add fubax_vr, g-sharp_resampler; cleanups for stereoscopic, dithering shaders

This commit is contained in:
hunterk 2021-05-03 15:13:33 -05:00
parent 8e0b10aa2d
commit b27af2e1df
15 changed files with 1036 additions and 4 deletions

View file

@ -0,0 +1,5 @@
shaders = 1
shader0 = shaders/g-sharp_resampler.slang
scale0 = 1.0
scale_type0 = source

View file

@ -0,0 +1,5 @@
shaders = 1
shader0 = shaders/jinc2-dedither.slang
scale0 = 1.0
scale_type0 = source

View file

@ -57,7 +57,7 @@ layout(location = 0) out vec2 vTexCoord;
void main()
{
gl_Position = global.MVP * Position;
vTexCoord = TexCoord;
vTexCoord = TexCoord * 1.00001;
}
#pragma stage fragment
@ -84,4 +84,4 @@ finalRGB.b = find_closest(x, y, rgb.b);
float final = find_closest(x, y, grayscale);
FragColor = vec4(finalRGB, 1.0);
}
}

View file

@ -0,0 +1,135 @@
#version 450
/*
G-sharp resampler - dynamic range, resizable
Copyright (C) 2020 - 2021 guest(r) - guest.r@gmail.com
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
Anti-Ringing inspired by Hyllian
*/
layout(push_constant) uniform Push
{
vec4 SourceSize;
vec4 OriginalSize;
vec4 OutputSize;
uint FrameCount;
float SIGMA_HV;
float HSHARP0;
float HAR;
float SHAR;
} params;
#pragma parameter HSHARP0 "Filter Range" 1.2 1.0 6.0 0.1
#define HSHARP0 params.HSHARP0
#pragma parameter SIGMA_HV "Gaussian Blur Sigma" 0.75 0.1 7.0 0.05
#define SIGMA_HV params.SIGMA_HV
#pragma parameter SHAR "Sharpness Definition" 0.5 0.0 2.0 0.05
#define SHAR params.SHAR
#pragma parameter HAR "Anti-Ringing" 0.5 0.0 1.0 0.10
#define HAR params.HAR
layout(std140, set = 0, binding = 0) uniform UBO
{
mat4 MVP;
} global;
#pragma stage vertex
layout(location = 0) in vec4 Position;
layout(location = 1) in vec2 TexCoord;
layout(location = 0) out vec2 vTexCoord;
void main()
{
gl_Position = global.MVP * Position;
vTexCoord = TexCoord;
}
#pragma stage fragment
layout(location = 0) in vec2 vTexCoord;
layout(location = 0) out vec4 FragColor;
layout(set = 0, binding = 2) uniform sampler2D Source;
#define COMPAT_TEXTURE(c,d) texture(c,d)
#define SourceSize params.SourceSize
float invsqrsigma_h = 1.0/(2.0*SIGMA_HV*SIGMA_HV);
float gaussian(float x, float y)
{
return exp(-(x*x + y*y)*invsqrsigma_h);
}
void main()
{
vec2 f = fract(SourceSize.xy * vTexCoord.xy);
f = 0.5 - f;
vec2 tex = floor(SourceSize.xy * vTexCoord)*SourceSize.zw + 0.5*SourceSize.zw;
vec2 dx = vec2(SourceSize.z, 0.0);
vec2 dy = vec2(0.0, SourceSize.w);
vec3 colorx = 0.0.xxx;
vec3 colory = 0.0.xxx;
float wx, wy;
float wsumx = 0.0;
float wsumy = 0.0;
vec3 pixel;
float x;
vec3 xcmax = 0.0.xxx;
vec3 xcmin = 1.0.xxx;
float sharp = gaussian(HSHARP0, 0.0);
float maxsharp = 0.07;
float FPR = HSHARP0;
float fpx = 1.0;
float LOOPSIZE = ceil(2.0*FPR);
float y = -LOOPSIZE;
do
{
x = -LOOPSIZE;
do
{
pixel = COMPAT_TEXTURE(Source, tex + x*dx + y*dy).rgb;
wx = gaussian(x+f.x, y+f.y) - sharp;
fpx = (sqrt(dot(vec2(x+f.x,y+f.y),vec2(x+f.x,y+f.y)))-FPR)/FPR;
if (((x*x) + (y*y)) < 1.25*FPR) { xcmax = max(xcmax, pixel); xcmin = min(xcmin, pixel); }
if (wx < 0.0) wx = clamp(wx, mix(-maxsharp, 0.0, pow(abs(fpx), SHAR)), 0.0);
colorx = colorx + wx * pixel;
wsumx = wsumx + wx;
x = x + 1.0;
} while (x <= LOOPSIZE);
y = y + 1.0;
} while (y <= LOOPSIZE);
vec3 color = colorx/wsumx;
color = mix(clamp(color, 0.0, 1.0), clamp(color, xcmin, xcmax), HAR);
FragColor = vec4(color, 1.0);
}

