crt-geom: add vertical mode, tate preset

This commit is contained in:
Tatsuya79 2021-05-21 19:09:55 +02:00 committed by GitHub
parent 59b8a11d64
commit fa3321fbd7
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
2 changed files with 185 additions and 71 deletions

17
crt/crt-geom-tate.slangp Normal file
View file

@ -0,0 +1,17 @@
shaders = 1
shader0 = shaders/crt-geom.slang
filter_linear0 = false
CRTgamma = "2.2"
CURVATURE = "1.0"
d = "1.5"
R = "1.8"
y_tilt = "-0.15"
cornersize = "0.0155"
invert_aspect = "0.0"
DOTMASK = "0.0"
scanline_weight = "0.3"
lum = "0.07"
vertical_scanlines = "1.0"
interlace_detect = "0.0"

View file

@ -17,32 +17,37 @@ layout(push_constant) uniform Push
float SHARPER; float SHARPER;
float scanline_weight; float scanline_weight;
float CURVATURE; float CURVATURE;
float interlace_detect; float interlace_detect;
float lum; float lum;
float xsize, ysize; float invert_aspect;
float vertical_scanlines;
float xsize;
float ysize;
} registers; } registers;
layout(std140, set = 0, binding = 0) uniform UBO layout(std140, set = 0, binding = 0) uniform UBO
{ {
mat4 MVP; mat4 MVP;
vec4 OutputSize; vec4 OutputSize;
vec4 SourceSize; vec4 SourceSize;
} global; } global;
#pragma parameter CRTgamma "CRTGeom Target Gamma" 2.4 0.1 5.0 0.1 #pragma parameter CRTgamma "CRTGeom Target Gamma" 2.4 0.1 5.0 0.1
#pragma parameter monitorgamma "CRTGeom Monitor Gamma" 2.2 0.1 5.0 0.1 #pragma parameter monitorgamma "CRTGeom Monitor Gamma" 2.2 0.1 5.0 0.1
#pragma parameter d "CRTGeom Distance" 1.5 0.1 3.0 0.1 #pragma parameter d "CRTGeom Distance" 1.5 0.1 3.0 0.1
#pragma parameter CURVATURE "CRTGeom Curvature Toggle" 1.0 0.0 1.0 1.0 #pragma parameter CURVATURE "CRTGeom Curvature Toggle" 1.0 0.0 1.0 1.0
#pragma parameter invert_aspect "CRTGeom Curvature Aspect Inversion" 0.0 0.0 1.0 1.0
#pragma parameter R "CRTGeom Curvature Radius" 2.0 0.1 10.0 0.1 #pragma parameter R "CRTGeom Curvature Radius" 2.0 0.1 10.0 0.1
#pragma parameter cornersize "CRTGeom Corner Size" 0.03 0.001 1.0 0.005 #pragma parameter cornersize "CRTGeom Corner Size" 0.03 0.001 1.0 0.005
#pragma parameter cornersmooth "CRTGeom Corner Smoothness" 1000.0 80.0 2000.0 100.0 #pragma parameter cornersmooth "CRTGeom Corner Smoothness" 1000.0 80.0 2000.0 100.0
#pragma parameter x_tilt "CRTGeom Horizontal Tilt" 0.0 -0.5 0.5 0.05 #pragma parameter x_tilt "CRTGeom Horizontal Tilt" 0.0 -0.5 0.5 0.05
#pragma parameter y_tilt "CRTGeom Vertical Tilt" 0.0 -0.5 0.5 0.05 #pragma parameter y_tilt "CRTGeom Vertical Tilt" 0.0 -0.5 0.5 0.05
#pragma parameter overscan_x "CRTGeom Horiz. Overscan %" 100.0 -125.0 125.0 1.0 #pragma parameter overscan_x "CRTGeom Horiz. Overscan %" 100.0 -125.0 125.0 0.5
#pragma parameter overscan_y "CRTGeom Vert. Overscan %" 100.0 -125.0 125.0 1.0 #pragma parameter overscan_y "CRTGeom Vert. Overscan %" 100.0 -125.0 125.0 0.5
#pragma parameter DOTMASK "CRTGeom Dot Mask Strength" 0.3 0.0 1.0 0.05 #pragma parameter DOTMASK "CRTGeom Dot Mask Toggle" 0.3 0.0 0.3 0.3
#pragma parameter SHARPER "CRTGeom Sharpness" 1.0 1.0 3.0 1.0 #pragma parameter SHARPER "CRTGeom Sharpness" 1.0 1.0 3.0 1.0
#pragma parameter scanline_weight "CRTGeom Scanline Weight" 0.3 0.1 0.5 0.05 #pragma parameter scanline_weight "CRTGeom Scanline Weight" 0.3 0.1 0.5 0.05
