From c864dbb2d443a8120c0454d2a5c38b37b5161f51 Mon Sep 17 00:00:00 2001 From: rz5 Date: Sat, 16 Jul 2016 00:01:38 +0100 Subject: [PATCH] Update crt-geom.slang Changed the formatting, tab size is 4 spaces. Based on the discussion in IRC, I carefully deleted every instance of global.SourceSize.zw, because z = 1/x and w = 1/y and zw is NOT the same as IN.video_size. --- crt/crt-geom.slang | 577 +++++++++++++++++++++++---------------------- 1 file changed, 301 insertions(+), 276 deletions(-) diff --git a/crt/crt-geom.slang b/crt/crt-geom.slang index c07fc4d..884ff0a 100644 --- a/crt/crt-geom.slang +++ b/crt/crt-geom.slang @@ -2,11 +2,11 @@ layout(std140, set = 0, binding = 0) uniform UBO { - mat4 MVP; - vec4 OutputSize; - vec4 OriginalSize; - vec4 SourceSize; - uint FrameCount; + mat4 MVP; + vec4 OutputSize; + vec4 OriginalSize; + vec4 SourceSize; + uint FrameCount; } global; #define CRTgamma 2.4 @@ -37,42 +37,42 @@ layout(std140, set = 0, binding = 0) uniform UBO (cgwg gave their consent to have the original version of this shader distributed under the GPL in this message: - http://board.byuu.org/viewtopic.php?p=26075#p26075 + http://board.byuu.org/viewtopic.php?p=26075#p26075 - "Feel free to distribute my shaders under the GPL. After all, the - barrel distortion code was taken from the Curvature shader, which is - under the GPL." + "Feel free to distribute my shaders under the GPL. After all, the + barrel distortion code was taken from the Curvature shader, which is + under the GPL." ) - This shader variant is pre-configured with screen curvature + This shader variant is pre-configured with screen curvature */ - // Comment the next line to disable interpolation in linear gamma (and - // gain speed). - #define LINEAR_PROCESSING +// Comment the next line to disable interpolation in linear gamma (and +// gain speed). +#define LINEAR_PROCESSING - // Enable 3x oversampling of the beam profile; improves moire effect caused by scanlines+curvature - #define OVERSAMPLE +// Enable 3x oversampling of the beam profile; improves moire effect caused by scanlines+curvature +#define OVERSAMPLE - // Use the older, purely gaussian beam profile; uncomment for speed - #define USEGAUSSIAN - - // Use interlacing detection; may interfere with other shaders if combined - #define INTERLACED +// Use the older, purely gaussian beam profile; uncomment for speed +#define USEGAUSSIAN + +// Use interlacing detection; may interfere with other shaders if combined +#define INTERLACED - // Macros. - #define FIX(c) max(abs(c), 1e-5); - #define PI 3.141592653589 +// Macros. +#define FIX(c) max(abs(c), 1e-5); +#define PI 3.141592653589 - #ifdef LINEAR_PROCESSING - # define TEX2D(c) pow(texture(Source, (c)), vec4(CRTgamma)) - #else - # define TEX2D(c) texture(Source, (c)) - #endif +#ifdef LINEAR_PROCESSING +# define TEX2D(c) pow(texture(Source, (c)), vec4(CRTgamma)) +#else +# define TEX2D(c) texture(Source, (c)) +#endif - // aspect ratio - vec2 aspect = vec2(1.0, 0.75); - vec2 angle = vec2(0.0, 0.0); - vec2 overscan = vec2(1.01, 1.01); +// aspect ratio +vec2 aspect = vec2(1.0, 0.75); +vec2 angle = vec2(0.0, 0.0); +vec2 overscan = vec2(1.01, 1.01); #pragma stage vertex layout(location = 0) in vec4 Position; @@ -86,97 +86,105 @@ layout(location = 5) out vec2 one; layout(location = 6) out float mod_factor; float intersect(vec2 xy) - { - float A = dot(xy,xy)+d*d; - float B = 2.0*(R*(dot(xy,sinangle)-d*cosangle.x*cosangle.y)-d*d); - float C = d*d + 2.0*R*d*cosangle.x*cosangle.y; - return (-B-sqrt(B*B-4.0*A*C))/(2.0*A); - } +{ + float A = dot(xy,xy) + d*d; + float B = 2.0*(R*(dot(xy,sinangle)-d*cosangle.x*cosangle.y)-d*d); + float C = d*d + 2.0*R*d*cosangle.x*cosangle.y; + + return (-B-sqrt(B*B-4.0*A*C))/(2.0*A); +} vec2 bkwtrans(vec2 xy) - { - float c = intersect(xy); - vec2 point = vec2(c)*xy; - point -= vec2(-R)*sinangle; - point /= vec2(R); - vec2 tang = sinangle/cosangle; - vec2 poc = point/cosangle; - float A = dot(tang,tang)+1.0; - float B = -2.0*dot(poc,tang); - float C = dot(poc,poc)-1.0; - float a = (-B+sqrt(B*B-4.0*A*C))/(2.0*A); - vec2 uv = (point-a*sinangle)/cosangle; - float r = R*acos(a); - return uv*r/sin(r/R); - } +{ + float c = intersect(xy); + vec2 point = vec2(c)*xy; + point -= vec2(-R)*sinangle; + point /= vec2(R); + vec2 tang = sinangle/cosangle; + vec2 poc = point/cosangle; + + float A = dot(tang,tang)+1.0; + float B = -2.0*dot(poc,tang); + float C = dot(poc,poc)-1.0; + + float a = (-B+sqrt(B*B-4.0*A*C))/(2.0*A); + vec2 uv = (point-a*sinangle)/cosangle; + float r = R*acos(a); + + return uv*r/sin(r/R); +} vec2 fwtrans(vec2 uv) - { - float r = FIX(sqrt(dot(uv,uv))); - uv *= sin(r/R)/r; - float x = 1.0-cos(r/R); - float D = d/R + x*cosangle.x*cosangle.y+dot(uv,sinangle); - return d*(uv*cosangle-x*sinangle)/D; - } +{ + float r = FIX(sqrt(dot(uv,uv))); + uv *= sin(r/R)/r; + float x = 1.0-cos(r/R); + float D = d/R + x*cosangle.x*cosangle.y+dot(uv,sinangle); + + return d*(uv*cosangle-x*sinangle)/D; +} vec3 maxscale() - { - vec2 c = bkwtrans(-R * sinangle / (1.0 + R/d*cosangle.x*cosangle.y)); - vec2 a = vec2(0.5,0.5)*aspect; - vec2 lo = vec2(fwtrans(vec2(-a.x,c.y)).x, - fwtrans(vec2(c.x,-a.y)).y)/aspect; - vec2 hi = vec2(fwtrans(vec2(+a.x,c.y)).x, - fwtrans(vec2(c.x,+a.y)).y)/aspect; - return vec3((hi+lo)*aspect*0.5,max(hi.x-lo.x,hi.y-lo.y)); - } +{ + vec2 c = bkwtrans(-R * sinangle / (1.0 + R/d*cosangle.x*cosangle.y)); + vec2 a = vec2(0.5,0.5)*aspect; + vec2 lo = vec2(fwtrans(vec2(-a.x,c.y)).x, + fwtrans(vec2(c.x,-a.y)).y)/aspect; + vec2 hi = vec2(fwtrans(vec2(+a.x,c.y)).x, + fwtrans(vec2(c.x,+a.y)).y)/aspect; + + return vec3((hi+lo)*aspect*0.5,max(hi.x-lo.x,hi.y-lo.y)); +} - // Calculate the influence of a scanline on the current pixel. - // - // 'distance' is the distance in texture coordinates from the current - // pixel to the scanline in question. - // 'color' is the colour of the scanline at the horizontal location of - // the current pixel. - vec4 scanlineWeights(float distance, vec4 color) - { - // "wid" controls the width of the scanline beam, for each RGB - // channel The "weights" lines basically specify the formula - // that gives you the profile of the beam, i.e. the intensity as - // a function of distance from the vertical center of the - // scanline. In this case, it is gaussian if width=2, and - // becomes nongaussian for larger widths. Ideally this should - // be normalized so that the integral across the beam is - // independent of its width. That is, for a narrower beam - // "weights" should