussion of beta.
|
||||
// We base alpha on the intended Gaussian sigma, but it only strictly
|
||||
// models models standard deviation at beta == 2, because the standard
|
||||
// deviation depends on both alpha and beta (keeping alpha independent is
|
||||
// faster and preserves intuitive behavior and a full spectrum of results).
|
||||
const float3 alpha = sqrt(2.0) * get_gaussian_sigma(color, sigma_range);
|
||||
const float3 beta = get_generalized_gaussian_beta(color, shape_range);
|
||||
const float3 alpha_inv = float3(1.0)/alpha;
|
||||
const float3 s = float3(1.0)/beta;
|
||||
const float3 ph_offset = float3(pixel_height * 0.5);
|
||||
// Pass beta to gamma_impl to avoid repeated divides. Similarly pass
|
||||
// beta (i.e. 1/s) and 1/gamma(s) to normalized_ligamma_impl.
|
||||
const float3 gamma_s_inv = float3(1.0)/gamma_impl(s, beta);
|
||||
const float3 dist1 = dist + ph_offset;
|
||||
const float3 dist0 = dist - ph_offset;
|
||||
const float3 integral_high = sign(dist1) * normalized_ligamma_impl(
|
||||
s, pow(abs(dist1)*alpha_inv, beta), beta, gamma_s_inv);
|
||||
const float3 integral_low = sign(dist0) * normalized_ligamma_impl(
|
||||
s, pow(abs(dist0)*alpha_inv, beta), beta, gamma_s_inv);
|
||||
return color * 0.5*(integral_high - integral_low)/pixel_height;
|
||||
}
|
||||
|
||||
float3 scanline_gaussian_sampled_contrib(const float3 dist, const float3 color,
|
||||
const float pixel_height, const float sigma_range)
|
||||
{
|
||||
// See scanline_gaussian integral_contrib() for detailed comments!
|
||||
// gaussian sample = 1/(sigma*sqrt(2*pi)) * e**(-(x**2)/(2*sigma**2))
|
||||
const float3 sigma = get_gaussian_sigma(color, sigma_range);
|
||||
// Avoid repeated divides:
|
||||
const float3 sigma_inv = float3(1.0)/sigma;
|
||||
const float3 inner_denom_inv = 0.5 * sigma_inv * sigma_inv;
|
||||
const float3 outer_denom_inv = sigma_inv/sqrt(2.0*pi);
|
||||
if(beam_antialias_level > 0.5)
|
||||
{
|
||||
// Sample 1/3 pixel away in each direction as well:
|
||||
const float3 sample_offset = float3(pixel_height/3.0);
|
||||
const float3 dist2 = dist + sample_offset;
|
||||
const float3 dist3 = abs(dist - sample_offset);
|
||||
// Average three pure Gaussian samples:
|
||||
const float3 scale = color/3.0 * outer_denom_inv;
|
||||
const float3 weight1 = exp(-(dist*dist)*inner_denom_inv);
|
||||
const float3 weight2 = exp(-(dist2*dist2)*inner_denom_inv);
|
||||
const float3 weight3 = exp(-(dist3*dist3)*inner_denom_inv);
|
||||
return scale * (weight1 + weight2 + weight3);
|
||||
}
|
||||
else
|
||||
{
|
||||
return color*exp(-(dist*dist)*inner_denom_inv)*outer_denom_inv;
|
||||
}
|
||||
}
|
||||
|
||||
float3 scanline_generalized_gaussian_sampled_contrib(const float3 dist,
|
||||
const float3 color, const float pixel_height, const float sigma_range,
|
||||
const float shape_range)
|
||||
{
|
||||
// See scanline_generalized_gaussian_integral_contrib() for details!
|
||||
// generalized sample =
|
||||
// beta/(2*alpha*gamma(1/beta)) * e**(-(|x|/alpha)**beta)
|
||||
const float3 alpha = sqrt(2.0) * get_gaussian_sigma(color, sigma_range);
|
||||
const float3 beta = get_generalized_gaussian_beta(color, shape_range);
|
||||
// Avoid repeated divides:
|
||||
const float3 alpha_inv = float3(1.0)/alpha;
|
||||
const float3 beta_inv = float3(1.0)/beta;
|
||||
const float3 scale = color * beta * 0.5 * alpha_inv /
|
||||
gamma_impl(beta_inv, beta);
|
||||
if(beam_antialias_level > 0.5)
|
||||
{
|
||||
// Sample 1/3 pixel closer to and farther from the scanline too.
|
||||
const float3 sample_offset = float3(pixel_height/3.0);
|
||||
const float3 dist2 = dist + sample_offset;
|
||||
const float3 dist3 = abs(dist - sample_offset);
|
||||
// Average three generalized Gaussian samples:
|
||||
const float3 weight1 = exp(-pow(abs(dist*alpha_inv), beta));
|
||||
const float3 weight2 = exp(-pow(abs(dist2*alpha_inv), beta));
|
||||
const float3 weight3 = exp(-pow(abs(dist3*alpha_inv), beta));
|
||||
return scale/3.0 * (weight1 + weight2 + weight3);
|
||||
}
|
||||
else
|
||||
{
|
||||
return scale * exp(-pow(abs(dist*alpha_inv), beta));
|
||||
}
|
||||
}
|
||||
|
||||
inline float3 scanline_contrib(float3 dist, float3 color,
|
||||
float pixel_height, const float sigma_range, const float shape_range)
|
||||
{
|
||||
// Requires: 1.) Requirements of scanline_gaussian_integral_contrib()
|
||||
// must be met.
|
||||
// 2.) Requirements of get_gaussian_sigma() must be met.
|
||||
// 3.) Requirements of get_generalized_gaussian_beta() must be
|
||||
// met.
|
||||
// Returns: Return a scanline's light output over a given pixel, using
|
||||
// a generalized or pure Gaussian distribution and sampling or
|
||||
// integrals as desired by user codepath choices.