View file

@ -0,0 +1,28 @@
shaders = 5
shader0 = ../stock.slang
scale_type0 = viewport
scale0 = 1.0
shader1 = shaders/fubax_vr/VR.slang
scale_type1 = viewport
scale1 = 1.0
filter_linear1 = true
shader2 = shaders/fubax_vr/Chromatic.slang
scale_type2 = viewport
scale2 = 1.0
filter_linear2 = true
shader3 = shaders/fubax_vr/FilmicSharpen.slang
scale_type3 = viewport
scale3 = 1.0
filter_linear3 = true
shader4 = shaders/fubax_vr/VR_nose.slang
scale_type4 = viewport
scale4 = 1.0
filter_linear4 = true
textures = "noseTex"
noseTex = shaders/fubax_vr/nose.png

View file

@ -0,0 +1,163 @@
#version 450
/*
/// VR shader ///
Make any game VR and any screen with lenses a VR headset.
Thanks to this shader you'll be able to correct distortions of any lens types
(DIY, experimental) and chromatic aberration.
Also if a game outputs depth pass you can have a stereo-3D vision thanks to
the parallax mapping (which needs some further improvement).
Copyright (c) 2019 Jacob Max Fober
This work is licensed under the Creative Commons
Attribution-NonCommercial-ShareAlike 4.0 International License.
To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/4.0/
If you want to use it commercially, contact me at jakub.m.fober@pm.me
If you have questions, visit https://reshade.me/forum/shader-discussion/
I'm author of most of equations present here,
beside Brown-Conrady distortion correction model and
Parallax Steep and Occlusion mapping which
I changed and adopted from various sources.
Version 0.4.2 alpha
*/
layout(push_constant) uniform Push
{
vec4 SourceSize;
vec4 OriginalSize;
vec4 OutputSize;
uint FrameCount;
} params;
#include "fubax_vr_params.inc"
#pragma stage vertex
layout(location = 0) in vec4 Position;
layout(location = 1) in vec2 TexCoord;
layout(location = 0) out vec2 texcoord;
void main()
{
gl_Position = global.MVP * Position;
texcoord = TexCoord;
}
#pragma stage fragment
layout(location = 0) in vec2 texcoord;
layout(location = 0) out vec4 FragColor;
layout(set = 0, binding = 2) uniform sampler2D Source;
#include "fubax_vr_shared_funcs.inc"
void main()
{
// Bypass chromatic aberration switch
if(!ChromaticAbrSwitch)
{
FragColor = vec4(texture(Source, texcoord).rgb, 1.0);
return;
}
// Get display aspect ratio (horizontal/vertical resolution)
float rAspect = params.OutputSize.x*params.OutputSize.w;
// Generate negative-positive stereo mask
float SideScreenSwitch = step(0.5, texcoord.x)*2.0-1.0;
// Divide screen in two if stereo vision mode enabled
vec2 CenterCoord = StereoSwitch? StereoVision(texcoord, IPD) : texcoord;
CenterCoord = CenterCoord*2.0-1.0; // Center coordinates
CenterCoord.x *= rAspect; // Correct aspect ratio
float Diagonal = rAspect;
Diagonal *= StereoSwitch ? 0.5 : 1.0;
Diagonal = length(vec2(Diagonal, 1.0));
CenterCoord /= Diagonal; // Normalize diagonally
// Left/right eye mask
float L = step(0.5, 1.0-texcoord.x);
float R = step(0.5, texcoord.x);
// Offset center green
vec2 CoordGreen = ChGreenOffsetL * L + ChGreenOffsetR * R;
CoordGreen.x *= -1.0;
CoordGreen = 0.01 * CoordGreen + CenterCoord;
// Offset center blue
vec2 CoordBlue = ChBlueOffsetL * L + ChBlueOffsetR * R;
CoordBlue.x *= -1.0;
CoordBlue = 0.01 * CoordBlue + CenterCoord;
// float RadiusGreen = dot(CoordGreen, CoordGreen); // Radius squared (techically accurate)
// float RadiusBlue = dot(CoordBlue, CoordBlue); // Radius squared (techically accurate)
float RadiusGreen = length(CoordGreen); // Radius
float RadiusBlue = length(CoordBlue); // Radius
// Calculate radial distortion K
float correctionGreenK = (1.0+ChGreenK.x)*kRadial(RadiusGreen, ChGreenK.y, ChGreenK.z, ChGreenK.w, 0.0);
float correctionBlueK = (1.0+ChBlueK.x)*kRadial(RadiusBlue, ChBlueK.y, ChBlueK.z, ChBlueK.w, 0.0);
// Apply chromatic aberration correction
CoordGreen = CoordGreen * correctionGreenK;
CoordBlue = CoordBlue * correctionBlueK;
CoordGreen *= Diagonal; CoordBlue *= Diagonal; // Back to vertical normalization
CoordGreen.x /= rAspect; CoordBlue.x /= rAspect; // Back to square
// Move origin to left top corner
CoordGreen = CoordGreen * 0.5 + 0.5; CoordBlue = CoordBlue * 0.5 + 0.5;
// Generate border mask for green and blue channel
float MaskBlue, MaskGreen; if(StereoSwitch)
{
// Mask compensation for center cut
float CenterCut = 0.5+(0.5-IPD)*SideScreenSwitch;
// Mask sides and center cut for blue channel
vec2 MaskCoordBlue;
MaskCoordBlue.x = CoordBlue.x*2.0 - CenterCut; // Compensate for 2 views
MaskCoordBlue.y = CoordBlue.y;
MaskBlue = BorderMaskAA(MaskCoordBlue);
// Mask sides and center cut for green channel
vec2 MaskCoordGreen;
MaskCoordGreen.x = CoordGreen.x*2.0 - CenterCut; // Compensate for 2 views
MaskCoordGreen.y = CoordGreen.y;
MaskGreen = BorderMaskAA(MaskCoordGreen);
// Reverse stereo coordinates to single view
CoordGreen = InvStereoVision(CoordGreen, int(SideScreenSwitch), IPD);
CoordBlue = InvStereoVision(CoordBlue, int(SideScreenSwitch), IPD);
}
else
{
MaskBlue = BorderMaskAA(CoordBlue);
MaskGreen = BorderMaskAA(CoordGreen);
};
vec3 Image;
// Sample image red
Image.r = texture(Source, texcoord).r;
// Sample image green
Image.g = mix(
texture(Source, CoordGreen).g,
0.0, // Black borders
MaskGreen // Anti-aliased border mask
);
// Sample image blue
Image.b = mix(
texture(Source, CoordBlue).b,
0.0, // Black borders
MaskBlue // Anti-aliased border mask
);
// Display chromatic aberration
FragColor = vec4(Image, 1.0);
}

