|
|
|
@ -1,710 +0,0 @@
|
|
|
|
|
/**
|
|
|
|
|
* Copyright (C) 2013 Jorge Jimenez (jorge@iryoku.com)
|
|
|
|
|
* Copyright (C) 2013 Jose I. Echevarria (joseignacioechevarria@gmail.com)
|
|
|
|
|
* Copyright (C) 2013 Belen Masia (bmasia@unizar.es)
|
|
|
|
|
* Copyright (C) 2013 Fernando Navarro (fernandn@microsoft.com)
|
|
|
|
|
* Copyright (C) 2013 Diego Gutierrez (diegog@unizar.es)
|
|
|
|
|
*
|
|
|
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
|
|
|
* this software and associated documentation files (the "Software"), to deal in
|
|
|
|
|
* the Software without restriction, including without limitation the rights to
|
|
|
|
|
* use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
|
|
|
|
|
* of the Software, and to permit persons to whom the Software is furnished to
|
|
|
|
|
* do so, subject to the following conditions:
|
|
|
|
|
*
|
|
|
|
|
* The above copyright notice and this permission notice shall be included in
|
|
|
|
|
* all copies or substantial portions of the Software. As clarification, there
|
|
|
|
|
* is no requirement that the copyright notice and permission be included in
|
|
|
|
|
* binary distributions of the Software.
|
|
|
|
|
*
|
|
|
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
|
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
|
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
|
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
|
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
|
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
|
|
|
* SOFTWARE.
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
|
|
|
// Edge Detection Pixel Shaders (First Pass)
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* Luma Edge Detection
|
|
|
|
|
*
|
|
|
|
|
* IMPORTANT NOTICE: luma edge detection requires gamma-corrected colors, and
|
|
|
|
|
* thus 'colorTex' should be a non-sRGB texture.
|
|
|
|
|
*/
|
|
|
|
|
float2 SMAALumaEdgeDetectionPS(float2 texcoord,
|
|
|
|
|
float4 offset[3],
|
|
|
|
|
SMAATexture2D(colorTex)
|
|
|
|
|
#if SMAA_PREDICATION
|
|
|
|
|
, SMAATexture2D(predicationTex)
|
|
|
|
|
#endif
|
|
|
|
|
) {
|
|
|
|
|
// Calculate the threshold:
|
|
|
|
|
#if SMAA_PREDICATION
|
|
|
|
|
float2 threshold = SMAACalculatePredicatedThreshold(texcoord, offset, SMAATexturePass2D(predicationTex));
|
|
|
|
|
#else
|
|
|
|
|
float2 threshold = float2(SMAA_THRESHOLD, SMAA_THRESHOLD);
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
// Calculate lumas:
|
|
|
|
|
float3 weights = float3(0.2126, 0.7152, 0.0722);
|
|
|
|
|
float L = dot(SMAASamplePoint(colorTex, texcoord).rgb, weights);
|
|
|
|
|
|
|
|
|
|
float Lleft = dot(SMAASamplePoint(colorTex, offset[0].xy).rgb, weights);
|
|
|
|
|
float Ltop = dot(SMAASamplePoint(colorTex, offset[0].zw).rgb, weights);
|
|
|
|
|
|
|
|
|
|
// We do the usual threshold:
|
|
|
|
|
float4 delta;
|
|
|
|
|
delta.xy = abs(L - float2(Lleft, Ltop));
|
|
|
|
|
float2 edges = step(threshold, delta.xy);
|
|
|
|
|
|
|
|
|
|
// Then discard if there is no edge:
|
|
|
|
|
if (dot(edges, float2(1.0, 1.0)) == 0.0)
|
|
|
|
|
discard;
|
|
|
|
|
|
|
|
|
|
// Calculate right and bottom deltas:
|
|
|
|
|
float Lright = dot(SMAASamplePoint(colorTex, offset[1].xy).rgb, weights);
|
|
|
|
|
float Lbottom = dot(SMAASamplePoint(colorTex, offset[1].zw).rgb, weights);
|
|
|
|
|
delta.zw = abs(L - float2(Lright, Lbottom));
|
|
|
|
|
|
|
|
|
|
// Calculate the maximum delta in the direct neighborhood:
|
|
|
|
|
float2 maxDelta = max(delta.xy, delta.zw);
|
|
|
|
|
|
|
|
|
|
// Calculate left-left and top-top deltas:
|
|
|
|
|
float Lleftleft = dot(SMAASamplePoint(colorTex, offset[2].xy).rgb, weights);
|
|
|
|
|
float Ltoptop = dot(SMAASamplePoint(colorTex, offset[2].zw).rgb, weights);
|
|
|
|
|
delta.zw = abs(float2(Lleft, Ltop) - float2(Lleftleft, Ltoptop));
|
|
|
|
|
|
|
|
|
|
// Calculate the final maximum delta:
|
|
|
|
|
maxDelta = max(maxDelta.xy, delta.zw);
|
|
|
|
|
float finalDelta = max(maxDelta.x, maxDelta.y);
|
|
|
|
|
|
|
|
|
|
// Local contrast adaptation:
|
|
|
|
|
edges.xy *= step(finalDelta, SMAA_LOCAL_CONTRAST_ADAPTATION_FACTOR * delta.xy);
|
|
|
|
|
|
|
|
|
|
return edges;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* Color Edge Detection
|
|
|
|
|
*
|
|
|
|
|
* IMPORTANT NOTICE: color edge detection requires gamma-corrected colors, and
|
|
|
|
|
* thus 'colorTex' should be a non-sRGB texture.