|
||||
if(beam_generalized_gaussian)
|
||||
{
|
||||
if(beam_antialias_level > 1.5)
|
||||
{
|
||||
return scanline_generalized_gaussian_integral_contrib(
|
||||
dist, color, pixel_height, sigma_range, shape_range);
|
||||
}
|
||||
else
|
||||
{
|
||||
return scanline_generalized_gaussian_sampled_contrib(
|
||||
dist, color, pixel_height, sigma_range, shape_range);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
if(beam_antialias_level > 1.5)
|
||||
{
|
||||
return scanline_gaussian_integral_contrib(
|
||||
dist, color, pixel_height, sigma_range);
|
||||
}
|
||||
else
|
||||
{
|
||||
return scanline_gaussian_sampled_contrib(
|
||||
dist, color, pixel_height, sigma_range);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
inline float3 get_raw_interpolated_color(const float3 color0,
|
||||
const float3 color1, const float3 color2, const float3 color3,
|
||||
const float4 weights)
|
||||
{
|
||||
// Use max to avoid bizarre artifacts from negative colors:
|
||||
return max(mul(weights, float4x3(color0, color1, color2, color3)), 0.0);
|
||||
}
|
||||
|
||||
float3 get_interpolated_linear_color(const float3 color0, const float3 color1,
|
||||
const float3 color2, const float3 color3, const float4 weights)
|
||||
{
|
||||
// Requires: 1.) Requirements of include/gamma-management.h must be met:
|
||||
// intermediate_gamma must be globally defined, and input
|
||||
// colors are interpreted as linear RGB unless you #define
|
||||
// GAMMA_ENCODE_EVERY_FBO (in which case they are
|
||||
// interpreted as gamma-encoded with intermediate_gamma).
|
||||
// 2.) color0-3 are colors sampled from a texture with tex2D().
|
||||
// They are interpreted as defined in requirement 1.
|
||||
// 3.) weights contains weights for each color, summing to 1.0.
|
||||
// 4.) beam_horiz_linear_rgb_weight must be defined as a global
|
||||
// float in [0.0, 1.0] describing how much blending should
|
||||
// be done in linear RGB (rest is gamma-corrected RGB).
|
||||
// 5.) RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE must be #defined
|
||||
// if beam_horiz_linear_rgb_weight is anything other than a
|
||||
// static constant, or we may try branching at runtime
|
||||
// without dynamic branches allowed (slow).
|
||||
// Returns: Return an interpolated color lookup between the four input
|
||||
// colors based on the weights in weights. The final color will
|
||||
// be a linear RGB value, but the blending will be done as
|
||||
// indicated above.
|
||||
const float intermediate_gamma = get_intermediate_gamma();
|
||||
// Branch if beam_horiz_linear_rgb_weight is static (for free) or if the
|
||||
// profile allows dynamic branches (faster than computing extra pows):
|
||||
#ifndef RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE
|
||||
#define SCANLINES_BRANCH_FOR_LINEAR_RGB_WEIGHT
|
||||
#else
|
||||
#ifdef DRIVERS_ALLOW_DYNAMIC_BRANCHES
|
||||
#define SCANLINES_BRANCH_FOR_LINEAR_RGB_WEIGHT
|
||||
#endif
|
||||
#endif
|
||||
#ifdef SCANLINES_BRANCH_FOR_LINEAR_RGB_WEIGHT
|
||||
// beam_horiz_linear_rgb_weight is static, so we can branch:
|
||||
#ifdef GAMMA_ENCODE_EVERY_FBO
|
||||
const float3 gamma_mixed_color = pow(get_raw_interpolated_color(
|
||||
color0, color1, color2, color3, weights), intermediate_gamma);
|
||||
if(beam_horiz_linear_rgb_weight > 0.0)
|
||||
{
|
||||
const float3 linear_mixed_color = get_raw_interpolated_color(
|
||||
pow(color0, intermediate_gamma),
|
||||
pow(color1, intermediate_gamma),
|
||||
pow(color2, intermediate_gamma),
|
||||
pow(color3, intermediate_gamma),
|
||||
weights);
|
||||
return lerp(gamma_mixed_color, linear_mixed_color,
|
||||
beam_horiz_linear_rgb_weight);
|
||||
}
|
||||
else
|
||||
{
|
||||
return gamma_mixed_color;
|
||||
}
|
||||
#else
|
||||
const float3 linear_mixed_color = get_raw_interpolated_color(
|
||||
color0, color1, color2, color3, weights);
|
||||
if(beam_horiz_linear_rgb_weight < 1.0)
|
||||
{
|
||||
const float3 gamma_mixed_color = get_raw_interpolated_color(
|
||||
pow(color0, 1.0/intermediate_gamma),
|
||||
pow(color1, 1.0/intermediate_gamma),
|
||||
pow(color2, 1.0/intermediate_gamma),
|
||||
pow(color3, 1.0/intermediate_gamma),
|
||||
weights);
|
||||
return lerp(gamma_mixed_color, linear_mixed_color,
|
||||
beam_horiz_linear_rgb_weight);
|
||||
}
|
||||
else
|
||||
{
|
||||
return linear_mixed_color;
|
||||
}
|
||||
#endif // GAMMA_ENCODE_EVERY_FBO
|
||||
#else
|
||||
#ifdef GAMMA_ENCODE_EVERY_FBO
|
||||
// Inputs: color0-3 are colors in gamma-encoded RGB.
|
||||
const float3 gamma_mixed_color = pow(get_raw_interpolated_color(
|
||||
color0, color1, color2, color3, weights), intermediate_gamma);
|
||||
const float3 linear_mixed_color = get_raw_interpolated_color(
|
||||
pow(color0, intermediate_gamma),
|
||||
pow(color1, intermediate_gamma),
|
||||
pow(color2, intermediate_gamma),
|
||||
pow(color3, intermediate_gamma),
|
||||
weights);
|
||||
return lerp(gamma_mixed_color, linear_mixed_color,
|
||||
beam_horiz_linear_rgb_weight);
|
||||
#else
|
||||
// Inputs: color0-3 are colors in linear RGB.
|
||||
const float3 linear_mixed_color = get_raw_interpolated_color(
|
||||
color0, color1, color2, color3, weights);
|
||||
const float3 gamma_mixed_color = get_raw_interpolated_color(
|
||||
pow(color0, 1.0/intermediate_gamma),
|
||||
pow(color1, 1.0/intermediate_gamma),
|
||||
pow(color2, 1.0/intermediate_gamma),
|
||||
pow(color3, 1.0/intermediate_gamma),
|
||||
weights);
|
||||
return lerp(gamma_mixed_color, linear_mixed_color,
|
||||
beam_horiz_linear_rgb_weight);
|
||||
#endif // GAMMA_ENCODE_EVERY_FBO
|
||||
#endif // SCANLINES_BRANCH_FOR_LINEAR_RGB_WEIGHT
|
||||
}
|
||||
|
||||
float3 get_scanline_color(const sampler2D texture, const float2 scanline_uv,
|
||||
const float2 uv_step_x, const float4 weights)
|
||||
{
|
||||
// Requires: 1.) scanline_uv must be vertically snapped to the caller's
|
||||
// desired line or scanline and horizontally snapped to the
|
||||
// texel just left of the output pixel (color1)
|
||||
// 2.) uv_step_x must contain the horizontal uv distance
|
||||
// between texels.