View file

@ -0,0 +1,101 @@
#version 450
/*
/// VR shader ///
Make any game VR and any screen with lenses a VR headset.
Thanks to this shader you'll be able to correct distortions of any lens types
(DIY, experimental) and chromatic aberration.
Also if a game outputs depth pass you can have a stereo-3D vision thanks to
the parallax mapping (which needs some further improvement).
Copyright (c) 2019 Jacob Max Fober
This work is licensed under the Creative Commons
Attribution-NonCommercial-ShareAlike 4.0 International License.
To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/4.0/
If you want to use it commercially, contact me at jakub.m.fober@pm.me
If you have questions, visit https://reshade.me/forum/shader-discussion/
I'm author of most of equations present here,
beside Brown-Conrady distortion correction model and
Parallax Steep and Occlusion mapping which
I changed and adopted from various sources.
Version 0.4.2 alpha
*/
layout(push_constant) uniform Push
{
vec4 SourceSize;
vec4 OriginalSize;
vec4 OutputSize;
uint FrameCount;
} params;
#include "fubax_vr_params.inc"
#pragma stage vertex
layout(location = 0) in vec4 Position;
layout(location = 1) in vec2 TexCoord;
layout(location = 0) out vec2 texcoord;
void main()
{
gl_Position = global.MVP * Position;
texcoord = TexCoord;
}
#pragma stage fragment
layout(location = 0) in vec2 texcoord;
layout(location = 0) out vec4 FragColor;
layout(set = 0, binding = 2) uniform sampler2D Source;
#include "fubax_vr_shared_funcs.inc"
void main()
{
vec2 UvCoord = texcoord;
// Bypass sharpening
if(!Sharpen)
{
FragColor = vec4(texture(Source, UvCoord).rgb, 1.0);
return;
}
vec2 Pixel = (texcoord.xy * params.OutputSize.xy) * Offset;
// Sample display image
vec3 ImgSource = texture(Source, UvCoord).rgb;
vec2 NorSouWesEst[4] = {
vec2(UvCoord.x, UvCoord.y + Pixel.y),
vec2(UvCoord.x, UvCoord.y - Pixel.y),
vec2(UvCoord.x + Pixel.x, UvCoord.y),
vec2(UvCoord.x - Pixel.x, UvCoord.y)
};
// Luma high-pass
float HighPass = 0.0;
for(int i=0; i<4; i++)
{
HighPass += Luma(texture(Source, NorSouWesEst[i]).rgb);
}
HighPass = 0.5 - 0.5 * (HighPass * 0.25 - Luma(ImgSource));
// Sharpen strength
HighPass = mix(0.5, HighPass, Strength * 0.01);
// Clamping sharpen
HighPass = (Clamp != 1.0) ? max(min(HighPass, Clamp), 1.0 - Clamp) : HighPass;
vec3 Sharpen = vec3(
Overlay(ImgSource.r, HighPass),
Overlay(ImgSource.g, HighPass),
Overlay(ImgSource.b, HighPass)
);
FragColor.rgb = (Preview) ? vec3(HighPass) : Sharpen;
FragColor.a = 1.0;
}

