#version 450 /* CRT shader * * Copyright (C) 2010-2016 cgwg, Themaister and DOLLS * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the Free * Software Foundation; either version 2 of the License, or (at your option) * any later version. */ #include "geom-deluxe-params.inc" #include "../../../include/subpixel_masks.h" #define u_tex_size0 global.SourceSize.xy //#define u_tex_size1 global.internal1Size.xy #define u_quad_dims global.OutputSize.xy #define u_tex_size1 vec2(global.OutputSize.xy * global.SourceSize.zw) // Comment the next line to disable interpolation in linear gamma (and gain speed). #define LINEAR_PROCESSING // Enable 3x oversampling of the beam profile #define OVERSAMPLE // Use the older, purely gaussian beam profile //#define USEGAUSSIAN // Macros. #define FIX(c) max(abs(c), 1e-5) #define PI 3.141592653589 #pragma stage vertex layout(location = 0) in vec4 Position; layout(location = 1) in vec2 TexCoord; layout(location = 0) out vec2 v_texCoord; layout(location = 1) out vec2 v_sinangle; layout(location = 2) out vec2 v_cosangle; layout(location = 3) out vec3 v_stretch; layout(location = 4) out vec2 v_one; layout(location = 5) out vec2 ilfac; layout(location = 6) out vec2 TextureSize; float intersect(vec2 xy , vec2 sinangle, vec2 cosangle) { float A = dot(xy,xy)+d.x*d.x; float B = 2.0*(params.R.x*(dot(xy,sinangle)-d.x*cosangle.x*cosangle.y)-d.x*d.x); float C = d.x*d.x + 2.0*params.R.x*d.x*cosangle.x*cosangle.y; return (-B-sqrt(B*B-4.0*A*C))/(2.0*A); } vec2 bkwtrans(vec2 xy, vec2 sinangle, vec2 cosangle) { float c = intersect(xy, sinangle, cosangle); vec2 pt = vec2(c)*xy; pt -= vec2(-params.R.x)*sinangle; pt /= vec2(params.R.x); vec2 tang = sinangle/cosangle; vec2 poc = pt/cosangle; float A = dot(tang,tang)+1.0; float B = -2.0*dot(poc,tang); float C = dot(poc,poc)-1.0; float a = (-B+sqrt(B*B-4.0*A*C))/(2.0*A); vec2 uv = (pt-a*sinangle)/cosangle; float r = FIX(params.R.x*acos(a)); return uv*r/sin(r/params.R.x); } vec2 fwtrans(vec2 uv, vec2 sinangle, vec2 cosangle) { float r = FIX(sqrt(dot(uv,uv))); uv *= sin(r/params.R.x)/r; float x = 1.0-cos(r/params.R.x); float D = d.x/params.R.x + x*cosangle.x*cosangle.y+dot(uv,sinangle); return d.x*(uv*cosangle-x*sinangle)/D; } vec3 maxscale(vec2 sinangle, vec2 cosangle) { vec2 c = bkwtrans(-params.R.x * sinangle / (1.0 + params.R.x/d.x*cosangle.x*cosangle.y), sinangle, cosangle); vec2 a = vec2(0.5,0.5)*aspect.xy; vec2 lo = vec2(fwtrans(vec2(-a.x,c.y), sinangle, cosangle).x, fwtrans(vec2(c.x,-a.y), sinangle, cosangle).y)/aspect.xy; vec2 hi = vec2(fwtrans(vec2(+a.x,c.y), sinangle, cosangle).x, fwtrans(vec2(c.x,+a.y), sinangle, cosangle).y)/aspect.xy; return vec3((hi+lo)*aspect.xy*0.5,max(hi.x-lo.x,hi.y-lo.y)); } void main() { gl_Position = global.MVP * Position; v_texCoord = TexCoord; // Precalculate a bunch of useful values we'll need in the fragment // shader. vec2 ang; // if (u_rotation_type.x < 0.5) // ang = vec2(0.0,angle.x); // else if (u_rotation_type.x < 1.5) // ang = vec2(angle.x,0.0); // else if (u_rotation_type.x < 2.5) // ang = vec2(0.0,-angle.x); // else // ang = vec2(-angle.x,0.0); ang = angle.xy; v_sinangle = sin(ang); v_cosangle = cos(ang); v_stretch = maxscale(v_sinangle, v_cosangle); TextureSize = global.SourceSize.xy; ilfac = vec2(1.0, clamp(floor(global.SourceSize.y/(interlace_detect == 1.0 ? 