#version 450 layout(push_constant) uniform Push { float hardScan; float hardPix; float warpX; float warpY; float maskDark; float maskLight; float scaleInLinearGamma; float shadowMask; float brightBoost; float hardBloomScan; float hardBloomPix; float bloomAmount; float shape; } param; #pragma parameter hardScan "hardScan" -8.0 -20.0 0.0 1.0 #pragma parameter hardPix "hardPix" -3.0 -20.0 0.0 1.0 #pragma parameter warpX "warpX" 0.031 0.0 0.125 0.01 #pragma parameter warpY "warpY" 0.041 0.0 0.125 0.01 #pragma parameter maskDark "maskDark" 0.5 0.0 2.0 0.1 #pragma parameter maskLight "maskLight" 1.5 0.0 2.0 0.1 #pragma parameter scaleInLinearGamma "scaleInLinearGamma" 1.0 0.0 1.0 1.0 #pragma parameter shadowMask "shadowMask" 3.0 0.0 4.0 1.0 #pragma parameter brightBoost "brightness boost" 1.0 0.0 2.0 0.05 #pragma parameter hardBloomPix "bloom-x soft" -1.5 -2.0 -0.5 0.1 #pragma parameter hardBloomScan "bloom-y soft" -2.0 -4.0 -1.0 0.1 #pragma parameter bloomAmount "bloom amount" 0.4 0.0 1.0 0.05 #pragma parameter shape "filter kernel shape" 2.0 0.0 10.0 0.05 layout(std140, set = 0, binding = 0) uniform UBO { mat4 MVP; vec4 OutputSize; vec4 OriginalSize; vec4 SourceSize; } global; #pragma stage vertex layout(location = 0) in vec4 Position; layout(location = 1) in vec2 TexCoord; layout(location = 0) out vec2 vTexCoord; void main() { gl_Position = global.MVP * Position; vTexCoord = TexCoord; } // PUBLIC DOMAIN CRT STYLED SCAN-LINE SHADER // // by Timothy Lottes // // This is more along the style of a really good CGA arcade monitor. // With RGB inputs instead of NTSC. // The shadow mask example has the mask rotated 90 degrees for less chromatic aberration. // // Left it unoptimized to show the theory behind the algorithm. // // It is an example what I personally would want as a display option for pixel art games. // Please take and use, change, or whatever. #pragma stage fragment layout(location = 0) in vec2 vTexCoord; layout(location = 1) in vec2 FragCoord; layout(location = 0) out vec4 FragColor; layout(set = 0, binding = 2) uniform sampler2D Source; layout(set = 0, binding = 3) uniform sampler2D ORIG_LINEARIZED; //Uncomment to reduce instructions with simpler linearization //(fixes HD3000 Sandy Bridge IGP) #define SIMPLE_LINEAR_GAMMA #define DO_BLOOM 1 // ------------- // // sRGB to Linear. // Assuming using sRGB typed textures this should not be needed. #ifdef SIMPLE_LINEAR_GAMMA float ToLinear1(float c) { return c; } vec3 ToLinear(vec3 c) { return c; } vec3 ToSrgb(vec3 c) { return pow(c, vec3(1.0 / 2.2)); } #else float ToLinear1(float c) { if (param.scaleInLinearGamma == 0) return c; return(c<=0.04045) ? c/12.92 : pow((c + 0.055)/1.055, 2.4); } vec3 ToLinear(vec3 c) { if (param.scaleInLinearGamma==0) return c; return vec3(ToLinear1(c.r), ToLinear1(c.g), ToLinear1(c.b)); } // Linear to sRGB. // Assuming using sRGB typed textures this should not be needed. float ToSrgb1(float c) { if (param.scaleInLinearGamma == 0) return c; return(c<0.0031308 ? c*12.92 : 1.055*pow(c, 0.41666) - 0.055); } vec3 ToSrgb(vec3 c) { if (param.scaleInLinearGamma == 0) return c; return vec3(ToSrgb1(c.r), ToSrgb1(c.g), ToSrgb1(c.b)); } #endif // Nearest emulated sample given floating point position and texel offset. // Also zero's off screen. vec3 Fetch(vec2 pos,vec2 off){ pos=(floor(pos*global.SourceSize.xy+off)+vec2(0.5,0.5))/global.SourceSize.xy; #ifdef SIMPLE_LINEAR_GAMMA return ToLinear(param.brightBoost * (texture(ORIG_LINEARIZED,pos.xy).rgb)); #else return ToLinear(param.brightBoost * texture(ORIG_LINEARIZED,pos.xy).rgb); #endif } // Distance in emulated pixels to nearest texel. vec2 Dist(vec2 pos) { pos = pos*global.SourceSize.xy; return -((pos - floor(pos)) - vec2(0.5)); } // 1D Gaussian. float Gaus(float pos, float scale) { return exp2(scale*pow(abs(pos), param.shape)); } // 3-tap Gaussian filter along horz line. vec3 Horz3(vec2 pos, float off) { vec3 b = Fetch(pos, vec2(-1.0, off)); vec3 c = Fetch(pos, vec2( 0.0, off)); vec3 d = Fetch(pos, vec2( 1.0, off)); float dst = Dist(pos).x; // Convert distance