Merge pull request #1 from rz5/patch-1

Update crt-geom.slang
This commit is contained in:
hizzlekizzle 2016-07-15 18:25:53 -05:00 committed by GitHub
commit da0536cf88

View file

@ -2,11 +2,11 @@
layout(std140, set = 0, binding = 0) uniform UBO
{
mat4 MVP;
vec4 OutputSize;
vec4 OriginalSize;
vec4 SourceSize;
uint FrameCount;
mat4 MVP;
vec4 OutputSize;
vec4 OriginalSize;
vec4 SourceSize;
uint FrameCount;
} global;
#define CRTgamma 2.4
@ -37,42 +37,42 @@ layout(std140, set = 0, binding = 0) uniform UBO
(cgwg gave their consent to have the original version of this shader
distributed under the GPL in this message:
http://board.byuu.org/viewtopic.php?p=26075#p26075
http://board.byuu.org/viewtopic.php?p=26075#p26075
"Feel free to distribute my shaders under the GPL. After all, the
barrel distortion code was taken from the Curvature shader, which is
under the GPL."
"Feel free to distribute my shaders under the GPL. After all, the
barrel distortion code was taken from the Curvature shader, which is
under the GPL."
)
This shader variant is pre-configured with screen curvature
This shader variant is pre-configured with screen curvature
*/
// Comment the next line to disable interpolation in linear gamma (and
// gain speed).
#define LINEAR_PROCESSING
// Comment the next line to disable interpolation in linear gamma (and
// gain speed).
#define LINEAR_PROCESSING
// Enable 3x oversampling of the beam profile; improves moire effect caused by scanlines+curvature
#define OVERSAMPLE
// Enable 3x oversampling of the beam profile; improves moire effect caused by scanlines+curvature
#define OVERSAMPLE
// Use the older, purely gaussian beam profile; uncomment for speed
#define USEGAUSSIAN
// Use interlacing detection; may interfere with other shaders if combined
#define INTERLACED
// Use the older, purely gaussian beam profile; uncomment for speed
#define USEGAUSSIAN
// Use interlacing detection; may interfere with other shaders if combined
#define INTERLACED
// Macros.
#define FIX(c) max(abs(c), 1e-5);
#define PI 3.141592653589
// Macros.
#define FIX(c) max(abs(c), 1e-5);
#define PI 3.141592653589
#ifdef LINEAR_PROCESSING
# define TEX2D(c) pow(texture(Source, (c)), vec4(CRTgamma))
#else
# define TEX2D(c) texture(Source, (c))
#endif
#ifdef LINEAR_PROCESSING
# define TEX2D(c) pow(texture(Source, (c)), vec4(CRTgamma))
#else
# define TEX2D(c) texture(Source, (c))
#endif
// aspect ratio
vec2 aspect = vec2(1.0, 0.75);
vec2 angle = vec2(0.0, 0.0);
vec2 overscan = vec2(1.01, 1.01);
// aspect ratio
vec2 aspect = vec2(1.0, 0.75);
vec2 angle = vec2(0.0, 0.0);
vec2 overscan = vec2(1.01, 1.01);
#pragma stage vertex
layout(location = 0) in vec4 Position;
@ -86,97 +86,105 @@ layout(location = 5) out vec2 one;
layout(location = 6) out float mod_factor;
float intersect(vec2 xy)
{
float A = dot(xy,xy)+d*d;
float B = 2.0*(R*(dot(xy,sinangle)-d*cosangle.x*cosangle.y)-d*d);
float C = d*d + 2.0*R*d*cosangle.x*cosangle.y;