200.0 : 1000.0)), 1.0, 2.0)); // The size of one texel, in texture-coordinates. v_one = ilfac / TextureSize.xy; } #pragma stage fragment layout(location = 0) in vec2 v_texCoord; layout(location = 1) in vec2 v_sinangle; layout(location = 2) in vec2 v_cosangle; layout(location = 3) in vec3 v_stretch; layout(location = 4) in vec2 v_one; layout(location = 5) in vec2 ilfac; layout(location = 6) in vec2 TextureSize; layout(location = 0) out vec4 FragColor; layout(set = 0, binding = 2) uniform sampler2D blur_texture; layout(set = 0, binding = 3) uniform sampler2D internal1; // comment these out, as we're using generated masks instead of LUTs layout(set = 0, binding = 4) uniform sampler2D aperture; layout(set = 0, binding = 5) uniform sampler2D slot; layout(set = 0, binding = 6) uniform sampler2D delta; layout(set = 0, binding = 7) uniform sampler2D phosphor; vec4 TEX2D(vec2 c) { vec2 underscan = step(0.0,c) * step(0.0,vec2(1.0)-c); vec4 col = texture(internal1, c) * vec4(underscan.x*underscan.y); #ifdef LINEAR_PROCESSING col = pow(col, vec4(CRTgamma.x)); #endif return col; } vec3 texblur(vec2 c) { vec3 col = pow(texture(blur_texture,c).rgb, vec3(CRTgamma.x)); // taper the blur texture outside its border with a gaussian float w = blurwidth.x / 320.0; c = min(c, vec2(1.0)-c) * aspect.xy * vec2(1.0/w); vec2 e2c = exp(-c*c); // approximation of erf gives smooth step // (convolution of gaussian with step) c = (step(0.0,c)-vec2(0.5)) * sqrt(vec2(1.0)-e2c) * (vec2(1.0) + vec2(0.1749)*e2c) + vec2(0.5); return col * vec3( c.x * c.y ); } float intersect(vec2 xy , vec2 sinangle, vec2 cosangle) { float A = dot(xy,xy)+d.x*d.x; float B = 2.0*(params.R.x*(dot(xy,sinangle)-d.x*cosangle.x*cosangle.y)-d.x*d.x); float C = d.x*d.x + 2.0*params.R.x*d.x*cosangle.x*cosangle.y; return (-B-sqrt(B*B-4.0*A*C))/(2.0*A); } vec2 bkwtrans(vec2 xy, vec2 sinangle, vec2 cosangle) { float c = intersect(xy, sinangle, cosangle); vec2 pt = vec2(c)*xy; pt -= vec2(-params.R.x)*sinangle; pt /= vec2(params.R.x); vec2 tang = sinangle/cosangle; vec2 poc = pt/cosangle; float A = dot(tang,tang)+1.0; float B = -2.0*dot(poc,tang); float C = dot(poc,poc)-1.0; float a = (-B+sqrt(B*B-4.0*A*C))/(2.0*A); vec2 uv = (pt-a*sinangle)/cosangle; float r = FIX(params.R.x*acos(a)); return uv*r/sin(r/params.R.x); } vec2 transform(vec2 coord, vec3 stretch, vec2 sinangle, vec2 cosangle) { coord = (coord-vec2(0.5))*aspect.xy*stretch.z+stretch.xy; return (bkwtrans(coord, sinangle, cosangle)/overscan.xy/aspect.xy+vec2(0.5)); } float corner(vec2 coord) { coord = (coord - vec2(0.5)) * overscan.xy + vec2(0.5); coord = min(coord, vec2(1.0)-coord) * aspect.xy; vec2 cdist = vec2(cornersize.x); coord = (cdist - min(coord,cdist)); float dist = sqrt(dot(coord,coord)); return clamp((max(cdist.x,1e-3)-dist)*cornersmooth.x,0.0, 1.0); } // Calculate the influence of a scanline on the current pixel. // // 'distance' is the distance in texture coordinates from the current // pixel to the scanline in