View file

@ -0,0 +1,172 @@
#version 450
/*
/// VR shader ///
Make any game VR and any screen with lenses a VR headset.
Thanks to this shader you'll be able to correct distortions of any lens types
(DIY, experimental) and chromatic aberration.
Also if a game outputs depth pass you can have a stereo-3D vision thanks to
the parallax mapping (which needs some further improvement).
Copyright (c) 2019 Jacob Max Fober
This work is licensed under the Creative Commons
Attribution-NonCommercial-ShareAlike 4.0 International License.
To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/4.0/
If you want to use it commercially, contact me at jakub.m.fober@pm.me
If you have questions, visit https://reshade.me/forum/shader-discussion/
I'm author of most of equations present here,
beside Brown-Conrady distortion correction model and
Parallax Steep and Occlusion mapping which
I changed and adopted from various sources.
Version 0.4.2 alpha
*/
layout(push_constant) uniform Push
{
vec4 SourceSize;
vec4 OutputSize;
uint FrameCount;
} params;
#include "fubax_vr_params.inc"
#pragma stage vertex
layout(location = 0) in vec4 Position;
layout(location = 1) in vec2 TexCoord;
layout(location = 0) out vec2 texcoord;
void main()
{
gl_Position = global.MVP * Position;
texcoord = TexCoord * 1.00001;
}
#pragma stage fragment
layout(location = 0) in vec2 texcoord;
layout(location = 0) out vec4 FragColor;
layout(set = 0, binding = 2) uniform sampler2D Source;
#include "fubax_vr_shared_funcs.inc"
void main()
{
// Get display aspect ratio (horizontal/vertical resolution)
const float rAspect = params.OutputSize.x*params.OutputSize.w;
// Divide screen in two
vec2 UvCoord = StereoSwitch? StereoVision(texcoord, IPD) : texcoord;
// Generate negative-positive stereo mask
float StereoMask = step(0.5, texcoord.x)*2.0-1.0;
// Correct lens distortion
if(PerspectiveSwitch)
{
// Center coordinates
UvCoord = UvCoord*2.0-1.0;
UvCoord.x *= rAspect;
vec2 StereoCoord = UvCoord; // Save coordinates for Brown-Conrady correction
// Base distortion correction
if(bool(FOV)) // If FOV is not equal 0
{
float radFOV = radians(FOV);
// Calculate radius
float Radius = length(UvCoord);
// Apply base lens correction
switch(LensType)
{
case 0:
{ UvCoord *= Orthographic(radFOV, Radius); break; }
case 1:
{ UvCoord *= Equisolid(radFOV, Radius); break; }
case 2:
{ UvCoord *= Equidistant(radFOV, Radius); break; }
case 3:
{ UvCoord *= Stereographic(radFOV, Radius); break; }
}
};
// Lens geometric aberration correction (Brown-Conrady model)
float Diagonal = rAspect;
Diagonal *= StereoSwitch ? 0.5 : 1.0;
Diagonal = length(vec2(Diagonal, 1.0));
float InvDiagonal2 = 1.0 / pow(Diagonal, 2);
StereoCoord /= Diagonal; // Normalize diagonally
float Radius2 = dot(StereoCoord, StereoCoord); // Squared radius
float correctionK = kRadial(Radius2, K.x, K.y, K.z, K.w);
// Apply negative-positive stereo mask for tangental distortion (flip side)
float SideScreenSwitch = (StereoSwitch) ? StereoMask : 1.0;
vec2 correctionP = pTangental(
StereoCoord,
Radius2,
P.x * SideScreenSwitch,
P.y,
P.z,
0.0
);
// Expand background to vertical border (but not for test grid for ease of calibration)
UvCoord /= TestGrid ? vec2(1.0) : vec2(kRadial(InvDiagonal2, K.x, K.y, K.z, K.w));
UvCoord = UvCoord * correctionK + correctionP; // Apply lens correction
// Scale image
UvCoord /= TestGrid ? vec2(1.0) : vec2(ImageScale);
// Revert aspect ratio to square
UvCoord.x /= rAspect;
// Move origin back to left top corner
UvCoord = UvCoord*0.5 + vec2(0.5);
}
// Display test grid
if(TestGrid) {
FragColor = vec4(Grid(UvCoord, rAspect), 1.0);
return;
}
/* Disable for RetroArch since there's no depth buffer
// Create parallax effect
if(ParallaxSwitch)
{
float ParallaxDirection = ParallaxOffset*0.01;
// For stereo-vison flip direction on one side
ParallaxDirection *= StereoSwitch ? StereoMask : 1.0;
// Apply parallax effect
UvCoord = Parallax(
UvCoord,
ParallaxDirection,
ParallaxCenter,
ParallaxMaskScalar,
ParallaxSteps
);
}
*/
// added by hunterk to adjust aspect ratio of the image
vec2 corrected_size = params.SourceSize.xy * vec2(img_ar.x / img_ar.y, 1.0)
* vec2(params.SourceSize.y / params.SourceSize.x, 1.0);
float full_scale = params.OutputSize.y / params.SourceSize.y;
vec2 scale = (params.OutputSize.xy / corrected_size) / full_scale;
vec2 middle = vec2(0.49999, 0.49999);
vec2 diff = UvCoord.xy - middle;
vec2 screen_coord = middle + diff * scale;
UvCoord = ((screen_coord - vec2(0.5)) * imgzoom) + vec2(0.5);
// Sample image with black borders to display
vec3 Image = mix(
texture(Source, UvCoord).rgb, // Display image
vec3(0.0), // Black borders
BorderMaskAA(UvCoord) // Anti-aliased border mask
);
// Display image
FragColor = vec4(Image, 1.0);
}