return (-B-sqrt(B*B-4.0*A*C))/(2.0*A);
}
{
float A = dot(xy,xy) + d*d;
float B = 2.0*(R*(dot(xy,sinangle)-d*cosangle.x*cosangle.y)-d*d);
float C = d*d + 2.0*R*d*cosangle.x*cosangle.y;
return (-B-sqrt(B*B-4.0*A*C))/(2.0*A);
}
vec2 bkwtrans(vec2 xy)
{
float c = intersect(xy);
vec2 point = vec2(c)*xy;
point -= vec2(-R)*sinangle;
point /= vec2(R);
vec2 tang = sinangle/cosangle;
vec2 poc = point/cosangle;
float A = dot(tang,tang)+1.0;
float B = -2.0*dot(poc,tang);
float C = dot(poc,poc)-1.0;
float a = (-B+sqrt(B*B-4.0*A*C))/(2.0*A);
vec2 uv = (point-a*sinangle)/cosangle;
float r = R*acos(a);
return uv*r/sin(r/R);
}
{
float c = intersect(xy);
vec2 point = vec2(c)*xy;
point -= vec2(-R)*sinangle;
point /= vec2(R);
vec2 tang = sinangle/cosangle;
vec2 poc = point/cosangle;
float A = dot(tang,tang)+1.0;
float B = -2.0*dot(poc,tang);
float C = dot(poc,poc)-1.0;
float a = (-B+sqrt(B*B-4.0*A*C))/(2.0*A);
vec2 uv = (point-a*sinangle)/cosangle;
float r = R*acos(a);
return uv*r/sin(r/R);
}
vec2 fwtrans(vec2 uv)
{
float r = FIX(sqrt(dot(uv,uv)));
uv *= sin(r/R)/r;
float x = 1.0-cos(r/R);
float D = d/R + x*cosangle.x*cosangle.y+dot(uv,sinangle);
return d*(uv*cosangle-x*sinangle)/D;
}
{
float r = FIX(sqrt(dot(uv,uv)));
uv *= sin(r/R)/r;
float x = 1.0-cos(r/R);
float D = d/R + x*cosangle.x*cosangle.y+dot(uv,sinangle);
return d*(uv*cosangle-x*sinangle)/D;
}
vec3 maxscale()
{
vec2 c = bkwtrans(-R * sinangle / (1.0 + R/d*cosangle.x*cosangle.y));
vec2 a = vec2(0.5,0.5)*aspect;
vec2 lo = vec2(fwtrans(vec2(-a.x,c.y)).x,
fwtrans(vec2(c.x,-a.y)).y)/aspect;
vec2 hi = vec2(fwtrans(vec2(+a.x,c.y)).x,
fwtrans(vec2(c.x,+a.y)).y)/aspect;
return vec3((hi+lo)*aspect*0.5,max(hi.x-lo.x,hi.y-lo.y));
}
{
vec2 c = bkwtrans(-R * sinangle / (1.0 + R/d*cosangle.x*cosangle.y));
vec2 a = vec2(0.5,0.5)*aspect;
vec2 lo = vec2(fwtrans(vec2(-a.x,c.y)).x,
fwtrans(vec2(c.x,-a.y)).y)/aspect;
vec2 hi = vec2(fwtrans(vec2(+a.x,c.y)).x,
fwtrans(vec2(c.x,+a.y)).y)/aspect;
return vec3((hi+lo)*aspect*0.5,max(hi.x-lo.x,hi.y-lo.y));
}
// Calculate the influence of a scanline on the current pixel.
//
// 'distance' is the distance in texture coordinates from the current
// pixel to the scanline in question.
// 'color' is the colour of the scanline at the horizontal location of
// the current pixel.
vec4 scanlineWeights(float distance, vec4 color)
{
// "wid" controls the width of the scanline beam, for each RGB
// channel The "weights" lines basically specify the formula
// that gives you the profile of the beam, i.e. the intensity as
// a function of distance from the vertical center of the
// scanline. In this case, it is gaussian if width=2, and
// becomes nongaussian for larger widths. Ideally this should
// be normalized so that the integral across the beam is
// independent of its width. That is, for a narrower beam
// "weights" should have a higher peak at the center of the
// scanline than for a wider beam.