#pragma parameter vertical_scanlines "CRTGeom Vertical Scanlines" 0.0 0.0 1.0 1.0
#pragma parameter lum "CRTGeom Luminance" 0.0 0.0 1.0 0.01 #pragma parameter lum "CRTGeom Luminance" 0.0 0.0 1.0 0.01
#pragma parameter interlace_detect "CRTGeom Interlacing Simulation" 1.0 0.0 1.0 1.0 #pragma parameter interlace_detect "CRTGeom Interlacing Simulation" 1.0 0.0 1.0 1.0
@ -96,7 +101,7 @@ vec4 SourceSize = vec4(width.x, height.x, width.y, height.y);
#endif #endif
// aspect ratio // aspect ratio
vec2 aspect = vec2(1.0, 0.75); vec2 aspect = vec2(registers.invert_aspect > 0.5 ? (0.75, 1.0) : (1.0, 0.75));
vec2 overscan = vec2(1.01, 1.01); vec2 overscan = vec2(1.01, 1.01);
#pragma stage vertex #pragma stage vertex
@ -172,15 +177,29 @@ void main()
sinangle = sin(vec2(registers.x_tilt, registers.y_tilt)); sinangle = sin(vec2(registers.x_tilt, registers.y_tilt));
cosangle = cos(vec2(registers.x_tilt, registers.y_tilt)); cosangle = cos(vec2(registers.x_tilt, registers.y_tilt));
stretch = maxscale(); stretch = maxscale();
TextureSize = vec2(registers.SHARPER * SourceSize.x, SourceSize.y);
ilfac = vec2(1.0, clamp(floor(SourceSize.y/200.0), 1.0, 2.0)); if(registers.vertical_scanlines < 0.5)
{
TextureSize = vec2(registers.SHARPER * SourceSize.x, SourceSize.y);
ilfac = vec2(1.0, clamp(floor(SourceSize.y/(registers.interlace_detect > 0.5 ? 200.0 : 1000)), 1.0, 2.0));
// The size of one texel, in texture-coordinates. // The size of one texel, in texture-coordinates.
one = ilfac / TextureSize; one = ilfac / TextureSize;
// Resulting X pixel-coordinate of the pixel we're drawing. // Resulting X pixel-coordinate of the pixel we're drawing.
mod_factor = vTexCoord.x * SourceSize.x * global.OutputSize.x / SourceSize.x; mod_factor = vTexCoord.x * SourceSize.x * global.OutputSize.x / SourceSize.x;
}else{
TextureSize = vec2(SourceSize.x, registers.SHARPER * SourceSize.y);
ilfac = vec2(clamp(floor(SourceSize.x/(registers.interlace_detect > 0.5 ? 200.0 : 1000)), 1.0, 2.0), 1.0);
// The size of one texel, in texture-coordinates.
one = ilfac / TextureSize;
// Resulting X pixel-coordinate of the pixel we're drawing.
mod_factor = vTexCoord.y * SourceSize.y * global.OutputSize.y / SourceSize.y;
}
} }
#pragma stage fragment #pragma stage fragment
@ -198,9 +217,17 @@ layout(set = 0, binding = 2) uniform sampler2D Source;
float intersect(vec2 xy) float intersect(vec2 xy)
{ {
float A = dot(xy,xy) + registers.d*registers.d; float A = dot(xy,xy) + registers.d*registers.d;
float B = 2.0*(registers.R*(dot(xy,sinangle) - registers.d*cosangle.x*cosangle.y) - registers.d*registers.d); float B, C;
float C = registers.d*registers.d + 2.0*registers.R*registers.d*cosangle.x*cosangle.y;
if(registers.vertical_scanlines < 0.5)
{
B = 2.0*(registers.R*(dot(xy,sinangle) - registers.d*cosangle.x*cosangle.y) - registers.d*registers.d);
C = registers.d*registers.d + 2.0*registers.R*registers.d*cosangle.x*cosangle.y;
}else{
B = 2.0*(registers.R*(dot(xy,sinangle) - registers.d*cosangle.y*cosangle.x) - registers.d*registers.d);
C = registers.d*registers.d + 2.0*registers.R*registers.d*cosangle.y*cosangle.x;
}
return (-B-sqrt(B*B - 4.0*A*C))/(2.0*A); return (-B-sqrt(B*B - 4.0*A*C))/(2.0*A);
} }
@ -227,22 +254,40 @@ vec2 fwtrans(vec2 uv)
float r = FIX(sqrt(dot(uv, uv))); float r = FIX(sqrt(dot(uv, uv)));