|
||||
// 3.) weights must contain interpolation filter weights for
|
||||
// color0, color1, color2, and color3, where color1 is just
|
||||
// left of the output pixel.
|
||||
// Returns: Return a horizontally interpolated texture lookup using 2-4
|
||||
// nearby texels, according to weights and the conventions of
|
||||
// get_interpolated_linear_color().
|
||||
// We can ignore the outside texture lookups for Quilez resampling.
|
||||
const float3 color1 = tex2D(texture, scanline_uv).rgb;
|
||||
const float3 color2 = tex2D(texture, scanline_uv + uv_step_x).rgb;
|
||||
float3 color0 = float3(0.0);
|
||||
float3 color3 = float3(0.0);
|
||||
if(beam_horiz_filter > 0.5)
|
||||
{
|
||||
color0 = tex2D(texture, scanline_uv - uv_step_x).rgb;
|
||||
color3 = tex2D(texture, scanline_uv + 2.0 * uv_step_x).rgb;
|
||||
}
|
||||
// Sample the texture as-is, whether it's linear or gamma-encoded:
|
||||
// get_interpolated_linear_color() will handle the difference.
|
||||
return get_interpolated_linear_color(color0, color1, color2, color3, weights);
|
||||
}
|
||||
|
||||
float3 sample_single_scanline_horizontal(const sampler2D texture,
|
||||
const float2 tex_uv, const float2 texture_size,
|
||||
const float2 texture_size_inv)
|
||||
{
|
||||
// TODO: Add function requirements.
|
||||
// Snap to the previous texel and get sample dists from 2/4 nearby texels:
|
||||
const float2 curr_texel = tex_uv * texture_size;
|
||||
// Use under_half to fix a rounding bug right around exact texel locations.
|
||||
const float2 prev_texel =
|
||||
floor(curr_texel - float2(under_half)) + float2(0.5);
|
||||
const float2 prev_texel_hor = float2(prev_texel.x, curr_texel.y);
|
||||
const float2 prev_texel_hor_uv = prev_texel_hor * texture_size_inv;
|
||||
const float prev_dist = curr_texel.x - prev_texel_hor.x;
|
||||
const float4 sample_dists = float4(1.0 + prev_dist, prev_dist,
|
||||
1.0 - prev_dist, 2.0 - prev_dist);
|
||||
// Get Quilez, Lanczos2, or Gaussian resize weights for 2/4 nearby texels:
|
||||
float4 weights;
|
||||
if(beam_horiz_filter < 0.5)
|
||||
{
|
||||
// Quilez:
|
||||
const float x = sample_dists.y;
|
||||
const float w2 = x*x*x*(x*(x*6.0 - 15.0) + 10.0);
|
||||
weights = float4(0.0, 1.0 - w2, w2, 0.0);
|
||||
}
|
||||
else if(beam_horiz_filter < 1.5)
|
||||
{
|
||||
// Gaussian:
|
||||
float inner_denom_inv = 1.0/(2.0*beam_horiz_sigma*beam_horiz_sigma);
|
||||
weights = exp(-(sample_dists*sample_dists)*inner_denom_inv);
|
||||
}
|
||||
else
|
||||
{
|
||||
// Lanczos2:
|
||||
const float4 pi_dists = FIX_ZERO(sample_dists * pi);
|
||||
weights = 2.0 * sin(pi_dists) * sin(pi_dists * 0.5) /
|
||||
(pi_dists * pi_dists);
|
||||
}
|
||||
// Ensure the weight sum == 1.0:
|
||||
const float4 final_weights = weights/dot(weights, float4(1.0));
|
||||
// Get the interpolated horizontal scanline color:
|
||||
const float2 uv_step_x = float2(texture_size_inv.x, 0.0);
|
||||
return get_scanline_color(
|
||||
texture, prev_texel_hor_uv, uv_step_x, final_weights);
|
||||
}
|
||||
|
||||
float3 sample_rgb_scanline_horizontal(const sampler2D texture,
|
||||
const float2 tex_uv, const float2 texture_size,
|
||||
const float2 texture_size_inv)
|
||||
{
|
||||
// TODO: Add function requirements.
|
||||
// Rely on a helper to make convergence easier.
|
||||
if(beam_misconvergence)
|
||||
{
|
||||
const float3 convergence_offsets_rgb =
|
||||
get_convergence_offsets_x_vector();
|
||||
const float3 offset_u_rgb =
|
||||
convergence_offsets_rgb * texture_size_inv.xxx;
|
||||
const float2 scanline_uv_r = tex_uv - float2(offset_u_rgb.r, 0.0);
|
||||
const float2 scanline_uv_g = tex_uv - float2(offset_u_rgb.g, 0.0);
|
||||
const float2 scanline_uv_b = tex_uv - float2(offset_u_rgb.b, 0.0);
|
||||
const float3 sample_r = sample_single_scanline_horizontal(
|
||||
texture, scanline_uv_r, texture_size, texture_size_inv);
|
||||
const float3 sample_g = sample_single_scanline_horizontal(
|
||||
texture, scanline_uv_g, texture_size, texture_size_inv);
|
||||
const float3 sample_b = sample_single_scanline_horizontal(
|
||||
texture, scanline_uv_b, texture_size, texture_size_inv);
|
||||
return float3(sample_r.r, sample_g.g, sample_b.b);
|
||||
}
|
||||
else
|
||||
{
|
||||
return sample_single_scanline_horizontal(texture, tex_uv, texture_size,
|
||||
texture_size_inv);
|
||||
}
|
||||
}
|
||||
|
||||
float2 get_last_scanline_uv(const float2 tex_uv, const float2 texture_size,
|
||||
const float2 texture_size_inv, const float2 il_step_multiple,
|
||||
const float frame_count, out float dist)
|
||||
{
|
||||
// Compute texture coords for the last/upper scanline, accounting for
|
||||
// interlacing: With interlacing, only consider even/odd scanlines every
|
||||
// other frame. Top-field first (TFF) order puts even scanlines on even
|
||||
// frames, and BFF order puts them on odd frames. Texels are centered at:
|
||||
// frac(tex_uv * texture_size) == x.5
|
||||
// Caution: If these coordinates ever seem incorrect, first make sure it's
|
||||
// not because anisotropic filtering is blurring across field boundaries.
|
||||
// Note: TFF/BFF won't matter for sources that double-weave or similar.