#ifdef USEGAUSSIAN
vec4 wid = 0.3 + 0.1 * pow(color, vec4(3.0));
vec4 weights = vec4(distance / wid);
return 0.4 * exp(-weights * weights) / wid;
#else
vec4 wid = 2.0 + 2.0 * pow(color, vec4(4.0));
vec4 weights = vec4(distance / scanline_weight);
return 1.4 * exp(-pow(weights * inversesqrt(0.5 * wid), wid)) / (0.6 + 0.2 * wid);
#endif
}
// Calculate the influence of a scanline on the current pixel.
//
// 'distance' is the distance in texture coordinates from the current
// pixel to the scanline in question.
// 'color' is the colour of the scanline at the horizontal location of
// the current pixel.
vec4 scanlineWeights(float distance, vec4 color)
{
// "wid" controls the width of the scanline beam, for each RGB
// channel The "weights" lines basically specify the formula
// that gives you the profile of the beam, i.e. the intensity as
// a function of distance from the vertical center of the
// scanline. In this case, it is gaussian if width=2, and
// becomes nongaussian for larger widths. Ideally this should
// be normalized so that the integral across the beam is
// independent of its width. That is, for a narrower beam
// "weights" should have a higher peak at the center of the
// scanline than for a wider beam.
#ifdef USEGAUSSIAN
vec4 wid = 0.3 + 0.1 * pow(color, vec4(3.0));
vec4 weights = vec4(distance / wid);
return 0.4 * exp(-weights * weights) / wid;
#else
vec4 wid = 2.0 + 2.0 * pow(color, vec4(4.0));
vec4 weights = vec4(distance / scanline_weight);
return 1.4 * exp(-pow(weights * inversesqrt(0.5 * wid), wid)) / (0.6 + 0.2 * wid);
#endif
}
void main()
{
gl_Position = global.MVP * Position;
vTexCoord = TexCoord;
// Precalculate a bunch of useful values we'll need in the fragment
// shader.
sinangle = sin(angle);
cosangle = cos(angle);
stretch = maxscale();
gl_Position = global.MVP * Position;
vTexCoord = TexCoord;
ilfac = vec2(1.0,(global.SourceSize.y/200.0));
// Precalculate a bunch of useful values we'll need in the fragment
// shader.
sinangle = sin(angle);
cosangle = cos(angle);
stretch = maxscale();
// The size of one texel, in texture-coordinates.
one = ilfac / global.SourceSize.xy;
ilfac = vec2(1.0,(global.SourceSize.y/200.0));
// Resulting X pixel-coordinate of the pixel we're drawing.
mod_factor = TexCoord.x * (global.SourceSize.x / global.SourceSize.z) * (global.SourceSize.z / global.SourceSize.x);
// The size of one texel, in texture-coordinates.
one = ilfac / global.SourceSize.xy;
// Resulting X pixel-coordinate of the pixel we're drawing.
mod_factor = TexCoord.x * global.SourceSize.x * global.OutputSize.x / global.SourceSize.x;
}
#pragma stage fragment
@ -191,205 +199,222 @@ layout(location = 0) out vec4 FragColor;
layout(set = 0, binding = 2) uniform sampler2D Source;
float intersect(vec2 xy)
{
float A = dot(xy,xy)+d*d;
float B = 2.0*(R*(dot(xy,sinangle)-d*cosangle.x*cosangle.y)-d*d);
float C = d*d + 2.0*R*d*cosangle.x*cosangle.y;
return (-B-sqrt(B*B-4.0*A*C))/(2.0*A);
}
{
float A = dot(xy,xy) + d*d;
float B = 2.0*(R*(dot(xy,sinangle)-d*cosangle.x*cosangle.y) - d*d);
float C = d*d + 2.0*R*d*cosangle.x*cosangle.y;