to weight. float scale = param.hardPix; float wb = Gaus(dst-1.0,scale); float wc = Gaus(dst+0.0,scale); float wd = Gaus(dst+1.0,scale); // Return filtered sample. return (b*wb+c*wc+d*wd)/(wb+wc+wd); } // 5-tap Gaussian filter along horz line. vec3 Horz5(vec2 pos,float off){ vec3 a = Fetch(pos,vec2(-2.0, off)); vec3 b = Fetch(pos,vec2(-1.0, off)); vec3 c = Fetch(pos,vec2( 0.0, off)); vec3 d = Fetch(pos,vec2( 1.0, off)); vec3 e = Fetch(pos,vec2( 2.0, off)); float dst = Dist(pos).x; // Convert distance to weight. float scale = param.hardPix; float wa = Gaus(dst - 2.0, scale); float wb = Gaus(dst - 1.0, scale); float wc = Gaus(dst + 0.0, scale); float wd = Gaus(dst + 1.0, scale); float we = Gaus(dst + 2.0, scale); // Return filtered sample. return (a*wa+b*wb+c*wc+d*wd+e*we)/(wa+wb+wc+wd+we); } // 7-tap Gaussian filter along horz line. vec3 Horz7(vec2 pos,float off) { vec3 a = Fetch(pos, vec2(-3.0, off)); vec3 b = Fetch(pos, vec2(-2.0, off)); vec3 c = Fetch(pos, vec2(-1.0, off)); vec3 d = Fetch(pos, vec2( 0.0, off)); vec3 e = Fetch(pos, vec2( 1.0, off)); vec3 f = Fetch(pos, vec2( 2.0, off)); vec3 g = Fetch(pos, vec2( 3.0, off)); float dst = Dist(pos).x; // Convert distance to weight. float scale = param.hardBloomPix; float wa = Gaus(dst - 3.0, scale); float wb = Gaus(dst - 2.0, scale); float wc = Gaus(dst - 1.0, scale); float wd = Gaus(dst + 0.0, scale); float we = Gaus(dst + 1.0, scale); float wf = Gaus(dst + 2.0, scale); float wg = Gaus(dst + 3.0, scale); // Return filtered sample. return (a*wa+b*wb+c*wc+d*wd+e*we+f*wf+g*wg)/(wa+wb+wc+wd+we+wf+wg); } // Return scanline weight. float Scan(vec2 pos, float off) { float dst = Dist(pos).y; return Gaus(dst + off, param.hardScan); } // Return scanline weight for bloom. float BloomScan(vec2 pos, float off) { float dst = Dist(pos).y; return Gaus(dst + off, param.hardBloomScan); } // Allow nearest three lines to effect pixel. vec3 Tri(vec2 pos) { vec3 a = Horz3(pos,-1.0); vec3 b = Horz5(pos, 0.0); vec3 c = Horz3(pos, 1.0); float wa = Scan(pos,-1.0); float wb = Scan(pos, 0.0); float wc = Scan(pos, 1.0); return a*wa + b*wb + c*wc; } // Small bloom. vec3 Bloom(vec2 pos) { vec3 a = Horz5(pos,-2.0); vec3 b = Horz7(pos,-1.0); vec3 c = Horz7(pos, 0.0); vec3 d = Horz7(pos, 1.0); vec3 e = Horz5(pos, 2.0); float wa = BloomScan(pos,-2.0); float wb = BloomScan(pos,-1.0); float wc = BloomScan(pos, 0.0); float wd = BloomScan(pos, 1.0); float we = BloomScan(pos, 2.0); return a*wa+b*wb+c*wc+d*wd+e*we; } // Distortion of scanlines, and end of screen alpha. vec2 Warp(vec2 pos) { pos = pos*2.0-1.0; pos *= vec2(1.0 + (pos.y*pos.y)*param.warpX, 1.0 + (pos.x*pos.x)*param.warpY); return pos*0.5 + 0.5; } // Shadow mask. vec3 Mask(vec2 pos) { vec3 mask = vec3(param.maskDark, param.maskDark, param.maskDark); // Very compressed TV style shadow mask. if (param.shadowMask == 1.0) { float line = param.maskLight; float odd = 0.0; if (fract(pos.x*0.166666666) < 0.5) odd = 1.0; if (fract((pos.y + odd) * 0.5) < 0.5) line = param.maskDark; pos.x = fract(pos.x*0.333333333); if (pos.x < 0.333) mask.r = param.maskLight; else if (pos.x < 0.666) mask.g = param.maskLight; else mask.b = param.maskLight; mask*=line; } // Aperture-grille. else if (param.shadowMask == 2.0) { pos.x = fract(pos.x*0.333333333); if (pos.x < 0.333) mask.r = param.maskLight; else if (pos.x < 0.666) mask.g = param.maskLight; else mask.b = param.maskLight; } // Stretched VGA style shadow mask (same as prior shaders). else if (param.shadowMask == 3.0) { pos.x += pos.y*3.0; pos.x = fract(pos.x*0.166666666); if (pos.x < 0.333) mask.r = param.maskLight; else if (pos.x < 0.666) mask.g = param.maskLight; else mask.b = param.maskLight; } // VGA style shadow mask. else if (param.shadowMask == 4.0) { pos.xy = floor(pos.xy*vec2(1.0, 0.5)); pos.x += pos.y*3.0; pos.x = fract(pos.x*0.166666666); if (pos.x < 0.333) mask.r = param.maskLight; else if (pos.x < 0.666) mask.g = param.maskLight; else mask.b = param.maskLight; } return mask; } void main() { vec2 pos = vTexCoord; FragColor = vec4(Bloom(pos)*param.bloomAmount, 1.0); }