uv *= sin(r/registers.R)/r; uv *= sin(r/registers.R)/r;
float x = 1.0 - cos(r/registers.R); float x = 1.0 - cos(r/registers.R);
float D = registers.d/registers.R + x*cosangle.x*cosangle.y + dot(uv,sinangle); float D;
if(registers.vertical_scanlines < 0.5)
D = registers.d/registers.R + x*cosangle.x*cosangle.y + dot(uv,sinangle);
else
D = registers.d/registers.R + x*cosangle.y*cosangle.x + dot(uv,sinangle);
return registers.d*(uv*cosangle - x*sinangle)/D; return registers.d*(uv*cosangle - x*sinangle)/D;
} }
vec3 maxscale() vec3 maxscale()
{ {
vec2 c = bkwtrans(-registers.R * sinangle / (1.0 + registers.R/registers.d*cosangle.x*cosangle.y)); if(registers.vertical_scanlines < 0.5)
vec2 a = vec2(0.5, 0.5)*aspect; {
vec2 c = bkwtrans(-registers.R * sinangle / (1.0 + registers.R/registers.d*cosangle.x*cosangle.y));
vec2 a = vec2(0.5, 0.5)*aspect;
vec2 lo = vec2(fwtrans(vec2(-a.x, c.y)).x, vec2 lo = vec2(fwtrans(vec2(-a.x, c.y)).x,
fwtrans(vec2( c.x, -a.y)).y)/aspect; fwtrans(vec2( c.x, -a.y)).y)/aspect;
vec2 hi = vec2(fwtrans(vec2(+a.x, c.y)).x, vec2 hi = vec2(fwtrans(vec2(+a.x, c.y)).x,
fwtrans(vec2( c.x, +a.y)).y)/aspect; fwtrans(vec2( c.x, +a.y)).y)/aspect;
return vec3((hi+lo)*aspect*0.5,max(hi.x-lo.x, hi.y-lo.y)); return vec3((hi+lo)*aspect*0.5,max(hi.x-lo.x, hi.y-lo.y));
}else{
vec2 c = bkwtrans(-registers.R * sinangle / (1.0 + registers.R/registers.d*cosangle.y*cosangle.x));
vec2 a = vec2(0.5, 0.5)*aspect;
vec2 lo = vec2(fwtrans(vec2(-a.y, c.x)).y,
fwtrans(vec2( c.y, -a.x)).x)/aspect;
vec2 hi = vec2(fwtrans(vec2(+a.y, c.x)).y,
fwtrans(vec2( c.y, +a.x)).x)/aspect;
return vec3((hi+lo)*aspect*0.5,max(hi.y-lo.y, hi.x-lo.x));
}
} }
// Calculate the influence of a scanline on the current pixel. // Calculate the influence of a scanline on the current pixel.
@ -263,17 +308,19 @@ vec4 scanlineWeights(float distance, vec4 color)
// independent of its width. That is, for a narrower beam // independent of its width. That is, for a narrower beam
// "weights" should have a higher peak at the center of the // "weights" should have a higher peak at the center of the
// scanline than for a wider beam. // scanline than for a wider beam.
#ifdef USEGAUSSIAN #ifdef USEGAUSSIAN
vec4 wid = 0.3 + 0.1 * pow(color, vec4(3.0)); vec4 wid = 0.3 + 0.1 * pow(color, vec4(3.0));
vec4 weights = vec4(distance / wid); vec4 weights = vec4(distance / wid);
return (registers.lum + 0.4) * exp(-weights * weights) / wid;
#else return (registers.lum + 0.4) * exp(-weights * weights) / wid;
vec4 wid = 2.0 + 2.0 * pow(color, vec4(4.0)); #else
vec4 weights = vec4(distance / registers.scanline_weight); vec4 wid = 2.0 + 2.0 * pow(color, vec4(4.0));
return (registers.lum + 1.4) * exp(-pow(weights * inversesqrt(0.5 * wid), wid)) / (0.6 + 0.2 * wid); vec4 weights = vec4(distance / registers.scanline_weight);
#endif
return (registers.lum + 1.4) * exp(-pow(weights * inversesqrt(0.5 * wid), wid)) / (0.6 + 0.2 * wid);
#endif
} }
vec2 transform(vec2 coord) vec2 transform(vec2 coord)
{ {
coord = (coord - vec2(0.5, 0.5))*aspect*stretch.z + stretch.xy; coord = (coord - vec2(0.5, 0.5))*aspect*stretch.z + stretch.xy;
@ -281,7 +328,7 @@ vec2 transform(vec2 coord)
return (bkwtrans(coord) / return (bkwtrans(coord) /