|
|
|
|
|
*/
|
|
|
|
|
float2 SMAAColorEdgeDetectionPS(float2 texcoord,
|
|
|
|
|
float4 offset[3],
|
|
|
|
|
SMAATexture2D(colorTex)
|
|
|
|
|
#if SMAA_PREDICATION
|
|
|
|
|
, SMAATexture2D(predicationTex)
|
|
|
|
|
#endif
|
|
|
|
|
) {
|
|
|
|
|
// Calculate the threshold:
|
|
|
|
|
#if SMAA_PREDICATION
|
|
|
|
|
float2 threshold = SMAACalculatePredicatedThreshold(texcoord, offset, predicationTex);
|
|
|
|
|
#else
|
|
|
|
|
float2 threshold = float2(SMAA_THRESHOLD, SMAA_THRESHOLD);
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
// Calculate color deltas:
|
|
|
|
|
float4 delta;
|
|
|
|
|
float3 C = SMAASamplePoint(colorTex, texcoord).rgb;
|
|
|
|
|
|
|
|
|
|
float3 Cleft = SMAASamplePoint(colorTex, offset[0].xy).rgb;
|
|
|
|
|
float3 t = abs(C - Cleft);
|
|
|
|
|
delta.x = max(max(t.r, t.g), t.b);
|
|
|
|
|
|
|
|
|
|
float3 Ctop = SMAASamplePoint(colorTex, offset[0].zw).rgb;
|
|
|
|
|
t = abs(C - Ctop);
|
|
|
|
|
delta.y = max(max(t.r, t.g), t.b);
|
|
|
|
|
|
|
|
|
|
// We do the usual threshold:
|
|
|
|
|
float2 edges = step(threshold, delta.xy);
|
|
|
|
|
|
|
|
|
|
// Then discard if there is no edge:
|
|
|
|
|
if (dot(edges, float2(1.0, 1.0)) == 0.0)
|
|
|
|
|
discard;
|
|
|
|
|
|
|
|
|
|
// Calculate right and bottom deltas:
|
|
|
|
|
float3 Cright = SMAASamplePoint(colorTex, offset[1].xy).rgb;
|
|
|
|
|
t = abs(C - Cright);
|
|
|
|
|
delta.z = max(max(t.r, t.g), t.b);
|
|
|
|
|
|
|
|
|
|
float3 Cbottom = SMAASamplePoint(colorTex, offset[1].zw).rgb;
|
|
|
|
|
t = abs(C - Cbottom);
|
|
|
|
|
delta.w = max(max(t.r, t.g), t.b);
|
|
|
|
|
|
|
|
|
|
// Calculate the maximum delta in the direct neighborhood:
|
|
|
|
|
float2 maxDelta = max(delta.xy, delta.zw);
|
|
|
|
|
|
|
|
|
|
// Calculate left-left and top-top deltas:
|
|
|
|
|
float3 Cleftleft = SMAASamplePoint(colorTex, offset[2].xy).rgb;
|
|
|
|
|
t = abs(C - Cleftleft);
|
|
|
|
|
delta.z = max(max(t.r, t.g), t.b);
|
|
|
|
|
|
|
|
|
|
float3 Ctoptop = SMAASamplePoint(colorTex, offset[2].zw).rgb;
|
|
|
|
|
t = abs(C - Ctoptop);
|
|
|
|
|
delta.w = max(max(t.r, t.g), t.b);
|
|
|
|
|
|
|
|
|
|
// Calculate the final maximum delta:
|
|
|
|
|
maxDelta = max(maxDelta.xy, delta.zw);
|
|
|
|
|
float finalDelta = max(maxDelta.x, maxDelta.y);
|
|
|
|
|
|
|
|
|
|
// Local contrast adaptation:
|
|
|
|
|
edges.xy *= step(finalDelta, SMAA_LOCAL_CONTRAST_ADAPTATION_FACTOR * delta.xy);
|
|
|
|
|
|
|
|
|
|
return edges;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* Depth Edge Detection
|
|
|
|
|
*/
|
|
|
|
|
float2 SMAADepthEdgeDetectionPS(float2 texcoord,
|
|
|
|
|
float4 offset[3],
|
|
|
|
|
SMAATexture2D(depthTex)) {
|
|
|
|
|
float3 neighbours = SMAAGatherNeighbours(texcoord, offset, SMAATexturePass2D(depthTex));
|
|
|
|
|
float2 delta = abs(neighbours.xx - float2(neighbours.y, neighbours.z));
|
|
|
|
|
float2 edges = step(SMAA_DEPTH_THRESHOLD, delta);
|
|
|
|
|
|
|
|
|
|
if (dot(edges, float2(1.0, 1.0)) == 0.0)
|
|
|
|
|
discard;
|
|
|
|
|
|
|
|
|
|
return edges;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
|
|
|
// Diagonal Search Functions
|
|
|
|
|
|
|
|
|
|
#if !defined(SMAA_DISABLE_DIAG_DETECTION)
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* Allows to decode two binary values from a bilinear-filtered access.
|
|
|
|
|
*/
|
|
|
|
|
float2 SMAADecodeDiagBilinearAccess(float2 e) {
|
|
|
|
|
// Bilinear access for fetching 'e' have a 0.25 offset, and we are
|
|
|
|
|
// interested in the R and G edges:
|
|
|
|
|
//
|
|
|
|
|
// +---G---+-------+
|
|
|
|
|
// | x o R x |
|
|
|
|
|
// +-------+-------+
|
|
|
|
|
//
|
|
|
|
|
// Then, if one of these edge is enabled:
|
|
|
|
|
// Red: (0.75 * X + 0.25 * 1) => 0.25 or 1.0
|
|
|
|
|
// Green: (0.75 * 1 + 0.25 * X) => 0.75 or 1.0
|
|
|
|
|
//
|
|
|
|
|
// This function will unpack the values (mad + mul + round):
|
|
|
|
|
// wolframalpha.com: round(x * abs(5 * x - 5 * 0.75)) plot 0 to 1
|
|
|
|
|
e.r = e.r * abs(5.0 * e.r - 5.0 * 0.75);
|
|
|
|
|
return round(e);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
float4 SMAADecodeDiagBilinearAccess(float4 e) {
|
|
|
|
|
e.rb = e.rb * abs(5.0 * e.rb - 5.0 * 0.75);
|
|
|
|
|
return round(e);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* These functions allows to perform diagonal pattern searches.