have a higher peak at the center of the - // scanline than for a wider beam. - #ifdef USEGAUSSIAN - vec4 wid = 0.3 + 0.1 * pow(color, vec4(3.0)); - vec4 weights = vec4(distance / wid); - return 0.4 * exp(-weights * weights) / wid; - #else - vec4 wid = 2.0 + 2.0 * pow(color, vec4(4.0)); - vec4 weights = vec4(distance / scanline_weight); - return 1.4 * exp(-pow(weights * inversesqrt(0.5 * wid), wid)) / (0.6 + 0.2 * wid); - #endif - } - +// Calculate the influence of a scanline on the current pixel. +// +// 'distance' is the distance in texture coordinates from the current +// pixel to the scanline in question. +// 'color' is the colour of the scanline at the horizontal location of +// the current pixel. +vec4 scanlineWeights(float distance, vec4 color) +{ + // "wid" controls the width of the scanline beam, for each RGB + // channel The "weights" lines basically specify the formula + // that gives you the profile of the beam, i.e. the intensity as + // a function of distance from the vertical center of the + // scanline. In this case, it is gaussian if width=2, and + // becomes nongaussian for larger widths. Ideally this should + // be normalized so that the integral across the beam is + // independent of its width. That is, for a narrower beam + // "weights" should have a higher peak at the center of the + // scanline than for a wider beam. + #ifdef USEGAUSSIAN + vec4 wid = 0.3 + 0.1 * pow(color, vec4(3.0)); + vec4 weights = vec4(distance / wid); + + return 0.4 * exp(-weights * weights) / wid; + #else + vec4 wid = 2.0 + 2.0 * pow(color, vec4(4.0)); + vec4 weights = vec4(distance / scanline_weight); + + return 1.4 * exp(-pow(weights * inversesqrt(0.5 * wid), wid)) / (0.6 + 0.2 * wid); + #endif +} + void main() { - gl_Position = global.MVP * Position; - vTexCoord = TexCoord; - - // Precalculate a bunch of useful values we'll need in the fragment - // shader. - sinangle = sin(angle); - cosangle = cos(angle); - stretch = maxscale(); + gl_Position = global.MVP * Position; + vTexCoord = TexCoord; - ilfac = vec2(1.0,(global.SourceSize.y/200.0)); + // Precalculate a bunch of useful values we'll need in the fragment + // shader. + sinangle = sin(angle); + cosangle = cos(angle); + stretch = maxscale(); - // The size of one texel, in texture-coordinates. - one = ilfac / global.SourceSize.xy; + ilfac = vec2(1.0,(global.SourceSize.y/200.0)); - // Resulting X pixel-coordinate of the pixel we're drawing. - mod_factor = TexCoord.x * (global.SourceSize.x / global.SourceSize.z) * (global.SourceSize.z / global.SourceSize.x); + // The size of one texel, in texture-coordinates. + one = ilfac / global.SourceSize.xy; + + // Resulting X pixel-coordinate of the pixel we're drawing. + mod_factor = TexCoord.x * global.SourceSize.x * global.OutputSize.x / global.SourceSize.x; } #pragma stage fragment @@ -191,205 +199,222 @@ layout(location = 0) out vec4 FragColor; layout(set = 0, binding = 2) uniform sampler2D Source; float intersect(vec2 xy) - { - float A = dot(xy,xy)+d*d; - float B = 2.0*(R*(dot(xy,sinangle)-d*cosangle.x*cosangle.y)-d*d); - float C = d*d + 2.0*R*d*cosangle.x*cosangle.y; - return (-B-sqrt(B*B-4.0*A*C))/(2.0*A); - } +{ + float A = dot(xy,xy) + d*d; + float B = 2.0*(R*(dot(xy,sinangle)-d*cosangle.x*cosangle.y) - d*d); + float