return (-B-sqrt(B*B - 4.0*A*C))/(2.0*A);
}
vec2 bkwtrans(vec2 xy)
{
float c = intersect(xy);
vec2 point = vec2(c)*xy;
point -= vec2(-R)*sinangle;
point /= vec2(R);
vec2 tang = sinangle/cosangle;
vec2 poc = point/cosangle;
float A = dot(tang,tang)+1.0;
float B = -2.0*dot(poc,tang);
float C = dot(poc,poc)-1.0;
float a = (-B+sqrt(B*B-4.0*A*C))/(2.0*A);
vec2 uv = (point-a*sinangle)/cosangle;
float r = R*acos(a);
return uv*r/sin(r/R);
}
{
float c = intersect(xy);
vec2 point = vec2(c)*xy;
point -= vec2(-R)*sinangle;
point /= vec2(R);
vec2 tang = sinangle/cosangle;
vec2 poc = point/cosangle;
float A = dot(tang,tang)+1.0;
float B = -2.0*dot(poc,tang);
float C = dot(poc,poc)-1.0;
float a = (-B+sqrt(B*B-4.0*A*C))/(2.0*A);
vec2 uv = (point-a*sinangle)/cosangle;
float r = R*acos(a);
return uv*r/sin(r/R);
}
vec2 fwtrans(vec2 uv)
{
float r = FIX(sqrt(dot(uv,uv)));
uv *= sin(r/R)/r;
float x = 1.0-cos(r/R);
float D = d/R + x*cosangle.x*cosangle.y+dot(uv,sinangle);
return d*(uv*cosangle-x*sinangle)/D;
}
{
float r = FIX(sqrt(dot(uv,uv)));
uv *= sin(r/R)/r;
float x = 1.0-cos(r/R);
float D = d/R + x*cosangle.x*cosangle.y + dot(uv,sinangle);
return d*(uv*cosangle-x*sinangle)/D;
}
vec3 maxscale()
{
vec2 c = bkwtrans(-R * sinangle / (1.0 + R/d*cosangle.x*cosangle.y));
vec2 a = vec2(0.5,0.5)*aspect;
vec2 lo = vec2(fwtrans(vec2(-a.x,c.y)).x,
fwtrans(vec2(c.x,-a.y)).y)/aspect;
vec2 hi = vec2(fwtrans(vec2(+a.x,c.y)).x,
fwtrans(vec2(c.x,+a.y)).y)/aspect;
return vec3((hi+lo)*aspect*0.5,max(hi.x-lo.x,hi.y-lo.y));
}
{
vec2 c = bkwtrans(-R * sinangle / (1.0 + R/d*cosangle.x*cosangle.y));
vec2 a = vec2(0.5,0.5)*aspect;
// Calculate the influence of a scanline on the current pixel.
//
// 'distance' is the distance in texture coordinates from the current
// pixel to the scanline in question.
// 'color' is the colour of the scanline at the horizontal location of
// the current pixel.
vec4 scanlineWeights(float distance, vec4 color)
{
// "wid" controls the width of the scanline beam, for each RGB
// channel The "weights" lines basically specify the formula
// that gives you the profile of the beam, i.e. the intensity as
// a function of distance from the vertical center of the
// scanline. In this case, it is gaussian if width=2, and
// becomes nongaussian for larger widths. Ideally this should
// be normalized so that the integral across the beam is
// independent of its width. That is, for a narrower beam
// "weights" should have a higher peak at the center of the
// scanline than for a wider beam.
#ifdef USEGAUSSIAN
vec4 wid = 0.3 + 0.1 * pow(color, vec4(3.0));
vec4 weights = vec4(distance / wid);
return 0.4 * exp(-weights * weights) / wid;
#else
vec4 wid = 2.0 + 2.0 * pow(color, vec4(4.0));
vec4 weights = vec4(distance / scanline_weight);
return 1.4 * exp(-pow(weights * inversesqrt(0.5 * wid), wid)) / (0.6 + 0.2 * wid);
#endif
}
vec2 lo = vec2(fwtrans(vec2(-a.x,c.y)).x,
fwtrans(vec2(c.x, -a.y)).y)/aspect;
vec2 hi = vec2(fwtrans(vec2(+a.x,c.y)).x,
fwtrans(vec2(c.x, +a.y)).y)/aspect;
return vec3((hi+lo)*aspect*0.5,max(hi.x-lo.x, hi.y-lo.y));
}
// Calculate the influence of a scanline on the current pixel.