|
||||
const float field_offset = floor(il_step_multiple.y * 0.75) *
|
||||
fmod(frame_count + float(interlace_bff), 2.0);
|
||||
const float2 curr_texel = tex_uv * texture_size;
|
||||
// Use under_half to fix a rounding bug right around exact texel locations.
|
||||
const float2 prev_texel_num = floor(curr_texel - float2(under_half));
|
||||
const float wrong_field = fmod(
|
||||
prev_texel_num.y + field_offset, il_step_multiple.y);
|
||||
const float2 scanline_texel_num = prev_texel_num - float2(0.0, wrong_field);
|
||||
// Snap to the center of the previous scanline in the current field:
|
||||
const float2 scanline_texel = scanline_texel_num + float2(0.5);
|
||||
const float2 scanline_uv = scanline_texel * texture_size_inv;
|
||||
// Save the sample's distance from the scanline, in units of scanlines:
|
||||
dist = (curr_texel.y - scanline_texel.y)/il_step_multiple.y;
|
||||
return scanline_uv;
|
||||
}
|
||||
*/
|
||||
bool is_interlaced(float num_lines)
|
||||
{
|
||||
// Detect interlacing based on the number of lines in the source.
|
||||
if(interlace_detect)
|
||||
{
|
||||
// NTSC: 525 lines, 262.5/field; 486 active (2 half-lines), 243/field
|
||||
// NTSC Emulators: Typically 224 or 240 lines
|
||||
// PAL: 625 lines, 312.5/field; 576 active (typical), 288/field
|
||||
// PAL Emulators: ?
|
||||
// ATSC: 720p, 1080i, 1080p
|
||||
// Where do we place our cutoffs? Assumptions:
|
||||
// 1.) We only need to care about active lines.
|
||||
// 2.) Anything > 288 and <= 576 lines is probably interlaced.
|
||||
// 3.) Anything > 576 lines is probably not interlaced...
|
||||
// 4.) ...except 1080 lines, which is a crapshoot (user decision).
|
||||
// 5.) Just in case the main program uses calculated video sizes,
|
||||
// we should nudge the float thresholds a bit.
|
||||
bool sd_interlace;
|
||||
if (num_lines > 288.5 && num_lines < 576.5)
|
||||
{sd_interlace = true;}
|
||||
else
|
||||
{sd_interlace = false;}
|
||||
bool hd_interlace;
|
||||
if (num_lines > 1079.5 && num_lines < 1080.5)
|
||||
{hd_interlace = false;}
|
||||
else
|
||||
{hd_interlace = sd_interlace || hd_interlace;}
|
||||
}
|
||||
else
|
||||
{
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
#endif // SCANLINE_FUNCTIONS_H
|
||||
|
1393
crt/shaders/crt-royale/src/tex2Dantialias.h
Normal file
58
crt/shaders/crt-royale/src/user-preset-constants.h
Normal file
|
@ -0,0 +1,58 @@
|
|||
#ifndef USER_CGP_CONSTANTS_H
|
||||
#define USER_CGP_CONSTANTS_H
|
||||
|
||||
// IMPORTANT:
|
||||
// These constants MUST be set appropriately for the settings in crt-royale.cgp
|
||||
// (or whatever related .cgp file you're using). If they aren't, you're likely
|
||||
// to get artifacts, the wrong phosphor mask size, etc. I wish these could be
|
||||
// set directly in the .cgp file to make things easier, but...they can't.
|
||||
|
||||
// PASS SCALES AND RELATED CONSTANTS:
|
||||
// Copy the absolute scale_x for BLOOM_APPROX. There are two major versions of
|
||||
// this shader: One does a viewport-scale bloom, and the other skips it. The
|
||||
// latter benefits from a higher bloom_approx_scale_x, so save both separately:
|
||||
const float bloom_approx_size_x = 320.0;
|
||||
const float bloom_approx_size_x_for_fake = 400.0;
|
||||
// Copy the viewport-relative scales of the phosphor mask resize passes
|
||||
// (MASK_RESIZE and the pass immediately preceding it):
|
||||
const vec2 mask_resize_viewport_scale = vec2(0.0625, 0.0625);
|
||||
// Copy the geom_max_aspect_ratio used to calculate the MASK_RESIZE scales, etc.:
|
||||
const float geom_max_aspect_ratio = 4.0/3.0;
|
||||
|
||||
// PHOSPHOR MASK TEXTURE CONSTANTS:
|
||||
// Set the following constants to reflect the properties of the phosphor mask
|
||||
// texture named in crt-royale.cgp. The shader optionally resizes a mask tile
|
||||
// based on user settings, then repeats a single tile until filling the screen.
|
||||
// The shader must know the input texture size (default 64x64), and to manually
|
||||
// resize, it must also know the horizontal triads per tile (default 8).
|
||||
const vec2 mask_texture_small_size = vec2(64.0);
|
||||
const vec2 mask_texture_large_size = vec2(512.0);
|
||||
const float mask_triads_per_tile = 8.0;
|
||||
// We need the average brightness of the phosphor mask to compensate for the
|
||||
// dimming it causes. The following four values are roughly correct for the
|
||||
// masks included with the shader. Update the value for any LUT texture you
|
||||
// change. [Un]comment "#define PHOSPHOR_MASK_GRILLE14" depending on whether
|
||||
// the loaded aperture grille uses 14-pixel or 15-pixel stripes (default 15).
|
||||
//#define PHOSPHOR_MASK_GRILLE14
|
||||
const float mask_grille14_avg_color = 50.6666666/255.0;
|
||||
// TileableLinearApertureGrille14Wide7d33Spacing*.png
|
||||
// TileableLinearApertureGrille14Wide10And6Spacing*.png
|
||||
const float mask_grille15_avg_color = 53.0/255.0;
|
||||
// TileableLinearApertureGrille15Wide6d33Spacing*.png
|
||||
// TileableLinearApertureGrille15Wide8And5d5Spacing*.png
|
||||
const float mask_slot_avg_color = 46.0/255.0;
|
||||
// TileableLinearSlotMask15Wide9And4d5Horizontal8VerticalSpacing*.png
|
||||
// TileableLinearSlotMaskTall15Wide9And4d5Horizontal9d14VerticalSpacing*.png
|
||||
const float mask_shadow_avg_color = 41.0/255.0;
|
||||
// TileableLinearShadowMask*.png
|
||||
// TileableLinearShadowMaskEDP*.png
|
||||
|
||||
#ifdef PHOSPHOR_MASK_GRILLE14
|
||||
const float mask_grille_avg_color = mask_grille14_avg_color;
|
||||
#else
|
||||
const float mask_grille_avg_color = mask_grille15_avg_color;
|
||||
#endif
|
||||
|
||||
|
||||
#endif // USER_CGP_CONSTANTS_H
|
||||
|
359
crt/shaders/crt-royale/user-settings.h
Normal file
|
@ -0,0 +1,359 @@
|
|||
#ifndef USER_SETTINGS_H
|
||||
#define USER_SETTINGS_H
|
||||
|
||||
///////////////////////////// DRIVER CAPABILITIES ////////////////////////////
|
||||
|
||||
// The Cg compiler uses different "profiles" with different capabilities.