|
|
|
|
|
*/
|
|
|
|
|
float2 SMAASearchDiag1(SMAATexture2D(edgesTex), float2 texcoord, float2 dir, out float2 e) {
|
|
|
|
|
float4 coord = float4(texcoord, -1.0, 1.0);
|
|
|
|
|
float3 t = float3(SMAA_RT_METRICS.xy, 1.0);
|
|
|
|
|
while (coord.z < float(SMAA_MAX_SEARCH_STEPS_DIAG - 1) &&
|
|
|
|
|
coord.w > 0.9) {
|
|
|
|
|
coord.xyz = mad(t, float3(dir, 1.0), coord.xyz);
|
|
|
|
|
e = SMAASampleLevelZero(edgesTex, coord.xy).rg;
|
|
|
|
|
coord.w = dot(e, float2(0.5, 0.5));
|
|
|
|
|
}
|
|
|
|
|
return coord.zw;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
float2 SMAASearchDiag2(SMAATexture2D(edgesTex), float2 texcoord, float2 dir, out float2 e) {
|
|
|
|
|
float4 coord = float4(texcoord, -1.0, 1.0);
|
|
|
|
|
coord.x += 0.25 * SMAA_RT_METRICS.x; // See @SearchDiag2Optimization
|
|
|
|
|
float3 t = float3(SMAA_RT_METRICS.xy, 1.0);
|
|
|
|
|
while (coord.z < float(SMAA_MAX_SEARCH_STEPS_DIAG - 1) &&
|
|
|
|
|
coord.w > 0.9) {
|
|
|
|
|
coord.xyz = mad(t, float3(dir, 1.0), coord.xyz);
|
|
|
|
|
|
|
|
|
|
// @SearchDiag2Optimization
|
|
|
|
|
// Fetch both edges at once using bilinear filtering:
|
|
|
|
|
e = SMAASampleLevelZero(edgesTex, coord.xy).rg;
|
|
|
|
|
e = SMAADecodeDiagBilinearAccess(e);
|
|
|
|
|
|
|
|
|
|
// Non-optimized version:
|
|
|
|
|
// e.g = SMAASampleLevelZero(edgesTex, coord.xy).g;
|
|
|
|
|
// e.r = SMAASampleLevelZeroOffset(edgesTex, coord.xy, int2(1, 0)).r;
|
|
|
|
|
|
|
|
|
|
coord.w = dot(e, float2(0.5, 0.5));
|
|
|
|
|
}
|
|
|
|
|
return coord.zw;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* Similar to SMAAArea, this calculates the area corresponding to a certain
|
|
|
|
|
* diagonal distance and crossing edges 'e'.
|
|
|
|
|
*/
|
|
|
|
|
float2 SMAAAreaDiag(SMAATexture2D(areaTex), float2 dist, float2 e, float offset) {
|
|
|
|
|
float2 texcoord = mad(float2(SMAA_AREATEX_MAX_DISTANCE_DIAG, SMAA_AREATEX_MAX_DISTANCE_DIAG), e, dist);
|
|
|
|
|
|
|
|
|
|
// We do a scale and bias for mapping to texel space:
|
|
|
|
|
texcoord = mad(SMAA_AREATEX_PIXEL_SIZE, texcoord, 0.5 * SMAA_AREATEX_PIXEL_SIZE);
|
|
|
|
|
|
|
|
|
|
// Diagonal areas are on the second half of the texture:
|
|
|
|
|
texcoord.x += 0.5;
|
|
|
|
|
|
|
|
|
|
// Move to proper place, according to the subpixel offset:
|
|
|
|
|
texcoord.y += SMAA_AREATEX_SUBTEX_SIZE * offset;
|
|
|
|
|
|
|
|
|
|
// Do it!
|
|
|
|
|
return SMAA_AREATEX_SELECT(SMAASampleLevelZero(areaTex, texcoord));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* This searches for diagonal patterns and returns the corresponding weights.