//
// 'distance' is the distance in texture coordinates from the current
// pixel to the scanline in question.
// 'color' is the colour of the scanline at the horizontal location of
// the current pixel.
vec4 scanlineWeights(float distance, vec4 color)
{
// "wid" controls the width of the scanline beam, for each RGB
// channel The "weights" lines basically specify the formula
// that gives you the profile of the beam, i.e. the intensity as
// a function of distance from the vertical center of the
// scanline. In this case, it is gaussian if width=2, and
// becomes nongaussian for larger widths. Ideally this should
// be normalized so that the integral across the beam is
// independent of its width. That is, for a narrower beam
// "weights" should have a higher peak at the center of the
// scanline than for a wider beam.
#ifdef USEGAUSSIAN
vec4 wid = 0.3 + 0.1 * pow(color, vec4(3.0));
vec4 weights = vec4(distance / wid);
return 0.4 * exp(-weights * weights) / wid;
#else
vec4 wid = 2.0 + 2.0 * pow(color, vec4(4.0));
vec4 weights = vec4(distance / scanline_weight);
return 1.4 * exp(-pow(weights * inversesqrt(0.5 * wid), wid)) / (0.6 + 0.2 * wid);
#endif
}
vec2 transform(vec2 coord)
{
coord *= global.SourceSize.xy / global.SourceSize.zw;
coord = (coord-vec2(0.5))*aspect*stretch.z+stretch.xy;
return (bkwtrans(coord)/vec2(overscan_x / 100.0, overscan_y / 100.0)/aspect+vec2(0.5)) * global.SourceSize.zw / global.SourceSize.xy;
}
{
coord *= global.SourceSize.xy;
coord = (coord-vec2(0.5))*aspect*stretch.z+stretch.xy;
return (bkwtrans(coord)/vec2(overscan_x / 100.0, overscan_y / 100.0)/aspect+vec2(0.5)) * global.SourceSize.xy;
}
float corner(vec2 coord)
{
// coord *= global.SourceSize.xy / global.SourceSize.zw;
coord = (coord - vec2(0.5)) * vec2(overscan_x / 100.0, overscan_y / 100.0) + vec2(0.5);
coord = min(coord, vec2(1.0)-coord) * aspect;
vec2 cdist = vec2(cornersize);
coord = (cdist - min(coord,cdist));
float dist = sqrt(dot(coord,coord));
return clamp((cdist.x-dist)*cornersmooth,0.0, 1.0);
}
{
// coord *= global.SourceSize.xy / global.SourceSize.zw;
coord = (coord - vec2(0.5)) * vec2(overscan_x / 100.0, overscan_y / 100.0) + vec2(0.5);
coord = min(coord, vec2(1.0) - coord) * aspect;
vec2 cdist = vec2(cornersize);
coord = (cdist - min(coord, cdist));
float dist = sqrt(dot(coord, coord));
return clamp((cdist.x-dist)*cornersmooth, 0.0, 1.0);
}
void main()
{
// Here's a helpful diagram to keep in mind while trying to
// understand the code:
//
// | | | | |
// -------------------------------
// | | | | |
// | 01 | 11 | 21 | 31 | <-- current scanline
// | | @ | | |
// -------------------------------
// | | | | |
// | 02 | 12 | 22 | 32 | <-- next scanline
// | | | | |
// -------------------------------
// | | | | |
//
// Each character-cell represents a pixel on the output
// surface, "@" represents the current pixel (always somewhere
// in the bottom half of the current scan-line, or the top-half
// of the next scanline). The grid of lines represents the
// edges of the texels of the underlying texture.
// Here's a helpful diagram to keep in mind while trying to
// understand the code:
//
// | | | | |
// -------------------------------
// | | | | |
// | 01 | 11 | 21 | 31 | <-- current scanline
// | | @ | | |
// -------------------------------
// | | | | |
// | 02 | 12 | 22 | 32 | <-- next scanline
// | | | | |
// -------------------------------
// | | | | |
//
// Each character-cell represents a pixel on the output
// surface, "@" represents the current pixel (always somewhere
// in the bottom half of the current scan-line, or the top-half
// of the next scanline). The grid of lines represents the
// edges of the texels of the underlying texture.