C = d*d + 2.0*R*d*cosangle.x*cosangle.y; + + return (-B-sqrt(B*B - 4.0*A*C))/(2.0*A); +} vec2 bkwtrans(vec2 xy) - { - float c = intersect(xy); - vec2 point = vec2(c)*xy; - point -= vec2(-R)*sinangle; - point /= vec2(R); - vec2 tang = sinangle/cosangle; - vec2 poc = point/cosangle; - float A = dot(tang,tang)+1.0; - float B = -2.0*dot(poc,tang); - float C = dot(poc,poc)-1.0; - float a = (-B+sqrt(B*B-4.0*A*C))/(2.0*A); - vec2 uv = (point-a*sinangle)/cosangle; - float r = R*acos(a); - return uv*r/sin(r/R); - } +{ + float c = intersect(xy); + vec2 point = vec2(c)*xy; + + point -= vec2(-R)*sinangle; + point /= vec2(R); + + vec2 tang = sinangle/cosangle; + vec2 poc = point/cosangle; + + float A = dot(tang,tang)+1.0; + float B = -2.0*dot(poc,tang); + float C = dot(poc,poc)-1.0; + + float a = (-B+sqrt(B*B-4.0*A*C))/(2.0*A); + vec2 uv = (point-a*sinangle)/cosangle; + float r = R*acos(a); + + return uv*r/sin(r/R); +} vec2 fwtrans(vec2 uv) - { - float r = FIX(sqrt(dot(uv,uv))); - uv *= sin(r/R)/r; - float x = 1.0-cos(r/R); - float D = d/R + x*cosangle.x*cosangle.y+dot(uv,sinangle); - return d*(uv*cosangle-x*sinangle)/D; - } +{ + float r = FIX(sqrt(dot(uv,uv))); + uv *= sin(r/R)/r; + float x = 1.0-cos(r/R); + float D = d/R + x*cosangle.x*cosangle.y + dot(uv,sinangle); + + return d*(uv*cosangle-x*sinangle)/D; +} vec3 maxscale() - { - vec2 c = bkwtrans(-R * sinangle / (1.0 + R/d*cosangle.x*cosangle.y)); - vec2 a = vec2(0.5,0.5)*aspect; - vec2 lo = vec2(fwtrans(vec2(-a.x,c.y)).x, - fwtrans(vec2(c.x,-a.y)).y)/aspect; - vec2 hi = vec2(fwtrans(vec2(+a.x,c.y)).x, - fwtrans(vec2(c.x,+a.y)).y)/aspect; - return vec3((hi+lo)*aspect*0.5,max(hi.x-lo.x,hi.y-lo.y)); - } +{ + vec2 c = bkwtrans(-R * sinangle / (1.0 + R/d*cosangle.x*cosangle.y)); + vec2 a = vec2(0.5,0.5)*aspect; - // Calculate the influence of a scanline on the current pixel. - // - // 'distance' is the distance in texture coordinates from the current - // pixel to the scanline in question. - // 'color' is the colour of the scanline at the horizontal location of - // the current pixel. - vec4 scanlineWeights(float distance, vec4 color) - { - // "wid" controls the width of the scanline beam, for each RGB - // channel The "weights" lines basically specify the formula - // that gives you the profile of the beam, i.e. the intensity as - // a function of distance from the vertical center of the - // scanline. In this case, it is gaussian if width=2, and - // becomes nongaussian for larger widths. Ideally this should - // be normalized so that the integral across the beam is - // independent of its width. That is, for a narrower beam - // "weights" should have a higher peak at the center of the - // scanline than for a wider beam. - #ifdef USEGAUSSIAN - vec4 wid = 0.3 + 0.1 * pow(color, vec4(3.0)); - vec4 weights = vec4(distance / wid); - return 0.4 * exp(-weights * weights) / wid; - #else - vec4 wid = 2.0 + 2.0 * pow(color, vec4(4.0)); - vec4 weights = vec4(distance / scanline_weight); - return 1.4 * exp(-pow(weights * inversesqrt(0.5 * wid), wid)) / (0.6 + 0.2 * wid); - #endif - } - + vec2 lo = vec2(fwtrans(vec2(-a.x,c.y)).x, + fwtrans(vec2(c.x, -a.y)).y)/aspect; + vec2 hi = vec2(fwtrans(vec2(+a.x,c.y)).x, + fwtrans(vec2(c.x, +a.y)).y)/aspect; + + return