View file

@ -0,0 +1,95 @@
#version 450
/*
Nose PS (c) 2019 Jacob Maximilian Fober
Anti-nausea shader for VR
This work is licensed under the Creative Commons
Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit
http://creativecommons.org/licenses/by-sa/4.0/.
*/
layout(push_constant) uniform Push
{
vec4 SourceSize;
vec4 OriginalSize;
vec4 OutputSize;
uint FrameCount;
} params;
#ifndef nose
#define nose 128 // Nose texture resolution
#endif
#define mul(c,d) (d*c)
#include "fubax_vr_params.inc"
#pragma stage vertex
layout(location = 0) in vec4 Position;
layout(location = 1) in vec2 TexCoord;
layout(location = 0) out vec2 texcoord;
void main()
{
gl_Position = global.MVP * Position;
texcoord = TexCoord;
}
#pragma stage fragment
layout(location = 0) in vec2 texcoord;
layout(location = 0) out vec4 FragColor;
layout(set = 0, binding = 2) uniform sampler2D Source;
layout(set = 0, binding = 3) uniform sampler2D noseTex;
//#include "fubax_vr_shared_funcs.inc"
// Convert RGB to YUV
vec3 yuv(vec3 rgbImage)
{
// RGB to YUV709 matrix
const mat3 YUV709 =
mat3(
vec3(0.2126, 0.7152, 0.0722),
vec3(-0.09991, -0.33609, 0.436),
vec3(0.615, -0.55861, -0.05639)
);
return mul(YUV709, rgbImage);
}
// Overlay blending mode
float Overlay(float LayerAB)
{
float MinAB = min(LayerAB, 0.5);
float MaxAB = max(LayerAB, 0.5);
return 2.0 * (MinAB*MinAB + 2.0*MaxAB - MaxAB*MaxAB) - 1.5;
}
void main()
{
vec2 UvCoord = texcoord;
// Bypass sharpening
if(!Nose)
{
FragColor = vec4(texture(Source, UvCoord).rgb, 1.0);
return;
}
// Divide screen in two (mirrored)
vec2 StereoCoord = texcoord;
StereoCoord.x = 1.0-abs(StereoCoord.x*2.0-1.0)/Scale.x;
StereoCoord.y = 1.0-(1.0-StereoCoord.y)/Scale.y;
// Sample display image
vec3 Display = texture(Source, texcoord).rgb;
// Sample nose texture
vec4 NoseTexture = texture(noseTex, StereoCoord);
// Change skintone
NoseTexture.rgb *= mix(smoothstep(0.0, 1.0, yuv(NoseTexture.rgb).x), 1.0, Brightness);
// Blend nose with display image
FragColor.rgb = mix(Display, NoseTexture.rgb, NoseTexture.a);
FragColor.a = 1.0;
}