|
||||
// This shader requires a Cg compilation profile >= arbfp1, but a few options
|
||||
// require higher profiles like fp30 or fp40. The shader can't detect profile
|
||||
// or driver capabilities, so instead you must comment or uncomment the lines
|
||||
// below with "//" before "#define." Disable an option if you get compilation
|
||||
// errors resembling those listed. Generally speaking, all of these options
|
||||
// will run on nVidia cards, but only DRIVERS_ALLOW_TEX2DBIAS (if that) is
|
||||
// likely to run on ATI/AMD, due to the Cg compiler's profile limitations.
|
||||
|
||||
// Derivatives: Unsupported on fp20, ps_1_1, ps_1_2, ps_1_3, and arbfp1.
|
||||
// Among other things, derivatives help us fix anisotropic filtering artifacts
|
||||
// with curved manually tiled phosphor mask coords. Related errors:
|
||||
// error C3004: function "vec2 ddx(vec2);" not supported in this profile
|
||||
// error C3004: function "vec2 ddy(vec2);" not supported in this profile
|
||||
//#define DRIVERS_ALLOW_DERIVATIVES
|
||||
|
||||
// Fine derivatives: Unsupported on older ATI cards.
|
||||
// Fine derivatives enable 2x2 fragment block communication, letting us perform
|
||||
// fast single-pass blur operations. If your card uses coarse derivatives and
|
||||
// these are enabled, blurs could look broken. Derivatives are a prerequisite.
|
||||
#ifdef DRIVERS_ALLOW_DERIVATIVES
|
||||
#define DRIVERS_ALLOW_FINE_DERIVATIVES
|
||||
#endif
|
||||
|
||||
// Dynamic looping: Requires an fp30 or newer profile.
|
||||
// This makes phosphor mask resampling faster in some cases. Related errors:
|
||||
// error C5013: profile does not support "for" statements and "for" could not
|
||||
// be unrolled
|
||||
//#define DRIVERS_ALLOW_DYNAMIC_BRANCHES
|
||||
|
||||
// Without DRIVERS_ALLOW_DYNAMIC_BRANCHES, we need to use unrollable loops.
|
||||
// Using one static loop avoids overhead if the user is right, but if the user
|
||||
// is wrong (loops are allowed), breaking a loop into if-blocked pieces with a
|
||||
// binary search can potentially save some iterations. However, it may fail:
|
||||
// error C6001: Temporary register limit of 32 exceeded; 35 registers
|
||||
// needed to compile program
|
||||
//#define ACCOMODATE_POSSIBLE_DYNAMIC_LOOPS
|
||||
|
||||
// tex2Dlod: Requires an fp40 or newer profile. This can be used to disable
|
||||
// anisotropic filtering, thereby fixing related artifacts. Related errors:
|
||||
// error C3004: function "vec4 tex2Dlod(sampler2D, vec4);" not supported in
|
||||
// this profile
|
||||
//#define DRIVERS_ALLOW_TEX2DLOD
|
||||
|
||||
// tex2Dbias: Requires an fp30 or newer profile. This can be used to alleviate
|
||||
// artifacts from anisotropic filtering and mipmapping. Related errors:
|
||||
// error C3004: function "vec4 tex2Dbias(sampler2D, vec4);" not supported
|
||||
// in this profile
|
||||
//#define DRIVERS_ALLOW_TEX2DBIAS
|
||||
|
||||
// Integrated graphics compatibility: Integrated graphics like Intel HD 4000
|
||||
// impose stricter limitations on register counts and instructions. Enable
|
||||
// INTEGRATED_GRAPHICS_COMPATIBILITY_MODE if you still see error C6001 or:
|
||||
// error C6002: Instruction limit of 1024 exceeded: 1523 instructions needed
|
||||
// to compile program.
|
||||
// Enabling integrated graphics compatibility mode will automatically disable:
|
||||
// 1.) PHOSPHOR_MASK_MANUALLY_RESIZE: The phosphor mask will be softer.
|
||||
// (This may be reenabled in a later release.)
|
||||
// 2.) RUNTIME_GEOMETRY_MODE
|
||||
// 3.) The high-quality 4x4 Gaussian resize for the bloom approximation
|
||||
//#define INTEGRATED_GRAPHICS_COMPATIBILITY_MODE
|
||||
|
||||
|
||||
//////////////////////////// USER CODEPATH OPTIONS ///////////////////////////
|
||||
|
||||
// To disable a #define option, turn its line into a comment with "//."
|
||||
|
||||
// RUNTIME VS. COMPILE-TIME OPTIONS (Major Performance Implications):
|
||||
// Enable runtime shader parameters in the Retroarch (etc.) GUI? They override
|
||||
// many of the options in this file and allow real-time tuning, but many of
|
||||
// them are slower. Disabling them and using this text file will boost FPS.
|
||||
#define RUNTIME_SHADER_PARAMS_ENABLE
|
||||
// Specify the phosphor bloom sigma at runtime? This option is 10% slower, but
|
||||
// it's the only way to do a wide-enough full bloom with a runtime dot pitch.
|
||||
#define RUNTIME_PHOSPHOR_BLOOM_SIGMA
|
||||
// Specify antialiasing weight parameters at runtime? (Costs ~20% with cubics)
|
||||
#define RUNTIME_ANTIALIAS_WEIGHTS
|
||||
// Specify subpixel offsets at runtime? (WARNING: EXTREMELY EXPENSIVE!)
|
||||
//#define RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS
|
||||
// Make beam_horiz_filter and beam_horiz_linear_rgb_weight into runtime shader
|
||||
// parameters? This will require more math or dynamic branching.
|
||||
#define RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE
|
||||
// Specify the tilt at runtime? This makes things about 3% slower.
|
||||
#define RUNTIME_GEOMETRY_TILT
|
||||
// Specify the geometry mode at runtime?