vec3((hi+lo)*aspect*0.5,max(hi.x-lo.x, hi.y-lo.y)); +} + +// Calculate the influence of a scanline on the current pixel. +// +// 'distance' is the distance in texture coordinates from the current +// pixel to the scanline in question. +// 'color' is the colour of the scanline at the horizontal location of +// the current pixel. +vec4 scanlineWeights(float distance, vec4 color) +{ + // "wid" controls the width of the scanline beam, for each RGB + // channel The "weights" lines basically specify the formula + // that gives you the profile of the beam, i.e. the intensity as + // a function of distance from the vertical center of the + // scanline. In this case, it is gaussian if width=2, and + // becomes nongaussian for larger widths. Ideally this should + // be normalized so that the integral across the beam is + // independent of its width. That is, for a narrower beam + // "weights" should have a higher peak at the center of the + // scanline than for a wider beam. +#ifdef USEGAUSSIAN + vec4 wid = 0.3 + 0.1 * pow(color, vec4(3.0)); + vec4 weights = vec4(distance / wid); + return 0.4 * exp(-weights * weights) / wid; +#else + vec4 wid = 2.0 + 2.0 * pow(color, vec4(4.0)); + vec4 weights = vec4(distance / scanline_weight); + return 1.4 * exp(-pow(weights * inversesqrt(0.5 * wid), wid)) / (0.6 + 0.2 * wid); +#endif +} + vec2 transform(vec2 coord) - { - coord *= global.SourceSize.xy / global.SourceSize.zw; - coord = (coord-vec2(0.5))*aspect*stretch.z+stretch.xy; - return (bkwtrans(coord)/vec2(overscan_x / 100.0, overscan_y / 100.0)/aspect+vec2(0.5)) * global.SourceSize.zw / global.SourceSize.xy; - } - +{ + coord *= global.SourceSize.xy; + coord = (coord-vec2(0.5))*aspect*stretch.z+stretch.xy; + + return (bkwtrans(coord)/vec2(overscan_x / 100.0, overscan_y / 100.0)/aspect+vec2(0.5)) * global.SourceSize.xy; +} + float corner(vec2 coord) - { - // coord *= global.SourceSize.xy / global.SourceSize.zw; - coord = (coord - vec2(0.5)) * vec2(overscan_x / 100.0, overscan_y / 100.0) + vec2(0.5); - coord = min(coord, vec2(1.0)-coord) * aspect; - vec2 cdist = vec2(cornersize); - coord = (cdist - min(coord,cdist)); - float dist = sqrt(dot(coord,coord)); - return clamp((cdist.x-dist)*cornersmooth,0.0, 1.0); - } - +{ +// coord *= global.SourceSize.xy / global.SourceSize.zw; + coord = (coord - vec2(0.5)) * vec2(overscan_x / 100.0, overscan_y / 100.0) + vec2(0.5); + coord = min(coord, vec2(1.0) - coord) * aspect; + vec2 cdist = vec2(cornersize); + coord = (cdist - min(coord, cdist)); + float dist = sqrt(dot(coord, coord)); + + return clamp((cdist.x-dist)*cornersmooth, 0.0, 1.0); +} + void main() { - // Here's a helpful diagram to keep in mind while trying to - // understand the code: - // - // | | | | | - // ------------------------------- - // | | | | | - // | 01 | 11 | 21 | 31 | <-- current scanline - // | | @ | | | - // ------------------------------- - // | | | | | - // | 02 | 12 | 22 | 32 | <-- next scanline - // | | | | | - // ------------------------------- - // | | | | | - // - // Each character-cell represents a pixel on the output - // surface, "@" represents the current pixel (always somewhere - // in the bottom half of the current scan-line, or the top-half - // of the