View file

@ -0,0 +1,123 @@
layout(std140, set = 0, binding = 0) uniform UBO
{
mat4 MVP;
float SoloLines, TestGrid, IPD, StereoSwitch, FOV, LensType, K1, K2,
K3, K4, P1, P2, P3, ImageScale, PerspectiveSwitch, ChGreenK1, ChGreenK2,
ChGreenK3, ChGreenK4, SoloGreen, ChBlueK1, ChBlueK2, ChBlueK3, ChBlueK4,
SoloBlue, ChromaticAbrSwitch, ChGreenOffsetL_x, ChGreenOffsetL_y,
ChBlueOffsetL_x, ChBlueOffsetL_y, ChGreenOffsetR_x, ChGreenOffsetR_y,
ChBlueOffsetR_x, ChBlueOffsetR_y, Strength, Clamp, Offset, Preview,
Sharpen, Nose, Brightness, Scale_x, Scale_y, imgzoom, aspect_x, aspect_y;
/*ParallaxOffset, ParallaxCenter, ParallaxSteps, ParallaxMaskScalar,
ParallaxSwitch */
} global;
#ifndef MaximumParallaxSteps
#define MaximumParallaxSteps 1024 // Defefine max steps to make loop finite
#endif
// Grid settings
#ifndef BoxAmount
#define BoxAmount 31 // Number of boxes horizontally (choose odd number)
#endif
#ifndef thicknessA
#define thicknessA 0.25 // White grid thickness
#endif
#ifndef thicknessB
#define thicknessB 0.125 // Yellow cross thickness
#endif
#ifndef crossColor
#define crossColor vec3(1.0, 1.0, 0.0) // Center cross color (yellow)
#endif
#pragma parameter TestGrid "Toggle Calibration Grid" 0.0 0.0 1.0 1.0
#pragma parameter StereoSwitch "Toggle Stereo Vision" 1.0 0.0 1.0 1.0
#pragma parameter PerspectiveSwitch "Toggle Lens Correction" 1.0 0.0 1.0 1.0
//#pragma parameter ParallaxSwitch "Toggle Parallax Effect" 1.0 0.0 1.0 1.0
#pragma parameter ChromaticAbrSwitch "Toggle Chromatic Correction" 1.0 0.0 1.0 1.0
#pragma parameter Nose "Toggle Virtual Nose (helps nausea)" 0.0 0.0 1.0 1.0
#pragma parameter Sharpen "Toggle Sharpening" 1.0 0.0 1.0 1.0
#pragma parameter SoloLines "Lines (All, Horz, Vert, Rad)" 0.0 0.0 3.0 1.0
#pragma parameter IPD "IPD (Interpupillary Distance)" 0.500 0.0 0.75 0.001
#pragma parameter imgzoom "Image Zoom" 1.6 0.1 5.0 0.01
#pragma parameter aspect_x "Image Aspect Ratio Numerator" 64.0 1.0 256.0 1.0
#pragma parameter aspect_y "Image Aspect Ratio Denominator" 49.0 1.0 256. 1.0
//#pragma parameter ParallaxOffset "Parallax Horizontal Offset" 0.355 0.0 1.0 0.001
//#pragma parameter ParallaxCenter "Parallax Rotation Center (ZPD)" 1.0 0.0 1.0 0.001
//#pragma parameter ParallaxSteps "Parallax Sampling Steps" 16.0 1.0 128.0 0.2
//#pragma parameter ParallaxMaskScalar "Parallax Gap Compensation" 10.0 0.0 32.0 0.2
#pragma parameter FOV "Lens Distortion Power" 96.0 0.0 170.0 0.1
#pragma parameter LensType "Lens Dist Type (Ortho, Equisolid, Equidist, Stereo)" 0.0 0.0 3.0 1.0
#pragma parameter K1 "Radial Correction #1 (Brown-Conrady Model)" 0.0 0.0 1.0 0.01
#pragma parameter K2 "Radial Correction #2 (Brown-Conrady Model)" 0.0 0.0 1.0 0.01
#pragma parameter K3 "Radial Correction #3 (Brown-Conrady Model)" 0.0 0.0 1.0 0.01
#pragma parameter K4 "Radial Correction #4 (Brown-Conrady Model)" 0.0 0.0 1.0 0.01
#pragma parameter P1 "Tangential Correction #1 (Brown-Conrady Model)" 0.0 0.0 1.0 0.001
#pragma parameter P2 "Tangential Correction #2 (Brown-Conrady Model)" 0.0 0.0 1.0 0.001
#pragma parameter P3 "Tangential Correction #3 (Brown-Conrady Model)" 0.0 0.0 1.0 0.001
#pragma parameter ImageScale "Image Scale" 1.0 0.25 1.0 0.01
#pragma parameter ChGreenK1 "Chromatic Green Correction (Zoom)" 0.0 0.0 1.0 0.001
#pragma parameter ChGreenK2 "Chromatic Green Correction (K1)" 0.0 0.0 1.0 0.001