|
||||
#define RUNTIME_GEOMETRY_MODE
|
||||
// Specify the phosphor mask type (aperture grille, slot mask, shadow mask) and
|
||||
// mode (Lanczos-resize, hardware resize, or tile 1:1) at runtime, even without
|
||||
// dynamic branches? This is cheap if mask_resize_viewport_scale is small.
|
||||
#define FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
|
||||
|
||||
// PHOSPHOR MASK:
|
||||
// Manually resize the phosphor mask for best results (slower)? Disabling this
|
||||
// removes the option to do so, but it may be faster without dynamic branches.
|
||||
#define PHOSPHOR_MASK_MANUALLY_RESIZE
|
||||
// If we sinc-resize the mask, should we Lanczos-window it (slower but better)?
|
||||
#define PHOSPHOR_MASK_RESIZE_LANCZOS_WINDOW
|
||||
// Larger blurs are expensive, but we need them to blur larger triads. We can
|
||||
// detect the right blur if the triad size is static or our profile allows
|
||||
// dynamic branches, but otherwise we use the largest blur the user indicates
|
||||
// they might need:
|
||||
#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_3_PIXELS
|
||||
//#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_6_PIXELS
|
||||
//#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_9_PIXELS
|
||||
//#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_12_PIXELS
|
||||
// Here's a helpful chart:
|
||||
// MaxTriadSize BlurSize MinTriadCountsByResolution
|
||||
// 3.0 9.0 480/640/960/1920 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
|
||||
// 6.0 17.0 240/320/480/960 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
|
||||
// 9.0 25.0 160/213/320/640 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
|
||||
// 12.0 31.0 120/160/240/480 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
|
||||
// 18.0 43.0 80/107/160/320 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
|
||||
|
||||
|
||||
/////////////////////////////// USER PARAMETERS //////////////////////////////
|
||||
|
||||
// Note: Many of these static parameters are overridden by runtime shader
|
||||
// parameters when those are enabled. However, many others are static codepath
|
||||
// options that were cleaner or more convert to code as static constants.
|
||||
|
||||
// GAMMA:
|
||||
const float crt_gamma_static = 2.5; // range [1, 5]
|
||||
const float lcd_gamma_static = 2.2; // range [1, 5]
|
||||
|
||||
// LEVELS MANAGEMENT:
|
||||
// Control the final multiplicative image contrast:
|
||||
const float levels_contrast_static = 1.0; // range [0, 4)
|
||||
// We auto-dim to avoid clipping between passes and restore brightness
|
||||
// later. Control the dim factor here: Lower values clip less but crush
|
||||
// blacks more (static only for now).
|
||||
const float levels_autodim_temp = 0.5; // range (0, 1]
|
||||
|
||||
// HALATION/DIFFUSION/BLOOM:
|
||||
// Halation weight: How much energy should be lost to electrons bounding
|
||||
// around under the CRT glass and exciting random phosphors?
|
||||
const float halation_weight_static = 0.0; // range [0, 1]
|
||||
// Refractive diffusion weight: How much light should spread/diffuse from
|
||||
// refracting through the CRT glass?
|
||||
const float diffusion_weight_static = 0.075; // range [0, 1]
|
||||
// Underestimate brightness: Bright areas bloom more, but we can base the
|
||||
// bloom brightpass on a lower brightness to sharpen phosphors, or a higher
|
||||
// brightness to soften them. Low values clip, but >= 0.8 looks okay.
|
||||
const float bloom_underestimate_levels_static = 0.8; // range [0, 5]
|
||||
// Blur all colors more than necessary for a softer phosphor bloom?
|
||||
const float bloom_excess_static = 0.0; // range [0, 1]
|
||||
// The BLOOM_APPROX pass approximates a phosphor blur early on with a small
|
||||
// blurred resize of the input (convergence offsets are applied as well).
|
||||
// There are three filter options (static option only for now):
|
||||
// 0.) Bilinear resize: A fast, close approximation to a 4x4 resize
|
||||
// if min_allowed_viewport_triads and the BLOOM_APPROX resolution are sane
|
||||
// and beam_max_sigma is low.
|
||||
// 1.) 3x3 resize blur: Medium speed, soft/smeared from bilinear blurring,
|
||||
// always uses a static sigma regardless of beam_max_sigma or
|
||||
// mask_num_triads_desired.
|
||||
// 2.) True 4x4 Gaussian resize: Slowest, technically correct.
|
||||
// These options are more pronounced for the fast, unbloomed shader version.
|
||||
const float bloom_approx_filter_static = 2.0;
|
||||
|
||||
// ELECTRON BEAM SCANLINE DISTRIBUTION:
|
||||
// How many scanlines should contribute light to each pixel? Using more
|
||||
// scanlines is slower (especially for a generalized Gaussian) but less
|
||||
// distorted with larger beam sigmas (especially for a pure Gaussian). The
|
||||
// max_beam_sigma at which the closest unused weight is guaranteed <
|
||||
// 1.0/255.0 (for a 3x antialiased pure Gaussian) is:
|
||||
// 2 scanlines: max_beam_sigma = 0.2089; distortions begin ~0.34; 141.7 FPS pure, 131.9 FPS generalized
|
||||
// 3 scanlines, max_beam_sigma = 0.3879; distortions begin ~0.52; 137.5 FPS pure; 123.8 FPS generalized
|
||||
// 4 scanlines, max_beam_sigma = 0.5723; distortions begin ~0.70; 134.7 FPS pure; 117.2 FPS generalized
|
||||
// 5 scanlines, max_beam_sigma = 0.7591; distortions begin ~0.89; 131.6 FPS pure; 112.1 FPS generalized
|
||||
// 6 scanlines, max_beam_sigma = 0.9483; distortions begin ~1.08; 127.9 FPS pure; 105.6 FPS generalized
|
||||
const float beam_num_scanlines = 3.0; // range [2, 6]
|
||||
// A generalized Gaussian beam varies shape with color too, now just width.
|
||||
// It's slower but more flexible (static option only for now).
|
||||
const bool beam_generalized_gaussian = true;
|
||||
// What kind of scanline antialiasing do you want?
|
||||
// 0: Sample weights at 1x; 1: Sample weights at 3x; 2: Compute an integral
|
||||
// Integrals are slow (especially for generalized Gaussians) and rarely any
|
||||
// better than 3x antialiasing (static option only for now).
|
||||
const float beam_antialias_level = 1.0; // range [0, 2]
|
||||
// Min/max standard deviations for scanline beams: Higher values widen and
|
||||
// soften scanlines. Depending on other options, low min sigmas can alias.