vec2(registers.overscan_x / 100.0, registers.overscan_y / 100.0)/aspect + vec2(0.5, 0.5)); vec2(registers.overscan_x / 100.0, registers.overscan_y / 100.0)/aspect + vec2(0.5, 0.5));
} }
float corner(vec2 coord) float corner(vec2 coord)
{ {
coord = (coord - vec2(0.5)) * vec2(registers.overscan_x / 100.0, registers.overscan_y / 100.0) + vec2(0.5, 0.5); coord = (coord - vec2(0.5)) * vec2(registers.overscan_x / 100.0, registers.overscan_y / 100.0) + vec2(0.5, 0.5);
@ -290,9 +337,12 @@ float corner(vec2 coord)
coord = (cdist - min(coord, cdist)); coord = (cdist - min(coord, cdist));
float dist = sqrt(dot(coord, coord)); float dist = sqrt(dot(coord, coord));
return clamp((cdist.x - dist)*registers.cornersmooth, 0.0, 1.0); if(registers.vertical_scanlines < 0.5)
return clamp((cdist.x - dist)*registers.cornersmooth, 0.0, 1.0);
else
return clamp((cdist.y - dist)*registers.cornersmooth, 0.0, 1.0);
} }
void main() void main()
{ {
// Here's a helpful diagram to keep in mind while trying to // Here's a helpful diagram to keep in mind while trying to
@ -319,16 +369,19 @@ void main()
// Texture coordinates of the texel containing the active pixel. // Texture coordinates of the texel containing the active pixel.
vec2 xy; vec2 xy;
if (registers.CURVATURE > 0.5) if (registers.CURVATURE > 0.5)
xy = transform(vTexCoord); xy = transform(vTexCoord);
else else
xy = vTexCoord; xy = vTexCoord;
float cval = corner(xy); float cval = corner(xy);
// Of all the pixels that are mapped onto the texel we are // Of all the pixels that are mapped onto the texel we are
// currently rendering, which pixel are we currently rendering? // currently rendering, which pixel are we currently rendering?
vec2 ilvec;
vec2 ilvec = vec2(0.0, ilfac.y * registers.interlace_detect > 1.5 ? mod(float(registers.FrameCount), 2.0) : 0.0); if(registers.vertical_scanlines < 0.5)
ilvec = vec2(0.0, ilfac.y * registers.interlace_detect > 1.5 ? mod(float(registers.FrameCount), 2.0) : 0.0);
else
ilvec = vec2(ilfac.x * registers.interlace_detect > 1.5 ? mod(float(registers.FrameCount), 2.0) : 0.0, 0.0);
vec2 ratio_scale = (xy * TextureSize - vec2(0.5, 0.5) + ilvec) / ilfac; vec2 ratio_scale = (xy * TextureSize - vec2(0.5, 0.5) + ilvec) / ilfac;
vec2 uv_ratio = fract(ratio_scale); vec2 uv_ratio = fract(ratio_scale);
@ -339,7 +392,11 @@ void main()
// Calculate Lanczos scaling coefficients describing the effect // Calculate Lanczos scaling coefficients describing the effect
// of various neighbour texels in a scanline on the current // of various neighbour texels in a scanline on the current
// pixel. // pixel.
vec4 coeffs = PI * vec4(1.0 + uv_ratio.x, uv_ratio.x, 1.0 - uv_ratio.x, 2.0 - uv_ratio.x); vec4 coeffs;
if(registers.vertical_scanlines < 0.5)
coeffs = PI * vec4(1.0 + uv_ratio.x, uv_ratio.x, 1.0 - uv_ratio.x, 2.0 - uv_ratio.x);
else
coeffs = PI * vec4(1.0 + uv_ratio.y, uv_ratio.y, 1.0 - uv_ratio.y, 2.0 - uv_ratio.y);
// Prevent division by zero. // Prevent division by zero.
coeffs = FIX(coeffs); coeffs = FIX(coeffs);
@ -353,24 +410,47 @@ void main()
// Calculate the effective colour of the current and next // Calculate the effective colour of the current and next
// scanlines at the horizontal location of the current pixel, // scanlines at the horizontal location of the current pixel,
// using the Lanczos coefficients above. // using the Lanczos coefficients above.