next scanline). The grid of lines represents the - // edges of the texels of the underlying texture. + // Here's a helpful diagram to keep in mind while trying to + // understand the code: + // + // | | | | | + // ------------------------------- + // | | | | | + // | 01 | 11 | 21 | 31 | <-- current scanline + // | | @ | | | + // ------------------------------- + // | | | | | + // | 02 | 12 | 22 | 32 | <-- next scanline + // | | | | | + // ------------------------------- + // | | | | | + // + // Each character-cell represents a pixel on the output + // surface, "@" represents the current pixel (always somewhere + // in the bottom half of the current scan-line, or the top-half + // of the next scanline). The grid of lines represents the + // edges of the texels of the underlying texture. - // Texture coordinates of the texel containing the active pixel. + // Texture coordinates of the texel containing the active pixel. #ifdef CURVATURE - vec2 xy = transform(vTexCoord); + vec2 xy = transform(vTexCoord); #else - vec2 xy = vTexCoord; + vec2 xy = vTexCoord; #endif - float cval = corner(xy); + float cval = corner(xy); - // Of all the pixels that are mapped onto the texel we are - // currently rendering, which pixel are we currently rendering? + // Of all the pixels that are mapped onto the texel we are + // currently rendering, which pixel are we currently rendering? #ifdef INTERLACED - vec2 ilvec = vec2(0.0,ilfac.y > 1.5 ? mod(float(global.FrameCount),2.0) : 0.0); + vec2 ilvec = vec2(0.0, ilfac.y > 1.5 ? mod(float(global.FrameCount), 2.0) : 0.0); #else - vec2 ilvec = vec2(0.0,ilfac.y); + vec2 ilvec = vec2(0.0, ilfac.y); #endif - vec2 ratio_scale = (xy * global.SourceSize.xy - vec2(0.5, 0.5) + ilvec)/ilfac; + vec2 ratio_scale = (xy * global.SourceSize.xy - vec2(0.5, 0.5) + ilvec)/ilfac; #ifdef OVERSAMPLE - float filter_ = fwidth(ratio_scale.y);//global.SourceSize.y / global.OutputSize.y; + float filter_ = fwidth(ratio_scale.y);//global.SourceSize.y / global.OutputSize.y; #endif - vec2 uv_ratio = fract(ratio_scale); + vec2 uv_ratio = fract(ratio_scale); - // Snap to the center of the underlying texel. - xy = (floor(ratio_scale)*ilfac + vec2(0.5, 0.5) - ilvec) / global.SourceSize.xy; + // Snap to the center of the underlying texel. + xy = (floor(ratio_scale)*ilfac + vec2(0.5, 0.5) - ilvec) / global.SourceSize.xy; - // Calculate Lanczos scaling coefficients describing the effect - // of various neighbour texels in a scanline on the current - // pixel. - vec4 coeffs = PI * vec4(1.0 + uv_ratio.x, uv_ratio.x, 1.0 - uv_ratio.x, 2.0 - uv_ratio.x); + // Calculate Lanczos scaling coefficients describing the effect + // of various neighbour texels in a scanline on the current + // pixel. + vec4 coeffs = PI * vec4(1.0 + uv_ratio.x, uv_ratio.x, 1.0 - uv_ratio.x, 2.0 - uv_ratio.x); - // Prevent division by zero. - coeffs = FIX(coeffs); + // Prevent division by zero. + coeffs = FIX(coeffs); - // Lanczos2 kernel. - coeffs = 2.0 * sin(coeffs) * sin(coeffs / 2.0) / (coeffs * coeffs); + // Lanczos2 kernel. + coeffs = 2.0 * sin(coeffs) * sin(coeffs / 2.0) / (coeffs * coeffs); - // Normalize. - coeffs /= dot(coeffs, vec4(1.0)); + // Normalize. + coeffs /= dot(coeffs, vec4(1.0)); - // Calculate the effective colour of