|
|
|
|
|
*/
|
|
|
|
|
float2 SMAACalculateDiagWeights(SMAATexture2D(edgesTex), SMAATexture2D(areaTex), float2 texcoord, float2 e, float4 subsampleIndices) {
|
|
|
|
|
float2 weights = float2(0.0, 0.0);
|
|
|
|
|
|
|
|
|
|
// Search for the line ends:
|
|
|
|
|
float4 d;
|
|
|
|
|
float2 end;
|
|
|
|
|
if (e.r > 0.0) {
|
|
|
|
|
d.xz = SMAASearchDiag1(SMAATexturePass2D(edgesTex), texcoord, float2(-1.0, 1.0), end);
|
|
|
|
|
d.x += float(end.y > 0.9);
|
|
|
|
|
} else
|
|
|
|
|
d.xz = float2(0.0, 0.0);
|
|
|
|
|
d.yw = SMAASearchDiag1(SMAATexturePass2D(edgesTex), texcoord, float2(1.0, -1.0), end);
|
|
|
|
|
|
|
|
|
|
SMAA_BRANCH
|
|
|
|
|
if (d.x + d.y > 2.0) { // d.x + d.y + 1 > 3
|
|
|
|
|
// Fetch the crossing edges:
|
|
|
|
|
float4 coords = mad(float4(-d.x + 0.25, d.x, d.y, -d.y - 0.25), SMAA_RT_METRICS.xyxy, texcoord.xyxy);
|
|
|
|
|
float4 c;
|
|
|
|
|
c.xy = SMAASampleLevelZeroOffset(edgesTex, coords.xy, int2(-1, 0)).rg;
|
|
|
|
|
c.zw = SMAASampleLevelZeroOffset(edgesTex, coords.zw, int2( 1, 0)).rg;
|
|
|
|
|
c.yxwz = SMAADecodeDiagBilinearAccess(c.xyzw);
|
|
|
|
|
|
|
|
|
|
// Non-optimized version:
|
|
|
|
|
// float4 coords = mad(float4(-d.x, d.x, d.y, -d.y), SMAA_RT_METRICS.xyxy, texcoord.xyxy);
|
|
|
|
|
// float4 c;
|
|
|
|
|
// c.x = SMAASampleLevelZeroOffset(edgesTex, coords.xy, int2(-1, 0)).g;
|
|
|
|
|
// c.y = SMAASampleLevelZeroOffset(edgesTex, coords.xy, int2( 0, 0)).r;
|
|
|
|
|
// c.z = SMAASampleLevelZeroOffset(edgesTex, coords.zw, int2( 1, 0)).g;
|
|
|
|
|
// c.w = SMAASampleLevelZeroOffset(edgesTex, coords.zw, int2( 1, -1)).r;
|
|
|
|
|
|
|
|
|
|
// Merge crossing edges at each side into a single value:
|
|
|
|
|
float2 cc = mad(float2(2.0, 2.0), c.xz, c.yw);
|
|
|
|
|
|
|
|
|
|
// Remove the crossing edge if we didn't found the end of the line:
|
|
|
|
|
SMAAMovc(bool2(step(0.9, d.zw)), cc, float2(0.0, 0.0));
|
|
|
|
|
|
|
|
|
|
// Fetch the areas for this line:
|
|
|
|
|
weights += SMAAAreaDiag(SMAATexturePass2D(areaTex), d.xy, cc, subsampleIndices.z);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Search for the line ends:
|
|
|
|
|
d.xz = SMAASearchDiag2(SMAATexturePass2D(edgesTex), texcoord, float2(-1.0, -1.0), end);
|
|
|
|
|
if (SMAASampleLevelZeroOffset(edgesTex, texcoord, int2(1, 0)).r > 0.0) {
|
|
|
|
|
d.yw = SMAASearchDiag2(SMAATexturePass2D(edgesTex), texcoord, float2(1.0, 1.0), end);
|
|
|
|
|
d.y += float(end.y > 0.9);
|
|
|
|
|
} else
|
|
|
|
|
d.yw = float2(0.0, 0.0);
|
|
|
|
|
|
|
|
|
|
SMAA_BRANCH
|
|
|
|
|
if (d.x + d.y > 2.0) { // d.x + d.y + 1 > 3
|
|
|
|
|
// Fetch the crossing edges:
|
|
|
|
|
float4 coords = mad(float4(-d.x, -d.x, d.y, d.y), SMAA_RT_METRICS.xyxy, texcoord.xyxy);
|
|
|
|
|
float4 c;
|
|
|
|
|
c.x = SMAASampleLevelZeroOffset(edgesTex, coords.xy, int2(-1, 0)).g;
|
|
|
|
|
c.y = SMAASampleLevelZeroOffset(edgesTex, coords.xy, int2( 0, -1)).r;
|
|
|
|
|
c.zw = SMAASampleLevelZeroOffset(edgesTex, coords.zw, int2( 1, 0)).gr;
|
|
|
|
|
float2 cc = mad(float2(2.0, 2.0), c.xz, c.yw);
|
|
|
|
|
|
|
|
|
|
// Remove the crossing edge if we didn't found the end of the line:
|
|
|
|
|
SMAAMovc(bool2(step(0.9, d.zw)), cc, float2(0.0, 0.0));
|
|
|
|
|
|
|
|
|
|
// Fetch the areas for this line:
|
|
|
|
|
weights += SMAAAreaDiag(SMAATexturePass2D(areaTex), d.xy, cc, subsampleIndices.w).gr;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return weights;
|
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
|
|
|
// Horizontal/Vertical Search Functions
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* This allows to determine how much length should we add in the last step
|
|
|
|
|
* of the searches. It takes the bilinearly interpolated edge (see
|
|
|
|
|
* @PSEUDO_GATHER4), and adds 0, 1 or 2, depending on which edges and
|
|
|
|
|
* crossing edges are active.
|
|
|
|
|
*/
|
|
|
|
|
float SMAASearchLength(SMAATexture2D(searchTex), float2 e, float offset) {
|
|
|
|
|
// The texture is flipped vertically, with left and right cases taking half
|
|
|
|
|
// of the space horizontally:
|
|
|
|
|
float2 scale = SMAA_SEARCHTEX_SIZE * float2(0.5, -1.0);
|
|
|
|
|
float2 bias = SMAA_SEARCHTEX_SIZE * float2(offset, 1.0);
|
|
|
|
|
|
|
|
|
|
// Scale and bias to access texel centers:
|
|
|
|
|
scale += float2(-1.0, 1.0);
|
|
|
|
|
bias += float2( 0.5, -0.5);
|
|
|
|
|
|
|
|
|
|
// Convert from pixel coordinates to texcoords:
|
|
|
|
|
// (We use SMAA_SEARCHTEX_PACKED_SIZE because the texture is cropped)
|
|
|
|
|
scale *= 1.0 / SMAA_SEARCHTEX_PACKED_SIZE;
|
|
|
|
|
bias *= 1.0 / SMAA_SEARCHTEX_PACKED_SIZE;
|
|
|
|
|
|
|
|
|
|
// Lookup the search texture:
|
|
|
|
|
return SMAA_SEARCHTEX_SELECT(SMAASampleLevelZero(searchTex, mad(scale, e, bias)));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* Horizontal/vertical search functions for the 2nd pass.