|
||||
const float beam_min_sigma_static = 0.02; // range (0, 1]
|
||||
const float beam_max_sigma_static = 0.3; // range (0, 1]
|
||||
// Beam width varies as a function of color: A power function (0) is more
|
||||
// configurable, but a spherical function (1) gives the widest beam
|
||||
// variability without aliasing (static option only for now).
|
||||
const float beam_spot_shape_function = 0.0;
|
||||
// Spot shape power: Powers <= 1 give smoother spot shapes but lower
|
||||
// sharpness. Powers >= 1.0 are awful unless mix/max sigmas are close.
|
||||
const float beam_spot_power_static = 1.0/3.0; // range (0, 16]
|
||||
// Generalized Gaussian max shape parameters: Higher values give flatter
|
||||
// scanline plateaus and steeper dropoffs, simultaneously widening and
|
||||
// sharpening scanlines at the cost of aliasing. 2.0 is pure Gaussian, and
|
||||
// values > ~40.0 cause artifacts with integrals.
|
||||
const float beam_min_shape_static = 2.0; // range [2, 32]
|
||||
const float beam_max_shape_static = 4.0; // range [2, 32]
|
||||
// Generalized Gaussian shape power: Affects how quickly the distribution
|
||||
// changes shape from Gaussian to steep/plateaued as color increases from 0
|
||||
// to 1.0. Higher powers appear softer for most colors, and lower powers
|
||||
// appear sharper for most colors.
|
||||
const float beam_shape_power_static = 1.0/4.0; // range (0, 16]
|
||||
// What filter should be used to sample scanlines horizontally?
|
||||
// 0: Quilez (fast), 1: Gaussian (configurable), 2: Lanczos2 (sharp)
|
||||
const float beam_horiz_filter_static = 0.0;
|
||||
// Standard deviation for horizontal Gaussian resampling:
|
||||
const float beam_horiz_sigma_static = 0.35; // range (0, 2/3]
|
||||
// Do horizontal scanline sampling in linear RGB (correct light mixing),
|
||||
// gamma-encoded RGB (darker, hard spot shape, may better match bandwidth-
|
||||
// limiting circuitry in some CRT's), or a weighted avg.?
|
||||
const float beam_horiz_linear_rgb_weight_static = 1.0; // range [0, 1]
|
||||
// Simulate scanline misconvergence? This needs 3x horizontal texture
|
||||
// samples and 3x texture samples of BLOOM_APPROX and HALATION_BLUR in
|
||||
// later passes (static option only for now).
|
||||
const bool beam_misconvergence = true;
|
||||
// Convergence offsets in x/y directions for R/G/B scanline beams in units
|
||||
// of scanlines. Positive offsets go right/down; ranges [-2, 2]
|
||||
const vec2 convergence_offsets_r_static = vec2(0.1, 0.2);
|
||||
const vec2 convergence_offsets_g_static = vec2(0.3, 0.4);
|
||||
const vec2 convergence_offsets_b_static = vec2(0.5, 0.6);
|
||||
// Detect interlacing (static option only for now)?
|
||||
const bool interlace_detect = true;
|
||||
// Assume 1080-line sources are interlaced?
|
||||
const bool interlace_1080i_static = false;
|
||||
// For interlaced sources, assume TFF (top-field first) or BFF order?
|
||||
// (Whether this matters depends on the nature of the interlaced input.)
|
||||
const bool interlace_bff_static = false;
|
||||
|
||||
// ANTIALIASING:
|
||||
// What AA level do you want for curvature/overscan/subpixels? Options:
|
||||
// 0x (none), 1x (sample subpixels), 4x, 5x, 6x, 7x, 8x, 12x, 16x, 20x, 24x
|
||||
// (Static option only for now)
|
||||
const float aa_level = 12.0; // range [0, 24]
|
||||
// What antialiasing filter do you want (static option only)? Options:
|
||||
// 0: Box (separable), 1: Box (cylindrical),
|
||||
// 2: Tent (separable), 3: Tent (cylindrical),
|
||||
// 4: Gaussian (separable), 5: Gaussian (cylindrical),
|
||||
// 6: Cubic* (separable), 7: Cubic* (cylindrical, poor)
|
||||
// 8: Lanczos Sinc (separable), 9: Lanczos Jinc (cylindrical, poor)
|
||||
// * = Especially slow with RUNTIME_ANTIALIAS_WEIGHTS
|
||||
const float aa_filter = 6.0; // range [0, 9]
|
||||
// Flip the sample grid on odd/even frames (static option only for now)?
|
||||
const bool aa_temporal = false;
|
||||
// Use RGB subpixel offsets for antialiasing? The pixel is at green, and
|
||||
// the blue offset is the negative r offset; range [0, 0.5]
|
||||
const vec2 aa_subpixel_r_offset_static = vec2(-1.0/3.0, 0.0);//vec2(0.0);
|
||||
// Cubics: See http://www.imagemagick.org/Usage/filter/#mitchell
|
||||
// 1.) "Keys cubics" with B = 1 - 2C are considered the highest quality.
|
||||
// 2.) C = 0.5 (default) is Catmull-Rom; higher C's apply sharpening.
|
||||
// 3.) C = 1.0/3.0 is the Mitchell-Netravali filter.
|
||||
// 4.) C = 0.0 is a soft spline filter.
|
||||
const float aa_cubic_c_static = 0.5; // range [0, 4]
|
||||
// Standard deviation for Gaussian antialiasing: Try 0.5/aa_pixel_diameter.
|
||||
const float aa_gauss_sigma_static = 0.5; // range [0.0625, 1.0]
|
||||
|
||||
// PHOSPHOR MASK:
|
||||
// Mask type: 0 = aperture grille, 1 = slot mask, 2 = EDP shadow mask
|
||||
const float mask_type_static = 1.0; // range [0, 2]
|
||||
// We can sample the mask three ways. Pick 2/3 from: Pretty/Fast/Flexible.
|
||||
// 0.) Sinc-resize to the desired dot pitch manually (pretty/slow/flexible).
|
||||
// This requires PHOSPHOR_MASK_MANUALLY_RESIZE to be #defined.
|
||||
// 1.) Hardware-resize to the desired dot pitch (ugly/fast/flexible). This
|
||||
// is halfway decent with LUT mipmapping but atrocious without it.
|
||||
// 2.) Tile it without resizing at a 1:1 texel:pixel ratio for flat coords
|
||||
// (pretty/fast/inflexible). Each input LUT has a fixed dot pitch.
|
||||
// This mode reuses the same masks, so triads will be enormous unless
|
||||
// you change the mask LUT filenames in your .cgp file.