question. // 'color' is the colour of the scanline at the horizontal location of // the current pixel. vec4 scanlineWeights(float distance, vec4 color) { // "wid" controls the width of the scanline beam, for each RGB channel // The "weights" lines basically specify the formula that gives // you the profile of the beam, i.e. the intensity as // a function of distance from the vertical center of the // scanline. In this case, it is gaussian if width=2, and // becomes nongaussian for larger widths. Ideally this should // be normalized so that the integral across the beam is // independent of its width. That is, for a narrower beam // "weights" should have a higher peak at the center of the // scanline than for a wider beam. #ifdef USEGAUSSIAN vec4 wid = 0.3 + 0.1 * pow(color, vec4(3.0)); vec4 weights = vec4(distance / wid); return (geom_lum + 0.4) * exp(-weights * weights) / wid; #else vec4 wid = 2.0 + 2.0 * pow(color, vec4(4.0)); vec4 weights = vec4(distance / scanline_weight); return (geom_lum + 1.4) * exp(-pow(weights * inversesqrt(0.5 * wid), wid)) / (0.6 + 0.2 * wid); #endif } void main() { // Here's a helpful diagram to keep in mind while trying to // understand the code: // // | | | | | // ------------------------------- // | | | | | // | 01 | 11 | 21 | 31 | <-- current scanline // | | @ | | | // ------------------------------- // | | | | | // | 02 | 12 | 22 | 32 | <-- next scanline // | | | | | // ------------------------------- // | | | | | // // Each character-cell represents a pixel on the output // surface, "@" represents the current pixel (always somewhere // in the bottom half of the current scan-line, or the top-half // of the next scanline). The grid of lines represents the // edges of the texels of the underlying texture. // Texture coordinates of the texel containing the active pixel. vec2 xy; if (curvature.x > 0.5) xy = transform(v_texCoord, v_stretch, v_sinangle, v_cosangle); else xy = (v_texCoord-vec2(0.5))/overscan.xy+vec2(0.5); float cval = corner(xy); // extract average brightness from the mipmap texture float avgbright = dot(textureLod(blur_texture, vec2(1.,1.), 9.0).rgb,vec3(1.0))/3.0; float rbloom = 1.0 - rasterbloom.x * ( avgbright - 0.5 ); // expand the screen when average brightness is higher xy = (xy - vec2(0.5)) * rbloom + vec2(0.5); vec2 xy0 = xy; // Of all the pixels that are mapped onto the texel we are // currently rendering, which pixel are we currently rendering? vec2 ilvec = vec2(0.0, ilfac.y * interlace_detect > 1.5 ? mod(float(global.FrameCount), 2.0) : 0.0); vec2 ratio_scale = (xy * TextureSize - vec2(0.5, 0.5) + ilvec) / ilfac; #ifdef OVERSAMPLE float oversample_filter = fwidth(ratio_scale.y); #endif vec2 uv_ratio = fract(ratio_scale); // Snap to the center of the underlying texel. xy = (floor(ratio_scale)*ilfac + vec2(0.5, 0.5) - ilvec) / TextureSize; // Calculate Lanczos scaling coefficients describing the effect // of various neighbour texels in a scanline on the current // pixel. vec4 coeffs = PI * vec4(1.0 + uv_ratio.x, uv_ratio.x, 1.0 - uv_ratio.x, 2.0 - uv_ratio.x); // Prevent division by zero. coeffs = FIX(coeffs); // Lanczos2 kernel. coeffs = 2.0 * sin(coeffs) * sin(coeffs / 2.0) / (coeffs * coeffs); // Normalize. coeffs /= dot(coeffs, vec4(1.0)); // Calculate the effective colour of the current and next // scanlines at the horizontal location of the current pixel, // using the Lanczos coefficients above. vec4 col = clamp(TEX2D(xy + vec2(-v_one.x, 0.0))*coeffs.x + TEX2D(xy)*coeffs.y + TEX2D(xy +vec2(v_one.x, 0.0))*coeffs.z + TEX2D(xy + vec2(2.0 * v_one.x, 0.0))*coeffs.w , 0.0, 1.0); vec4 col2 = clamp(TEX2D(xy + vec2(-v_one.x, v_one.y))*coeffs.x + TEX2D(xy + vec2(0.0, v_one.y))*coeffs.y + TEX2D(xy + v_one)*coeffs.z + TEX2D(xy + vec2(2.0 * v_one.x, v_one.y))*coeffs.w , 0.0, 1.0); #ifndef LINEAR_PROCESSING col = pow(col , vec4(CRTgamma.x)); col2 = pow(col2, vec4(CRTgamma.x)); #endif // Calculate the influence of the current and next scanlines on // the current pixel. vec4 weights = scanlineWeights(uv_ratio.y, col); vec4 weights2 = scanlineWeights(1.0 - uv_ratio.y, col2); #ifdef OVERSAMPLE uv_ratio.y =uv_ratio.y+1.0/3.0*oversample_filter; weights = (weights+scanlineWeights(uv_ratio.y, col))/3.0; weights2=(weights2+scanlineWeights(abs(1.0-uv_ratio.y), col2))/3.0; uv_ratio.y =uv_ratio.y-2.0/3.0*oversample_filter; weights=weights+scanlineWeights(abs(uv_ratio.y), col)/3.0; weights2=weights2+scanlineWeights(abs(1.0-uv_ratio.y), col2)/3.0; #endif vec3 mul_res = (col * weights + col2 * weights2).rgb; // halation and corners vec3 blur = texblur(xy0); mul_res = mix(mul_res, blur, halation.x) * vec3(cval); // include factor of rbloom: // (probably imperceptible) brightness reduction when raster grows // Convert the image gamma for display on our output device. mul_res = mix(mul_res, blur, halation.x) * vec3(cval*rbloom); // Shadow mask // original code; just makes a giant phosphor here xy = fract(v_texCoord.xy * u_quad_dims.xy / u_tex_size1.xy); // gl_FragCoord; tied to physical pixel size //xy = fract(v_texCoord*global.internal1Size.xy); vec4 mask = vec4(1.0); // if (mask_picker == 1) mask = texture(aperture, xy); // else if (mask_picker == 2) mask = texture(slot, xy); // else if (mask_picker == 3) mask = texture(delta, xy); // use subpixel mask code instead of LUTs float alpha; mask = vec4(mask_weights_alpha(v_texCoord.xy * global.OutputSize.xy, 1., mask_picker, alpha), 1.0); mask.a = alpha; // count of total bright pixels is encoded in the mask's alpha channel float nbright = 255.0 - 255.0*mask.a; // fraction of bright pixels in the mask float fbright = nbright / ( u_tex_size1.x * u_tex_size1.y ); // average darkening factor of the mask float aperture_average = mix(1.0-aperture_strength.x*(1.0-aperture_brightboost.x), 1.0, fbright); // colour of dark mask pixels vec3 clow = vec3(1.0-aperture_strength.x) * mul_res + vec3(aperture_strength.x*(aperture_brightboost.x)) * mul_res * mul_res; float ifbright = 1.0 / fbright; // colour of bright mask pixels vec3 chi = vec3(ifbright*aperture_average) * mul_res - vec3(ifbright - 1.0) * clow; vec3 cout = mix(clow,chi,mask.rgb); // mask texture selects dark vs bright // Convert the image gamma for display on our output device. cout = pow(cout, vec3(1.0 / monitorgamma.x)); FragColor = vec4(cout, col.a); }