the current and next - // scanlines at the horizontal location of the current pixel, - // using the Lanczos coefficients above. - vec4 col = clamp(mat4( - TEX2D(xy + vec2(-one.x, 0.0)), - TEX2D(xy), - TEX2D(xy + vec2(one.x, 0.0)), - TEX2D(xy + vec2(2.0 * one.x, 0.0))) * coeffs, - 0.0, 1.0); - vec4 col2 = clamp(mat4( - TEX2D(xy + vec2(-one.x, one.y)), - TEX2D(xy + vec2(0.0, one.y)), - TEX2D(xy + one), - TEX2D(xy + vec2(2.0 * one.x, one.y))) * coeffs, - 0.0, 1.0); + // Calculate the effective colour of the current and next + // scanlines at the horizontal location of the current pixel, + // using the Lanczos coefficients above. + vec4 col = clamp( + mat4( + TEX2D(xy + vec2(-one.x, 0.0)), + TEX2D(xy), + TEX2D(xy + vec2(one.x, 0.0)), + TEX2D(xy + vec2(2.0 * one.x, 0.0)) + ) * coeffs, + 0.0, 1.0 + ); + vec4 col2 = clamp( + mat4( + TEX2D(xy + vec2(-one.x, one.y)), + TEX2D(xy + vec2(0.0, one.y)), + TEX2D(xy + one), + TEX2D(xy + vec2(2.0 * one.x, one.y)) + ) * coeffs, + 0.0, 1.0 + ); #ifndef LINEAR_PROCESSING - col = pow(col , vec4(CRTgamma)); - col2 = pow(col2, vec4(CRTgamma)); + col = pow(col , vec4(CRTgamma)); + col2 = pow(col2, vec4(CRTgamma)); #endif - // Calculate the influence of the current and next scanlines on - // the current pixel. - vec4 weights = scanlineWeights(uv_ratio.y, col); - vec4 weights2 = scanlineWeights(1.0 - uv_ratio.y, col2); + // Calculate the influence of the current and next scanlines on + // the current pixel. + vec4 weights = scanlineWeights(uv_ratio.y, col); + vec4 weights2 = scanlineWeights(1.0 - uv_ratio.y, col2); #ifdef OVERSAMPLE - uv_ratio.y =uv_ratio.y+1.0/3.0*filter_; - weights = (weights+scanlineWeights(uv_ratio.y, col))/3.0; - weights2=(weights2+scanlineWeights(abs(1.0-uv_ratio.y), col2))/3.0; - uv_ratio.y =uv_ratio.y-2.0/3.0*filter_; - weights=weights+scanlineWeights(abs(uv_ratio.y), col)/3.0; - weights2=weights2+scanlineWeights(abs(1.0-uv_ratio.y), col2)/3.0; + uv_ratio.y = uv_ratio.y + 1.0/3.0*filter_; + weights = (weights + scanlineWeights(uv_ratio.y, col))/3.0; + weights2 = (weights2 + scanlineWeights(abs(1.0-uv_ratio.y), col2))/3.0; + uv_ratio.y = uv_ratio.y - 2.0/3.0*filter_; + weights = weights + scanlineWeights(abs(uv_ratio.y), col)/3.0; + weights2 = weights2 + scanlineWeights(abs(1.0-uv_ratio.y), col2)/3.0; #endif - vec3 mul_res = (col * weights + col2 * weights2).rgb * vec3(cval); + vec3 mul_res = (col * weights + col2 * weights2).rgb * vec3(cval); - // dot-mask emulation: - // Output pixels are alternately tinted green and magenta. - vec3 dotMaskWeights = mix( - vec3(1.0, 1.0 - DOTMASK, 1.0), - vec3(1.0 - DOTMASK, 1.0, 1.0 - DOTMASK), - floor(mod(mod_factor, 2.01)) - ); - - mul_res *= dotMaskWeights; + // dot-mask emulation: + // Output pixels are alternately tinted green and magenta. + vec3 dotMaskWeights = mix( + vec3(1.0, 1.0 - DOTMASK, 1.0), + vec3(1.0 - DOTMASK, 1.0, 1.0 - DOTMASK), + floor(mod(mod_factor, 2.01)) + ); + + mul_res *= dotMaskWeights; - // Convert the image gamma for display on our output device. - mul_res = pow(mul_res, vec3(1.0 / monitorgamma)); + // Convert the image gamma for display on our output device. + mul_res = pow(mul_res, vec3(1.0 / monitorgamma)); -FragColor = vec4(mul_res, 1.0); + FragColor = vec4(mul_res, 1.0); }