|
||||
const float mask_sample_mode_static = 0.0; // range [0, 2]
|
||||
// Prefer setting the triad size (0.0) or number on the screen (1.0)?
|
||||
// If RUNTIME_PHOSPHOR_BLOOM_SIGMA isn't #defined, the specified triad size
|
||||
// will always be used to calculate the full bloom sigma statically.
|
||||
const float mask_specify_num_triads_static = 0.0; // range [0, 1]
|
||||
// Specify the phosphor triad size, in pixels. Each tile (usually with 8
|
||||
// triads) will be rounded to the nearest integer tile size and clamped to
|
||||
// obey minimum size constraints (imposed to reduce downsize taps) and
|
||||
// maximum size constraints (imposed to have a sane MASK_RESIZE FBO size).
|
||||
// To increase the size limit, double the viewport-relative scales for the
|
||||
// two MASK_RESIZE passes in crt-royale.cgp and user-cgp-contants.h.
|
||||
// range [1, mask_texture_small_size/mask_triads_per_tile]
|
||||
const float mask_triad_size_desired_static = 24.0 / 8.0;
|
||||
// If mask_specify_num_triads is 1.0/true, we'll go by this instead (the
|
||||
// final size will be rounded and constrained as above); default 480.0
|
||||
const float mask_num_triads_desired_static = 480.0;
|
||||
// How many lobes should the sinc/Lanczos resizer use? More lobes require
|
||||
// more samples and avoid moire a bit better, but some is unavoidable
|
||||
// depending on the destination size (static option for now).
|
||||
const float mask_sinc_lobes = 3.0; // range [2, 4]
|
||||
// The mask is resized using a variable number of taps in each dimension,
|
||||
// but some Cg profiles always fetch a constant number of taps no matter
|
||||
// what (no dynamic branching). We can limit the maximum number of taps if
|
||||
// we statically limit the minimum phosphor triad size. Larger values are
|
||||
// faster, but the limit IS enforced (static option only, forever);
|
||||
// range [1, mask_texture_small_size/mask_triads_per_tile]
|
||||
// TODO: Make this 1.0 and compensate with smarter sampling!
|
||||
const float mask_min_allowed_triad_size = 2.0;
|
||||
|
||||
// GEOMETRY:
|
||||
// Geometry mode:
|
||||
// 0: Off (default), 1: Spherical mapping (like cgwg's),
|
||||
// 2: Alt. spherical mapping (more bulbous), 3: Cylindrical/Trinitron
|
||||
const float geom_mode_static = 0.0; // range [0, 3]
|
||||
// Radius of curvature: Measured in units of your viewport's diagonal size.
|
||||
const float geom_radius_static = 2.0; // range [1/(2*pi), 1024]
|
||||
// View dist is the distance from the player to their physical screen, in
|
||||
// units of the viewport's diagonal size. It controls the field of view.
|
||||
const float geom_view_dist_static = 2.0; // range [0.5, 1024]
|
||||
// Tilt angle in radians (clockwise around up and right vectors):
|
||||
const vec2 geom_tilt_angle_static = vec2(0.0, 0.0); // range [-pi, pi]
|
||||
// Aspect ratio: When the true viewport size is unknown, this value is used
|
||||
// to help convert between the phosphor triad size and count, along with
|
||||
// the mask_resize_viewport_scale constant from user-cgp-constants.h. Set
|
||||
// this equal to Retroarch's display aspect ratio (DAR) for best results;
|
||||
// range [1, geom_max_aspect_ratio from user-cgp-constants.h];
|
||||
// default (256/224)*(54/47) = 1.313069909 (see below)
|
||||
const float geom_aspect_ratio_static = 1.313069909;
|
||||
// Before getting into overscan, here's some general aspect ratio info:
|
||||
// - DAR = display aspect ratio = SAR * PAR; as in your Retroarch setting
|
||||
// - SAR = storage aspect ratio = DAR / PAR; square pixel emulator frame AR
|
||||
// - PAR = pixel aspect ratio = DAR / SAR; holds regardless of cropping
|
||||
// Geometry processing has to "undo" the screen-space 2D DAR to calculate
|
||||
// 3D view vectors, then reapplies the aspect ratio to the simulated CRT in
|
||||
// uv-space. To ensure the source SAR is intended for a ~4:3 DAR, either:
|
||||
// a.) Enable Retroarch's "Crop Overscan"
|
||||
// b.) Readd horizontal padding: Set overscan to e.g. N*(1.0, 240.0/224.0)
|
||||
// Real consoles use horizontal black padding in the signal, but emulators
|
||||
// often crop this without cropping the vertical padding; a 256x224 [S]NES
|
||||
// frame (8:7 SAR) is intended for a ~4:3 DAR, but a 256x240 frame is not.
|
||||
// The correct [S]NES PAR is 54:47, found by blargg and NewRisingSun:
|
||||
// http://board.zsnes.com/phpBB3/viewtopic.php?f=22&t=11928&start=50
|
||||
// http://forums.nesdev.com/viewtopic.php?p=24815#p24815
|
||||
// For flat output, it's okay to set DAR = [existing] SAR * [correct] PAR
|
||||
// without doing a. or b., but horizontal image borders will be tighter
|
||||
// than vertical ones, messing up curvature and overscan. Fixing the
|
||||
// padding first corrects this.
|
||||
// Overscan: Amount to "zoom in" before cropping. You can zoom uniformly
|
||||
// or adjust x/y independently to e.g. readd horizontal padding, as noted
|
||||
// above: Values < 1.0 zoom out; range (0, inf)
|
||||
const vec2 geom_overscan_static = vec2(1.0, 1.0);// * 1.005 * (1.0, 240/224.0)
|
||||
// Compute a proper pixel-space to texture-space matrix even without ddx()/
|
||||
// ddy()? This is ~8.5% slower but improves antialiasing/subpixel filtering
|
||||
// with strong curvature (static option only for now).
|
||||
const bool geom_force_correct_tangent_matrix = true;
|
||||
|
||||
// BORDERS:
|
||||
// Rounded border size in texture uv coords:
|
||||
const float border_size_static = 0.015; // range [0, 0.5]
|
||||
// Border darkness: Moderate values darken the border smoothly, and high
|
||||
// values make the image very dark just inside the border:
|
||||
const float border_darkness_static = 2.0; // range [0, inf)
|
||||
// Border compression: High numbers compress border transitions, narrowing
|
||||
// the dark border area.
|
||||
const float border_compress_static = 2.5; // range [1, inf)
|
||||
|
||||
|
||||
#endif // USER_SETTINGS_H
|
||||
|