#version 450 /* pal-singlepass.slang svo's PAL single pass shader, ported to libretro ------------------------------------------------ "Software composite video modulation/demodulation experiments The idea is to reproduce in GLSL shaders realistic composite-like artifacting by applying PAL modulation and demodulation. Digital texture, passed through the model of an analog channel, should suffer same effects as its analog counterpart and exhibit properties, such as dot crawl and colour bleeding, that may be desirable for faithful reproduction of look and feel of old computer games." https://github.com/svofski/CRT Copyright (c) 2016, Viacheslav Slavinsky All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ layout(push_constant) uniform Push { float FIR_GAIN; float FIR_INVGAIN; float PHASE_NOISE; } param; #pragma parameter FIR_GAIN "FIR lowpass gain" 1.5 0.0 5.0 0.1 #pragma parameter FIR_INVGAIN "Inverse gain for luma recovery" 1.1 0.0 5.0 0.1 #pragma parameter PHASE_NOISE "Phase noise" 1.0 0.0 5.0 0.1 layout(std140, set = 0, binding = 0) uniform UBO { mat4 MVP; vec4 OutputSize; vec4 OriginalSize; vec4 SourceSize; uint FrameCount; } global; #pragma stage vertex layout(location = 0) in vec4 Position; layout(location = 1) in vec2 TexCoord; layout(location = 0) out vec2 vTexCoord; void main() { gl_Position = global.MVP * Position; vTexCoord = TexCoord; } #pragma stage fragment layout(location = 0) in vec2 vTexCoord; layout(location = 0) out vec4 FragColor; layout(set = 0, binding = 2) uniform sampler2D Source; /* Subcarrier frequency */ #define FSC 4433618.75 /* Line frequency */ #define FLINE 15625 #define VISIBLELINES 312 #define PI 3.14159265358 #define RGB_to_YIQ mat3x3( 0.299, 0.595716, 0.211456,\ 0.587, -0.274453, -0.522591,\ 0.114, -0.321263, 0.311135) #define YIQ_to_RGB mat3x3( 1.0 , 1.0, 1.0,\ 0.9563, -0.2721, -1.1070,\ 0.6210, -0.6474, 1.7046) #define RGB_to_YUV mat3x3( 0.299, -0.14713, 0.615,\ 0.587, -0.28886, -0.514991,\ 0.114, 0.436, -0.10001) #define YUV_to_RGB mat3x3( 1.0, 1.0, 1.0,\ 0.0, -0.39465, 2.03211,\ 1.13983, -0.58060, 0.0) #define fetch(ofs,center,invx) texture(Source, vec2((ofs) * (invx) + center.x, center.y)) #define FIRTAPS 20 float FIR[FIRTAPS] = float[FIRTAPS] ( -0.008030271, 0.003107906, 0.016841352, 0.032545161, 0.049360136, 0.066256720, 0.082120150, 0.095848433, 0.106453014, 0.113151423, 0.115441842, 0.113151423, 0.106453014, 0.095848433, 0.082120150, 0.066256720, 0.049360136, 0.032545161, 0.016841352, 0.003107906 ); /* subcarrier counts per scan line = FSC/FLINE = 283.7516 */ /* We save the reciprocal of this only to optimize it */ float counts_per_scanline_reciprocal = 1.0 / (FSC/FLINE); float width_ratio; float height_ratio; float altv; float invx; /* http://byteblacksmith.com/improvements-to-the-canonical-one-liner-glsl-rand-for-opengl-es-2-0/ */ float rand(vec2 co) { float a = 12.9898; float b = 78.233; float c = 43758.5453; float dt = dot(co.xy, vec2(a, b)); float sn = mod(dt,3.14); return fract(sin(sn) * c); } float modulated(vec2 xy, float sinwt, float coswt) { vec3 rgb = fetch(0, xy, invx).xyz; vec3 yuv = RGB_to_YUV * rgb; return clamp(yuv.x + yuv.y * sinwt + yuv.z * coswt, 0.0, 1.0); } vec2 modem_uv(vec2 xy, float ofs) { float t = (xy.x + ofs * invx) * global.SourceSize.x; float wt = t * 2 * PI / width_ratio; float sinwt = sin(wt); float coswt = cos(wt + altv); vec3 rgb = fetch(ofs, xy, invx).xyz; vec3 yuv = RGB_to_YUV * rgb; float signal = clamp(yuv.x + yuv.y * sinwt + yuv.z * coswt, 0.0, 1.0); if (param.PHASE_NOISE != 0) { /* .yy is horizontal noise, .xx looks bad, .xy is classic noise */ vec2 seed = xy.yy * global.FrameCount; wt = wt + param.PHASE_NOISE * (rand(seed) - 0.5); sinwt = sin(wt); coswt = cos(wt + altv); } return vec2(signal * sinwt, signal * coswt); } void main() { vec2 xy = vTexCoord; width_ratio = global.SourceSize.x * (counts_per_scanline_reciprocal); height_ratio = global.SourceSize.y / VISIBLELINES; altv = mod(floor(xy.y * VISIBLELINES + 0.5), 2.0) * PI; invx = 0.25 * (counts_per_scanline_reciprocal); // equals 4 samples per Fsc period // lowpass U/V at baseband vec2 filtered = vec2(0.0, 0.0); for (int i = 0; i < FIRTAPS; i++) { vec2 uv = modem_uv(xy, i - FIRTAPS*0.5); filtered += param.FIR_GAIN * uv * FIR[i]; } float t = xy.x * global.SourceSize.x; float wt = t * 2 * PI / width_ratio; float sinwt = sin(wt); float coswt = cos(wt + altv); float luma = modulated(xy, sinwt, coswt) - param.FIR_INVGAIN * (filtered.x * sinwt + filtered.y * coswt); vec3 yuv_result = vec3(luma, filtered.x, filtered.y); FragColor = vec4(YUV_to_RGB * yuv_result, 1.0); }