|
|
|
|
|
*/
|
|
|
|
|
float SMAASearchXLeft(SMAATexture2D(edgesTex), SMAATexture2D(searchTex), float2 texcoord, float end) {
|
|
|
|
|
/**
|
|
|
|
|
* @PSEUDO_GATHER4
|
|
|
|
|
* This texcoord has been offset by (-0.25, -0.125) in the vertex shader to
|
|
|
|
|
* sample between edge, thus fetching four edges in a row.
|
|
|
|
|
* Sampling with different offsets in each direction allows to disambiguate
|
|
|
|
|
* which edges are active from the four fetched ones.
|
|
|
|
|
*/
|
|
|
|
|
float2 e = float2(0.0, 1.0);
|
|
|
|
|
while (texcoord.x > end &&
|
|
|
|
|
e.g > 0.8281 && // Is there some edge not activated?
|
|
|
|
|
e.r == 0.0) { // Or is there a crossing edge that breaks the line?
|
|
|
|
|
e = SMAASampleLevelZero(edgesTex, texcoord).rg;
|
|
|
|
|
texcoord = mad(-float2(2.0, 0.0), SMAA_RT_METRICS.xy, texcoord);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
float offset = mad(-(255.0 / 127.0), SMAASearchLength(SMAATexturePass2D(searchTex), e, 0.0), 3.25);
|
|
|
|
|
return mad(SMAA_RT_METRICS.x, offset, texcoord.x);
|
|
|
|
|
|
|
|
|
|
// Non-optimized version:
|
|
|
|
|
// We correct the previous (-0.25, -0.125) offset we applied:
|
|
|
|
|
// texcoord.x += 0.25 * SMAA_RT_METRICS.x;
|
|
|
|
|
|
|
|
|
|
// The searches are bias by 1, so adjust the coords accordingly:
|
|
|
|
|
// texcoord.x += SMAA_RT_METRICS.x;
|
|
|
|
|
|
|
|
|
|
// Disambiguate the length added by the last step:
|
|
|
|
|
// texcoord.x += 2.0 * SMAA_RT_METRICS.x; // Undo last step
|
|
|
|
|
// texcoord.x -= SMAA_RT_METRICS.x * (255.0 / 127.0) * SMAASearchLength(SMAATexturePass2D(searchTex), e, 0.0);
|
|
|
|
|
// return mad(SMAA_RT_METRICS.x, offset, texcoord.x);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
float SMAASearchXRight(SMAATexture2D(edgesTex), SMAATexture2D(searchTex), float2 texcoord, float end) {
|
|
|
|
|
float2 e = float2(0.0, 1.0);
|
|
|
|
|
while (texcoord.x < end &&
|
|
|
|
|
e.g > 0.8281 && // Is there some edge not activated?
|
|
|
|
|
e.r == 0.0) { // Or is there a crossing edge that breaks the line?
|
|
|
|
|
e = SMAASampleLevelZero(edgesTex, texcoord).rg;
|
|
|
|
|
texcoord = mad(float2(2.0, 0.0), SMAA_RT_METRICS.xy, texcoord);
|
|
|
|
|
}
|
|
|
|
|
float offset = mad(-(255.0 / 127.0), SMAASearchLength(SMAATexturePass2D(searchTex), e, 0.5), 3.25);
|
|
|
|
|
return mad(-SMAA_RT_METRICS.x, offset, texcoord.x);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
float SMAASearchYUp(SMAATexture2D(edgesTex), SMAATexture2D(searchTex), float2 texcoord, float end) {
|
|
|
|
|
float2 e = float2(1.0, 0.0);
|
|
|
|
|
while (texcoord.y > end &&
|
|
|
|
|
e.r > 0.8281 && // Is there some edge not activated?
|
|
|
|
|
e.g == 0.0) { // Or is there a crossing edge that breaks the line?
|
|
|
|
|
e = SMAASampleLevelZero(edgesTex, texcoord).rg;
|
|
|
|
|
texcoord = mad(-float2(0.0, 2.0), SMAA_RT_METRICS.xy, texcoord);
|
|
|
|
|
}
|
|
|
|
|
float offset = mad(-(255.0 / 127.0), SMAASearchLength(SMAATexturePass2D(searchTex), e.gr, 0.0), 3.25);
|
|
|
|
|
return mad(SMAA_RT_METRICS.y, offset, texcoord.y);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
float SMAASearchYDown(SMAATexture2D(edgesTex), SMAATexture2D(searchTex), float2 texcoord, float end) {
|
|
|
|
|
float2 e = float2(1.0, 0.0);
|
|
|
|
|
while (texcoord.y < end &&
|
|
|
|
|
e.r > 0.8281 && // Is there some edge not activated?
|
|
|
|
|
e.g == 0.0) { // Or is there a crossing edge that breaks the line?
|
|
|
|
|
e = SMAASampleLevelZero(edgesTex, texcoord).rg;
|
|
|
|
|
texcoord = mad(float2(0.0, 2.0), SMAA_RT_METRICS.xy, texcoord);
|
|
|
|
|
}
|
|
|
|
|
float offset = mad(-(255.0 / 127.0), SMAASearchLength(SMAATexturePass2D(searchTex), e.gr, 0.5), 3.25);
|
|
|
|
|
return mad(-SMAA_RT_METRICS.y, offset, texcoord.y);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* Ok, we have the distance and both crossing edges. So, what are the areas
|
|
|
|
|
* at each side of current edge?