#pragma parameter ChGreenK3 "Chromatic Green Correction (K2)" 0.0 0.0 1.0 0.001
#pragma parameter ChGreenK4 "Chromatic Green Correction (K3)" 0.0 0.0 1.0 0.001
#pragma parameter SoloGreen "Green Channel Adj Solo" 0.0 0.0 1.0 1.0
#pragma parameter ChBlueK1 "Chromatic Blue Correction (Zoom)" 0.0 0.0 1.0 0.001
#pragma parameter ChBlueK2 "Chromatic Blue Correction (K1)" 0.0 0.0 1.0 0.001
#pragma parameter ChBlueK3 "Chromatic Blue Correction (K2)" 0.0 0.0 1.0 0.001
#pragma parameter ChBlueK4 "Chromatic Blue Correction (K3)" 0.0 0.0 1.0 0.001
#pragma parameter SoloBlue "Blue Channel Adj Solo" 0.0 0.0 1.0 1.0
#pragma parameter ChGreenOffsetL_x "Left Green Center Offset X" 0.0 -0.2 0.2 0.001
#pragma parameter ChGreenOffsetL_y "Left Green Center Offset Y" 0.0 -0.2 0.2 0.001
#pragma parameter ChBlueOffsetL_x "Left Blue Center Offset X" 0.0 -0.2 0.2 0.001
#pragma parameter ChBlueOffsetL_y "Left Blue Center Offset Y" 0.0 -0.2 0.2 0.001
#pragma parameter ChGreenOffsetR_x "Right Green Center Offset X" 0.0 -0.2 0.2 0.001
#pragma parameter ChGreenOffsetR_y "Right Green Center Offset Y" 0.0 -0.2 0.2 0.001
#pragma parameter ChBlueOffsetR_x "Right Blue Center Offset X" 0.0 -0.2 0.2 0.001
#pragma parameter ChBlueOffsetR_y "Right Blue Center Offset Y" 0.0 -0.2 0.2 0.001
#pragma parameter Strength "Sharpen Strength" 25.0 0.0 100.0 0.5
#pragma parameter Clamp "Sharpen Clamping" 0.65 0.5 1.0 0.001
#pragma parameter Offset "High-pass Offset" 0.1 0.01 2.0 0.002
#pragma parameter Preview "Preview Sharpen Layer" 0.0 0.0 1.0 1.0
#pragma parameter Brightness "Virtual Nose Brightness" 1.0 0.0 1.0 0.01
#pragma parameter Scale_x "Virtual Nose Scale X" 0.382 0.1 1.0 0.01
#pragma parameter Scale_y "Virtual Nose Scale Y" 0.618 0.1 1.0 0.01
int SoloLines = int(global.SoloLines);
bool TestGrid = bool(global.TestGrid);
float IPD = global.IPD;
bool StereoSwitch = bool(global.StereoSwitch);
//float ParallaxOffset = global.ParallaxOffset;
//float ParallaxCenter = global.ParallaxCenter;
//int ParallaxSteps = int(global.ParallaxSteps);
//int ParallaxMaskScalar = int(global.ParallaxMaskScalar);
//bool ParallaxSwitch = bool(global.ParallaxSwitch);
int FOV = int(global.FOV);
int LensType = int(global.LensType);
vec4 K = vec4(global.K1, global.K2, global.K3, global.K4);
vec3 P = vec3(global.P1, global.P2, global.P3);
float ImageScale = global.ImageScale;
bool PerspectiveSwitch = bool(global.PerspectiveSwitch);
vec4 ChGreenK = vec4(global.ChGreenK1, global.ChGreenK2, global.ChGreenK3,
global.ChGreenK4);
bool SoloGreen = bool(global.SoloGreen);
vec4 ChBlueK = vec4(global.ChBlueK1, global.ChBlueK2, global.ChBlueK3,
global.ChBlueK4);
bool SoloBlue = bool(global.SoloBlue);
bool ChromaticAbrSwitch = bool(global.ChromaticAbrSwitch);
vec2 ChGreenOffsetL = vec2(global.ChGreenOffsetL_x, global.ChGreenOffsetL_y);
vec2 ChBlueOffsetL = vec2(global.ChBlueOffsetL_x, global.ChBlueOffsetL_y);
vec2 ChGreenOffsetR = vec2(global.ChGreenOffsetR_x, global.ChGreenOffsetR_y);
vec2 ChBlueOffsetR = vec2(global.ChBlueOffsetR_x, global.ChBlueOffsetR_y);
float Strength = global.Strength;
float Clamp = global.Clamp;
float Offset = global.Offset;
bool Preview = bool(global.Preview);
bool Sharpen = bool(global.Sharpen);
bool Nose = bool(global.Nose);
float Brightness = global.Brightness;
vec2 Scale = vec2(global.Scale_x, global.Scale_y);
float imgzoom = global.imgzoom;
vec2 img_ar = vec2(global.aspect_x, global.aspect_y);