// Texture coordinates of the texel containing the active pixel.
// Texture coordinates of the texel containing the active pixel.
#ifdef CURVATURE
vec2 xy = transform(vTexCoord);
vec2 xy = transform(vTexCoord);
#else
vec2 xy = vTexCoord;
vec2 xy = vTexCoord;
#endif
float cval = corner(xy);
float cval = corner(xy);
// Of all the pixels that are mapped onto the texel we are
// currently rendering, which pixel are we currently rendering?
// Of all the pixels that are mapped onto the texel we are
// currently rendering, which pixel are we currently rendering?
#ifdef INTERLACED
vec2 ilvec = vec2(0.0,ilfac.y > 1.5 ? mod(float(global.FrameCount),2.0) : 0.0);
vec2 ilvec = vec2(0.0, ilfac.y > 1.5 ? mod(float(global.FrameCount), 2.0) : 0.0);
#else
vec2 ilvec = vec2(0.0,ilfac.y);
vec2 ilvec = vec2(0.0, ilfac.y);
#endif
vec2 ratio_scale = (xy * global.SourceSize.xy - vec2(0.5, 0.5) + ilvec)/ilfac;
vec2 ratio_scale = (xy * global.SourceSize.xy - vec2(0.5, 0.5) + ilvec)/ilfac;
#ifdef OVERSAMPLE
float filter_ = fwidth(ratio_scale.y);//global.SourceSize.y / global.OutputSize.y;
float filter_ = fwidth(ratio_scale.y);//global.SourceSize.y / global.OutputSize.y;
#endif
vec2 uv_ratio = fract(ratio_scale);
vec2 uv_ratio = fract(ratio_scale);
// Snap to the center of the underlying texel.
xy = (floor(ratio_scale)*ilfac + vec2(0.5, 0.5) - ilvec) / global.SourceSize.xy;
// Snap to the center of the underlying texel.
xy = (floor(ratio_scale)*ilfac + vec2(0.5, 0.5) - ilvec) / global.SourceSize.xy;
// Calculate Lanczos scaling coefficients describing the effect
// of various neighbour texels in a scanline on the current
// pixel.
vec4 coeffs = PI * vec4(1.0 + uv_ratio.x, uv_ratio.x, 1.0 - uv_ratio.x, 2.0 - uv_ratio.x);
// Calculate Lanczos scaling coefficients describing the effect
// of various neighbour texels in a scanline on the current
// pixel.
vec4 coeffs = PI * vec4(1.0 + uv_ratio.x, uv_ratio.x, 1.0 - uv_ratio.x, 2.0 - uv_ratio.x);
// Prevent division by zero.
coeffs = FIX(coeffs);
// Prevent division by zero.
coeffs = FIX(coeffs);
// Lanczos2 kernel.
coeffs = 2.0 * sin(coeffs) * sin(coeffs / 2.0) / (coeffs * coeffs);
// Lanczos2 kernel.
coeffs = 2.0 * sin(coeffs) * sin(coeffs / 2.0) / (coeffs * coeffs);
// Normalize.
coeffs /= dot(coeffs, vec4(1.0));
// Normalize.
coeffs /= dot(coeffs, vec4(1.0));
// Calculate the effective colour of the current and next
// scanlines at the horizontal location of the current pixel,
// using the Lanczos coefficients above.
vec4 col = clamp(mat4(
TEX2D(xy + vec2(-one.x, 0.0)),
TEX2D(xy),
TEX2D(xy + vec2(one.x, 0.0)),
TEX2D(xy + vec2(2.0 * one.x, 0.0))) * coeffs,
0.0, 1.0);
vec4 col2 = clamp(mat4(
TEX2D(xy + vec2(-one.x, one.y)),
TEX2D(xy + vec2(0.0, one.y)),
TEX2D(xy + one),
TEX2D(xy + vec2(2.0 * one.x, one.y))) * coeffs,
0.0, 1.0);
// Calculate the effective colour of the current and next
// scanlines at the horizontal location of the current pixel,
// using the Lanczos coefficients above.