|
|
|
|
|
*/
|
|
|
|
|
float2 SMAAArea(SMAATexture2D(areaTex), float2 dist, float e1, float e2, float offset) {
|
|
|
|
|
// Rounding prevents precision errors of bilinear filtering:
|
|
|
|
|
float2 texcoord = mad(float2(SMAA_AREATEX_MAX_DISTANCE, SMAA_AREATEX_MAX_DISTANCE), round(4.0 * float2(e1, e2)), dist);
|
|
|
|
|
|
|
|
|
|
// We do a scale and bias for mapping to texel space:
|
|
|
|
|
texcoord = mad(SMAA_AREATEX_PIXEL_SIZE, texcoord, 0.5 * SMAA_AREATEX_PIXEL_SIZE);
|
|
|
|
|
|
|
|
|
|
// Move to proper place, according to the subpixel offset:
|
|
|
|
|
texcoord.y = mad(SMAA_AREATEX_SUBTEX_SIZE, offset, texcoord.y);
|
|
|
|
|
|
|
|
|
|
// Do it!
|
|
|
|
|
return SMAA_AREATEX_SELECT(SMAASampleLevelZero(areaTex, texcoord));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
|
|
|
// Corner Detection Functions
|
|
|
|
|
|
|
|
|
|
void SMAADetectHorizontalCornerPattern(SMAATexture2D(edgesTex), inout float2 weights, float4 texcoord, float2 d) {
|
|
|
|
|
#if !defined(SMAA_DISABLE_CORNER_DETECTION)
|
|
|
|
|
float2 leftRight = step(d.xy, d.yx);
|
|
|
|
|
float2 rounding = (1.0 - SMAA_CORNER_ROUNDING_NORM) * leftRight;
|
|
|
|
|
|
|
|
|
|
rounding /= leftRight.x + leftRight.y; // Reduce blending for pixels in the center of a line.
|
|
|
|
|
|
|
|
|
|
float2 factor = float2(1.0, 1.0);
|
|
|
|
|
factor.x -= rounding.x * SMAASampleLevelZeroOffset(edgesTex, texcoord.xy, int2(0, 1)).r;
|
|
|
|
|
factor.x -= rounding.y * SMAASampleLevelZeroOffset(edgesTex, texcoord.zw, int2(1, 1)).r;
|
|
|
|
|
factor.y -= rounding.x * SMAASampleLevelZeroOffset(edgesTex, texcoord.xy, int2(0, -2)).r;
|
|
|
|
|
factor.y -= rounding.y * SMAASampleLevelZeroOffset(edgesTex, texcoord.zw, int2(1, -2)).r;
|
|
|
|
|
|
|
|
|
|
weights *= saturate(factor);
|
|
|
|
|
#endif
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void SMAADetectVerticalCornerPattern(SMAATexture2D(edgesTex), inout float2 weights, float4 texcoord, float2 d) {
|
|
|
|
|
#if !defined(SMAA_DISABLE_CORNER_DETECTION)
|
|
|
|
|
float2 leftRight = step(d.xy, d.yx);
|
|
|
|
|
float2 rounding = (1.0 - SMAA_CORNER_ROUNDING_NORM) * leftRight;
|
|
|
|
|
|
|
|
|
|
rounding /= leftRight.x + leftRight.y;
|
|
|
|
|
|
|
|
|
|
float2 factor = float2(1.0, 1.0);
|
|
|
|
|
factor.x -= rounding.x * SMAASampleLevelZeroOffset(edgesTex, texcoord.xy, int2( 1, 0)).g;
|
|
|
|
|
factor.x -= rounding.y * SMAASampleLevelZeroOffset(edgesTex, texcoord.zw, int2( 1, 1)).g;
|
|
|
|
|
factor.y -= rounding.x * SMAASampleLevelZeroOffset(edgesTex, texcoord.xy, int2(-2, 0)).g;
|
|
|
|
|
factor.y -= rounding.y * SMAASampleLevelZeroOffset(edgesTex, texcoord.zw, int2(-2, 1)).g;
|
|
|
|
|
|
|
|
|
|
weights *= saturate(factor);
|
|
|
|
|
#endif
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
|
|
|
// Blending Weight Calculation Pixel Shader (Second Pass)
|
|
|
|
|
|
|
|
|
|
float4 SMAABlendingWeightCalculationPS(float2 texcoord,
|
|
|
|
|
float2 pixcoord,
|
|
|
|
|
float4 offset[3],
|
|
|
|
|
SMAATexture2D(edgesTex),
|
|
|
|
|
SMAATexture2D(areaTex),
|
|
|
|
|
SMAATexture2D(searchTex),
|
|
|
|
|
float4 subsampleIndices) { // Just pass zero for SMAA 1x, see @SUBSAMPLE_INDICES.
|
|
|
|
|
float4 weights = float4(0.0, 0.0, 0.0, 0.0);
|
|
|
|
|
|
|
|
|
|
float2 e = SMAASample(edgesTex, texcoord).rg;
|
|
|
|
|
|
|
|
|
|
SMAA_BRANCH
|
|
|
|
|
if (e.g > 0.0) { // Edge at north
|
|
|
|
|
#if !defined(SMAA_DISABLE_DIAG_DETECTION)
|
|
|
|
|
// Diagonals have both north and west edges, so searching for them in
|
|
|
|
|
// one of the boundaries is enough.
|
|
|
|
|
weights.rg = SMAACalculateDiagWeights(SMAATexturePass2D(edgesTex), SMAATexturePass2D(areaTex), texcoord, e, subsampleIndices);
|
|
|
|
|
|
|
|
|
|
// We give priority to diagonals, so if we find a diagonal we skip
|
|
|
|
|
// horizontal/vertical processing.