vec4 col = clamp( vec4 col, col2;
mat4( if(registers.vertical_scanlines < 0.5)
TEX2D(xy + vec2(-one.x, 0.0)), {
TEX2D(xy), col = clamp(
TEX2D(xy + vec2(one.x, 0.0)), mat4(
TEX2D(xy + vec2(2.0 * one.x, 0.0)) TEX2D(xy + vec2(-one.x, 0.0)),
) * coeffs, TEX2D(xy),
0.0, 1.0 TEX2D(xy + vec2(one.x, 0.0)),
); TEX2D(xy + vec2(2.0 * one.x, 0.0))
vec4 col2 = clamp( ) * coeffs,
mat4( 0.0, 1.0
TEX2D(xy + vec2(-one.x, one.y)), );
TEX2D(xy + vec2(0.0, one.y)), col2 = clamp(
TEX2D(xy + one), mat4(
TEX2D(xy + vec2(2.0 * one.x, one.y)) TEX2D(xy + vec2(-one.x, one.y)),
) * coeffs, TEX2D(xy + vec2(0.0, one.y)),
0.0, 1.0 TEX2D(xy + one),
); TEX2D(xy + vec2(2.0 * one.x, one.y))
) * coeffs,
0.0, 1.0
);
}else{
col = clamp(
mat4(
TEX2D(xy + vec2(0.0, -one.y)),
TEX2D(xy),
TEX2D(xy + vec2(0.0, one.y)),
TEX2D(xy + vec2(0.0, 2.0 * one.y))
) * coeffs,
0.0, 1.0
);
col2 = clamp(
mat4(
TEX2D(xy + vec2(one.x, -one.y)),
TEX2D(xy + vec2(one.x, 0.0)),
TEX2D(xy + one),
TEX2D(xy + vec2(one.x, 2.0 * one.y))
) * coeffs,
0.0, 1.0
);
}
#ifndef LINEAR_PROCESSING #ifndef LINEAR_PROCESSING
col = pow(col , vec4(registers.CRTgamma)); col = pow(col , vec4(registers.CRTgamma));
@ -379,18 +459,35 @@ void main()
// Calculate the influence of the current and next scanlines on // Calculate the influence of the current and next scanlines on
// the current pixel. // the current pixel.
vec4 weights = scanlineWeights(uv_ratio.y, col); vec4 weights, weights2;
vec4 weights2 = scanlineWeights(1.0 - uv_ratio.y, col2); if(registers.vertical_scanlines < 0.5)
{
weights = scanlineWeights(uv_ratio.y, col);
weights2 = scanlineWeights(1.0 - uv_ratio.y, col2);
#ifdef OVERSAMPLE #ifdef OVERSAMPLE
float filter_ = fwidth(ratio_scale.y); float filter_ = fwidth(ratio_scale.y);
uv_ratio.y = uv_ratio.y + 1.0/3.0*filter_; uv_ratio.y = uv_ratio.y + 1.0/3.0*filter_;
weights = (weights + scanlineWeights(uv_ratio.y, col))/3.0; weights = (weights + scanlineWeights(uv_ratio.y, col))/3.0;
weights2 = (weights2 + scanlineWeights(abs(1.0 - uv_ratio.y), col2))/3.0; weights2 = (weights2 + scanlineWeights(abs(1.0 - uv_ratio.y), col2))/3.0;
uv_ratio.y = uv_ratio.y - 2.0/3.0*filter_; uv_ratio.y = uv_ratio.y - 2.0/3.0*filter_;
weights = weights + scanlineWeights(abs(uv_ratio.y), col)/3.0; weights = weights + scanlineWeights(abs(uv_ratio.y), col)/3.0;
weights2 = weights2 + scanlineWeights(abs(1.0 - uv_ratio.y), col2)/3.0; weights2 = weights2 + scanlineWeights(abs(1.0 - uv_ratio.y), col2)/3.0;
#endif #endif
}else{
weights = scanlineWeights(uv_ratio.x, col);
weights2 = scanlineWeights(1.0 - uv_ratio.x, col2);
#ifdef OVERSAMPLE
float filter_ = fwidth(ratio_scale.x);
uv_ratio.x = uv_ratio.x + 1.0/3.0*filter_;
weights = (weights + scanlineWeights(uv_ratio.x, col))/3.0;
weights2 = (weights2 + scanlineWeights(abs(1.0 - uv_ratio.x), col2))/3.0;
uv_ratio.x = uv_ratio.x - 2.0/3.0*filter_;
weights = weights + scanlineWeights(abs(uv_ratio.x), col)/3.0;
weights2 = weights2 + scanlineWeights(abs(1.0 - uv_ratio.x), col2)/3.0;
#endif
}
vec3 mul_res = (col * weights + col2 * weights2).rgb * vec3(cval); vec3 mul_res = (col * weights + col2 * weights2).rgb * vec3(cval);