vec4 col = clamp(
mat4(
TEX2D(xy + vec2(-one.x, 0.0)),
TEX2D(xy),
TEX2D(xy + vec2(one.x, 0.0)),
TEX2D(xy + vec2(2.0 * one.x, 0.0))
) * coeffs,
0.0, 1.0
);
vec4 col2 = clamp(
mat4(
TEX2D(xy + vec2(-one.x, one.y)),
TEX2D(xy + vec2(0.0, one.y)),
TEX2D(xy + one),
TEX2D(xy + vec2(2.0 * one.x, one.y))
) * coeffs,
0.0, 1.0
);
#ifndef LINEAR_PROCESSING
col = pow(col , vec4(CRTgamma));
col2 = pow(col2, vec4(CRTgamma));
col = pow(col , vec4(CRTgamma));
col2 = pow(col2, vec4(CRTgamma));
#endif
// Calculate the influence of the current and next scanlines on
// the current pixel.
vec4 weights = scanlineWeights(uv_ratio.y, col);
vec4 weights2 = scanlineWeights(1.0 - uv_ratio.y, col2);
// Calculate the influence of the current and next scanlines on
// the current pixel.
vec4 weights = scanlineWeights(uv_ratio.y, col);
vec4 weights2 = scanlineWeights(1.0 - uv_ratio.y, col2);
#ifdef OVERSAMPLE
uv_ratio.y =uv_ratio.y+1.0/3.0*filter_;
weights = (weights+scanlineWeights(uv_ratio.y, col))/3.0;
weights2=(weights2+scanlineWeights(abs(1.0-uv_ratio.y), col2))/3.0;
uv_ratio.y =uv_ratio.y-2.0/3.0*filter_;
weights=weights+scanlineWeights(abs(uv_ratio.y), col)/3.0;
weights2=weights2+scanlineWeights(abs(1.0-uv_ratio.y), col2)/3.0;
uv_ratio.y = uv_ratio.y + 1.0/3.0*filter_;
weights = (weights + scanlineWeights(uv_ratio.y, col))/3.0;
weights2 = (weights2 + scanlineWeights(abs(1.0-uv_ratio.y), col2))/3.0;
uv_ratio.y = uv_ratio.y - 2.0/3.0*filter_;
weights = weights + scanlineWeights(abs(uv_ratio.y), col)/3.0;
weights2 = weights2 + scanlineWeights(abs(1.0-uv_ratio.y), col2)/3.0;
#endif
vec3 mul_res = (col * weights + col2 * weights2).rgb * vec3(cval);
vec3 mul_res = (col * weights + col2 * weights2).rgb * vec3(cval);
// dot-mask emulation:
// Output pixels are alternately tinted green and magenta.
vec3 dotMaskWeights = mix(
vec3(1.0, 1.0 - DOTMASK, 1.0),
vec3(1.0 - DOTMASK, 1.0, 1.0 - DOTMASK),
floor(mod(mod_factor, 2.01))
);
mul_res *= dotMaskWeights;
// dot-mask emulation:
// Output pixels are alternately tinted green and magenta.
vec3 dotMaskWeights = mix(
vec3(1.0, 1.0 - DOTMASK, 1.0),
vec3(1.0 - DOTMASK, 1.0, 1.0 - DOTMASK),
floor(mod(mod_factor, 2.01))
);
mul_res *= dotMaskWeights;
// Convert the image gamma for display on our output device.
mul_res = pow(mul_res, vec3(1.0 / monitorgamma));
// Convert the image gamma for display on our output device.
mul_res = pow(mul_res, vec3(1.0 / monitorgamma));
FragColor = vec4(mul_res, 1.0);
FragColor = vec4(mul_res, 1.0);
}