|
|
|
|
|
SMAA_BRANCH
|
|
|
|
|
if (weights.r == -weights.g) { // weights.r + weights.g == 0.0
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
float2 d;
|
|
|
|
|
|
|
|
|
|
// Find the distance to the left:
|
|
|
|
|
float3 coords;
|
|
|
|
|
coords.x = SMAASearchXLeft(SMAATexturePass2D(edgesTex), SMAATexturePass2D(searchTex), offset[0].xy, offset[2].x);
|
|
|
|
|
coords.y = offset[1].y; // offset[1].y = texcoord.y - 0.25 * SMAA_RT_METRICS.y (@CROSSING_OFFSET)
|
|
|
|
|
d.x = coords.x;
|
|
|
|
|
|
|
|
|
|
// Now fetch the left crossing edges, two at a time using bilinear
|
|
|
|
|
// filtering. Sampling at -0.25 (see @CROSSING_OFFSET) enables to
|
|
|
|
|
// discern what value each edge has:
|
|
|
|
|
float e1 = SMAASampleLevelZero(edgesTex, coords.xy).r;
|
|
|
|
|
|
|
|
|
|
// Find the distance to the right:
|
|
|
|
|
coords.z = SMAASearchXRight(SMAATexturePass2D(edgesTex), SMAATexturePass2D(searchTex), offset[0].zw, offset[2].y);
|
|
|
|
|
d.y = coords.z;
|
|
|
|
|
|
|
|
|
|
// We want the distances to be in pixel units (doing this here allow to
|
|
|
|
|
// better interleave arithmetic and memory accesses):
|
|
|
|
|
d = abs(round(mad(SMAA_RT_METRICS.zz, d, -pixcoord.xx)));
|
|
|
|
|
|
|
|
|
|
// SMAAArea below needs a sqrt, as the areas texture is compressed
|
|
|
|
|
// quadratically:
|
|
|
|
|
float2 sqrt_d = sqrt(d);
|
|
|
|
|
|
|
|
|
|
// Fetch the right crossing edges:
|
|
|
|
|
float e2 = SMAASampleLevelZeroOffset(edgesTex, coords.zy, int2(1, 0)).r;
|
|
|
|
|
|
|
|
|
|
// Ok, we know how this pattern looks like, now it is time for getting
|
|
|
|
|
// the actual area:
|
|
|
|
|
weights.rg = SMAAArea(SMAATexturePass2D(areaTex), sqrt_d, e1, e2, subsampleIndices.y);
|
|
|
|
|
|
|
|
|
|
// Fix corners:
|
|
|
|
|
coords.y = texcoord.y;
|
|
|
|
|
SMAADetectHorizontalCornerPattern(SMAATexturePass2D(edgesTex), weights.rg, coords.xyzy, d);
|
|
|
|
|
|
|
|
|
|
#if !defined(SMAA_DISABLE_DIAG_DETECTION)
|
|
|
|
|
} else
|
|
|
|
|
e.r = 0.0; // Skip vertical processing.
|
|
|
|
|
#endif
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
SMAA_BRANCH
|
|
|
|
|
if (e.r > 0.0) { // Edge at west
|
|
|
|
|
float2 d;
|
|
|
|
|
|
|
|
|
|
// Find the distance to the top:
|
|
|
|
|
float3 coords;
|
|
|
|
|
coords.y = SMAASearchYUp(SMAATexturePass2D(edgesTex), SMAATexturePass2D(searchTex), offset[1].xy, offset[2].z);
|
|
|
|
|
coords.x = offset[0].x; // offset[1].x = texcoord.x - 0.25 * SMAA_RT_METRICS.x;
|
|
|
|
|
d.x = coords.y;
|
|
|
|
|
|
|
|
|
|
// Fetch the top crossing edges:
|
|
|
|
|
float e1 = SMAASampleLevelZero(edgesTex, coords.xy).g;
|
|
|
|
|
|
|
|
|
|
// Find the distance to the bottom:
|
|
|
|
|
coords.z = SMAASearchYDown(SMAATexturePass2D(edgesTex), SMAATexturePass2D(searchTex), offset[1].zw, offset[2].w);
|
|
|
|
|
d.y = coords.z;
|
|
|
|
|
|
|
|
|
|
// We want the distances to be in pixel units:
|
|
|
|
|
d = abs(round(mad(SMAA_RT_METRICS.ww, d, -pixcoord.yy)));
|
|
|
|
|
|
|
|
|
|
// SMAAArea below needs a sqrt, as the areas texture is compressed
|
|
|
|
|
// quadratically:
|
|
|
|
|
float2 sqrt_d = sqrt(d);
|
|
|
|
|
|
|
|
|
|
// Fetch the bottom crossing edges:
|
|
|
|
|
float e2 = SMAASampleLevelZeroOffset(edgesTex, coords.xz, int2(0, 1)).g;
|
|
|
|
|
|
|
|
|
|
// Get the area for this direction:
|
|
|
|
|
weights.ba = SMAAArea(SMAATexturePass2D(areaTex), sqrt_d, e1, e2, subsampleIndices.x);
|
|
|
|
|
|
|
|
|
|
// Fix corners:
|
|
|
|
|
coords.x = texcoord.x;
|
|
|
|
|
SMAADetectVerticalCornerPattern(SMAATexturePass2D(edgesTex), weights.ba, coords.xyxz, d);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return weights;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
|
|
|
// Neighborhood Blending Pixel Shader (Third Pass)
|
|
|
|
|
|
|
|
|
|
float4 SMAANeighborhoodBlendingPS(float2 texcoord,
|
|
|
|
|
float4 offset,
|
|
|
|
|
SMAATexture2D(colorTex),
|
|
|
|
|
SMAATexture2D(blendTex)
|
|
|
|
|
#if SMAA_REPROJECTION
|
|
|
|
|
, SMAATexture2D(velocityTex)
|
|
|
|
|
#endif
|
|
|
|
|
) {
|
|
|
|
|
// Fetch the blending weights for current pixel:
|
|
|
|
|
float4 a;
|
|
|
|
|
a.x = SMAASample(blendTex, offset.xy).a; // Right
|
|
|
|
|
a.y = SMAASample(blendTex, offset.zw).g; // Top
|
|
|
|
|
a.wz = SMAASample(blendTex, texcoord).xz; // Bottom / Left
|
|
|
|
|
|
|
|
|
|
// Is there any blending weight with a value greater than 0.0?