View file

@ -0,0 +1,205 @@
// Adjust to limited RGB
vec3 tv(vec3 Input)
{ return Input*((235.0-16.0)/255.0)+16.0/255.0; }
// Generate test grid
vec3 Grid(vec2 Coordinates, float AspectRatio)
{
// Grid settings
#ifndef BoxAmount
#define BoxAmount 31 // Number of boxes horizontally (choose odd number)
#endif
#ifndef thicknessA
#define thicknessA 0.25 // White grid thickness
#endif
#ifndef thicknessB
#define thicknessB 0.125 // Yellow cross thickness
#endif
#ifndef crossColor
#define crossColor vec3(1.0, 1.0, 0.0) // Center cross color (yellow)
#endif
bool RadialPattern = (SoloLines == 3);
vec2 GridCoord = Coordinates;
GridCoord.y -= 0.5; // Center coordinates vertically
GridCoord.y /= AspectRatio; // Correct aspect
GridCoord.y += 0.5; // Center at middle
vec2 CrossUV = GridCoord; // Store center cross coordinates
vec2 PixelSize; vec3 gridColor;
// Generate grid pattern
GridCoord = (RadialPattern) ? vec2(length(GridCoord-0.5)*1.618) : GridCoord; // Switch to radial pattern
GridCoord = abs(fract(GridCoord*BoxAmount)*2.0-1.0)*(thicknessA+1.0);
// Anti-aliased grid
PixelSize = fwidth(GridCoord.xy);
GridCoord = smoothstep(1.0-PixelSize, 1.0+PixelSize, GridCoord);
// Combine/solo vertical and horizontal lines
switch(SoloLines)
{
case 1:
{ gridColor = vec3(GridCoord.y); break; }
case 2:
{ gridColor = vec3(GridCoord.x); break; }
default:
{ gridColor = vec3(max(GridCoord.x, GridCoord.y)); break; }
};
// Generate center cross
CrossUV = 1.0-abs(CrossUV*2.0-1.0);
CrossUV = CrossUV*(thicknessB/BoxAmount+1.0);
// Anti-aliased cross
PixelSize = fwidth(CrossUV);
CrossUV = smoothstep(1.0-PixelSize, 1.0+PixelSize, CrossUV);
// Combine vertical and horizontal line
float CrossMask = max(CrossUV.y, CrossUV.x);
// Blend grid and center cross
gridColor = mix(gridColor, ((RadialPattern) ? vec3(1.0) : crossColor), vec3(CrossMask));
// Solo colors
if(SoloGreen) gridColor.b = 0.0;
if(SoloBlue) gridColor.g = 0.0;
// Reduce grid brightness
return tv(gridColor);
}
// Divide screen into two halfs
vec2 StereoVision(vec2 Coordinates, float Center)
{
vec2 StereoCoord = Coordinates;
StereoCoord.x = 0.25 + abs( StereoCoord.x*2.0-1.0 ) * 0.5; // Divide screen in two
StereoCoord.x -= mix(-0.25, 0.25, Center); // Change center for interpupillary distance (IPD)
// Mirror left half
float ScreenSide = step(0.5, Coordinates.x);
StereoCoord.x *= ScreenSide*2.0-1.0;
StereoCoord.x += 1.0 - ScreenSide;
return StereoCoord;
}
// Convert stereo coordinates to mono
vec2 InvStereoVision(vec2 Coordinates, int ScreenMask, float Center)
{
vec2 stereoCoord = Coordinates;
stereoCoord.x += Center*0.5 * ScreenMask;
return stereoCoord;
}
// Generate border mask with anti-aliasing from UV coordinates
float BorderMaskAA(vec2 Coordinates)
{
vec2 RaidalCoord = abs(Coordinates*2.0-1.0);
// Get pixel size in transformed coordinates (for anti-aliasing)
vec2 PixelSize = fwidth(RaidalCoord);
// Create borders mask (with anti-aliasing)
vec2 Borders = smoothstep(1.0-PixelSize, 1.0+PixelSize, RaidalCoord);
// Combine side and top borders
return max(Borders.x, Borders.y);
}
/*
// Can't really use this one as RetroArch can't access the depth buffer
float GetDepth(vec2 texcoord)
{
return ReShade::GetLinearizedDepth(texcoord);
}
// Horizontal parallax offset effect
vec2 Parallax(vec2 Coordinates, float Offset, float Center, int GapOffset, int Steps)
{
// Limit amount of loop steps to make it finite
#ifndef MaximumParallaxSteps
#def MaximumParallaxSteps 64
#endif
// Offset per step progress
float LayerDepth = 1.0 / min(MaximumParallaxSteps, Steps);
// Netto layer offset change
float deltaCoordinates = Offset * LayerDepth;
vec2 ParallaxCoord = Coordinates;
// Offset image horizontally so that parallax is in the depth appointed center
ParallaxCoord.x += Offset * Center;
float CurrentDepthMapValue = GetDepth(ParallaxCoord); // Replace function
// Steep parallax mapping
float CurrentLayerDepth = 0.0;
[loop]
while(CurrentLayerDepth < CurrentDepthMapValue)
{
// Shift coordinates horizontally in linear fasion
ParallaxCoord.x -= deltaCoordinates;
// Get depth value at current coordinates
CurrentDepthMapValue = GetDepth(ParallaxCoord); // Replace function
// Get depth of next layer
CurrentLayerDepth += LayerDepth;
continue;
}
// Parallax Occlusion Mapping
vec2 PrevParallaxCoord = ParallaxCoord;
PrevParallaxCoord.x += deltaCoordinates;
float afterDepthValue = CurrentDepthMapValue - CurrentLayerDepth;
float beforeDepthValue = GetDepth(PrevParallaxCoord); // Replace function
// Store depth read difference for masking
float DepthDifference = beforeDepthValue - CurrentDepthMapValue;
beforeDepthValue += LayerDepth - CurrentLayerDepth;
// Interpolate coordinates
float weight = afterDepthValue / (afterDepthValue - beforeDepthValue);
ParallaxCoord = PrevParallaxCoord * weight + ParallaxCoord * (1.0 - weight);
// Apply gap masking (by JMF)
DepthDifference *= GapOffset * Offset * 100.0;
DepthDifference *= ReShade::PixelSize.x; // Replace function
ParallaxCoord.x += DepthDifference;
return ParallaxCoord;
};
*/
// Lens projection model (algorithm by JMF)
float Orthographic(float rFOV, float R){ return tan(asin(sin(rFOV*0.5)*R))/(tan(rFOV*0.5)*R); }
float Equisolid(float rFOV, float R){ return tan(asin(sin(rFOV*0.25)*R)*2.0)/(tan(rFOV*0.5)*R); }
float Equidistant(float rFOV, float R){ return tan(R*rFOV*0.5)/(tan(rFOV*0.5)*R); }
float Stereographic(float rFOV, float R){ return tan(atan(tan(rFOV*0.25)*R)*2.0)/(tan(rFOV*0.5)*R); }
// Brown-Conrady radial distortion model (multiply by coordinates)
float kRadial(float R2, float K1, float K2, float K3, float K4)
{ return 1.0 + K1*R2 + K2*pow(R2,2) + K3*pow(R2,4) + K4*pow(R2,6); }
// Brown-Conrady tangental distortion model (add to coordinates)
vec2 pTangental(vec2 Coord, float R2, float P1, float P2, float P3, float P4)
{
return vec2(
(P1*(R2+pow(Coord.x,2)*2.0)+2.0*P2*Coord.x*Coord.y)*(1.0+P3*R2+P4*pow(R2,2)),
(P2*(R2+pow(Coord.y,2)*2.0)+2.0*P1*Coord.x*Coord.y)*(1.0+P3*R2+P4*pow(R2,2))
);
}
// RGB to YUV709.luma
float Luma(vec3 Input)
{
const vec3 Luma709 = vec3(0.2126, 0.7152, 0.0722);
return dot(Input, Luma709);
}
// Overlay blending mode
float Overlay(float LayerA, float LayerB)
{
float MinA = min(LayerA, 0.5);
float MinB = min(LayerB, 0.5);
float MaxA = max(LayerA, 0.5);
float MaxB = max(LayerB, 0.5);
return 2.0 * (MinA * MinB + MaxA + MaxB - MaxA * MaxB) - 1.5;
}

Binary file not shown.

After

Width:  |  Height:  |  Size: 120 KiB

View file

@ -60,7 +60,7 @@ layout(location = 1) in vec2 right_coord;
layout(location = 2) in float timer;
layout(location = 0) out vec4 FragColor;
layout(set = 0, binding = 2) uniform sampler2D Source;
layout(set = 0, binding = 2) uniform sampler2D OriginalHistory1;
layout(set = 0, binding = 3) uniform sampler2D OriginalHistory1;
#define PrevTexture OriginalHistory1

View file

@ -1,3 +1,3 @@
shaders = 1
shaders0 = shaders/side-by-side-simple.slang
shader0 = shaders/side-by-side-simple.slang