|
|
|
|
|
SMAA_BRANCH
|
|
|
|
|
if (dot(a, float4(1.0, 1.0, 1.0, 1.0)) < 1e-5) {
|
|
|
|
|
float4 color = SMAASampleLevelZero(colorTex, texcoord);
|
|
|
|
|
|
|
|
|
|
#if SMAA_REPROJECTION
|
|
|
|
|
float2 velocity = SMAA_DECODE_VELOCITY(SMAASampleLevelZero(velocityTex, texcoord));
|
|
|
|
|
|
|
|
|
|
// Pack velocity into the alpha channel:
|
|
|
|
|
color.a = sqrt(5.0 * length(velocity));
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
return color;
|
|
|
|
|
} else {
|
|
|
|
|
bool h = max(a.x, a.z) > max(a.y, a.w); // max(horizontal) > max(vertical)
|
|
|
|
|
|
|
|
|
|
// Calculate the blending offsets:
|
|
|
|
|
float4 blendingOffset = float4(0.0, a.y, 0.0, a.w);
|
|
|
|
|
float2 blendingWeight = a.yw;
|
|
|
|
|
SMAAMovc(bool4(h, h, h, h), blendingOffset, float4(a.x, 0.0, a.z, 0.0));
|
|
|
|
|
SMAAMovc(bool2(h, h), blendingWeight, a.xz);
|
|
|
|
|
blendingWeight /= dot(blendingWeight, float2(1.0, 1.0));
|
|
|
|
|
|
|
|
|
|
// Calculate the texture coordinates:
|
|
|
|
|
float4 blendingCoord = mad(blendingOffset, float4(SMAA_RT_METRICS.xy, -SMAA_RT_METRICS.xy), texcoord.xyxy);
|
|
|
|
|
|
|
|
|
|
// We exploit bilinear filtering to mix current pixel with the chosen
|
|
|
|
|
// neighbor:
|
|
|
|
|
float4 color = blendingWeight.x * SMAASampleLevelZero(colorTex, blendingCoord.xy);
|
|
|
|
|
color += blendingWeight.y * SMAASampleLevelZero(colorTex, blendingCoord.zw);
|
|
|
|
|
|
|
|
|
|
#if SMAA_REPROJECTION
|
|
|
|
|
// Antialias velocity for proper reprojection in a later stage:
|
|
|
|
|
float2 velocity = blendingWeight.x * SMAA_DECODE_VELOCITY(SMAASampleLevelZero(velocityTex, blendingCoord.xy));
|
|
|
|
|
velocity += blendingWeight.y * SMAA_DECODE_VELOCITY(SMAASampleLevelZero(velocityTex, blendingCoord.zw));
|
|
|
|
|
|
|
|
|
|
// Pack velocity into the alpha channel:
|
|
|
|
|
color.a = sqrt(5.0 * length(velocity));
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
return color;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
|
|
|
// Temporal Resolve Pixel Shader (Optional Pass)
|
|
|
|
|
|
|
|
|
|
float4 SMAAResolvePS(float2 texcoord,
|
|
|
|
|
SMAATexture2D(currentColorTex),
|
|
|
|
|
SMAATexture2D(previousColorTex)
|
|
|
|
|
#if SMAA_REPROJECTION
|
|
|
|
|
, SMAATexture2D(velocityTex)
|
|
|
|
|
#endif
|
|
|
|
|
) {
|
|
|
|
|
#if SMAA_REPROJECTION
|
|
|
|
|
// Velocity is assumed to be calculated for motion blur, so we need to
|
|
|
|
|
// inverse it for reprojection:
|
|
|
|
|
float2 velocity = -SMAA_DECODE_VELOCITY(SMAASamplePoint(velocityTex, texcoord).rg);
|
|
|
|
|
|
|
|
|
|
// Fetch current pixel:
|
|
|
|
|
float4 current = SMAASamplePoint(currentColorTex, texcoord);
|
|
|
|
|
|
|
|
|
|
// Reproject current coordinates and fetch previous pixel:
|
|
|
|
|
float4 previous = SMAASamplePoint(previousColorTex, texcoord + velocity);
|
|
|
|
|
|
|
|
|
|
// Attenuate the previous pixel if the velocity is different:
|
|
|
|
|
float delta = abs(current.a * current.a - previous.a * previous.a) / 5.0;
|
|
|
|
|
float weight = 0.5 * saturate(1.0 - sqrt(delta) * SMAA_REPROJECTION_WEIGHT_SCALE);
|
|
|
|
|
|
|
|
|
|
// Blend the pixels according to the calculated weight:
|
|
|
|
|
return lerp(current, previous, weight);
|
|
|
|
|
#else
|
|
|
|
|
// Just blend the pixels:
|
|
|
|
|
float4 current = SMAASamplePoint(currentColorTex, texcoord);
|
|
|
|
|
float4 previous = SMAASamplePoint(previousColorTex, texcoord);
|
|
|
|
|
return lerp(current, previous, 0.5);
|
|
|
|
|
#endif
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
|
|
|
// Separate Multisamples Pixel Shader (Optional Pass)
|
|
|
|
|
|
|
|
|
|
#ifdef SMAALoad
|
|
|
|
|
void SMAASeparatePS(float4 position,
|
|
|
|
|
float2 texcoord,
|
|
|
|
|
out float4 target0,
|
|
|
|
|
out float4 target1,
|
|
|
|
|
SMAATexture2DMS2(colorTexMS)) {
|
|
|
|
|
int2 pos = int2(position.xy);
|
|
|
|
|
target0 = SMAALoad(colorTexMS, pos, 0);
|
|
|
|
|
target1 = SMAALoad(colorTexMS, pos, 1);
|
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|