#version 450 layout(std140, set = 0, binding = 0) uniform UBO { mat4 MVP; vec4 OutputSize; vec4 OriginalSize; vec4 SourceSize; } global; #define CURVATURE_X 0.10 #define CURVATURE_Y 0.25 #define MASK_BRIGHTNESS 0.70 #define SCANLINE_WEIGHT 6.0 #define SCANLINE_GAP_BRIGHTNESS 0.12 #define BLOOM_FACTOR 1.5 #define INPUT_GAMMA 2.4 #define OUTPUT_GAMMA 2.2 /* MASK_TYPE: 0 = none, 1 = green/magenta, 2 = trinitron(ish) */ #define MASK_TYPE 2 #define SCANLINES #define CURVATURE //#define FAKE_GAMMA //#define GAMMA //#define SHARPER #define MULTISAMPLE /* crt-pi - A Raspberry Pi friendly CRT shader. Copyright (C) 2015-2016 davej This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. Notes: This shader is designed to work well on Raspberry Pi GPUs (i.e. 1080P @ 60Hz on a game with a 4:3 aspect ratio). It pushes the Pi's GPU hard and enabling some features will slow it down so that it is no longer able to match 1080P @ 60Hz. You will need to overclock your Pi to the fastest setting in raspi-config to get the best results from this shader: 'Pi2' for Pi2 and 'Turbo' for original Pi and Pi Zero. Note: Pi2s are slower at running the shader than other Pis, this seems to be down to Pi2s lower maximum memory speed. Pi2s don't quite manage 1080P @ 60Hz - they drop about 1 in 1000 frames. You probably won't notice this, but if you do, try enabling FAKE_GAMMA. SCANLINES enables scanlines. You'll almost certainly want to use it with MULTISAMPLE to reduce moire effects. SCANLINE_WEIGHT defines how wide scanlines are (it is an inverse value so a higher number = thinner lines). SCANLINE_GAP_BRIGHTNESS defines how dark the gaps between the scan lines are. Darker gaps between scan lines make moire effects more likely. GAMMA enables gamma correction using the values in INPUT_GAMMA and OUTPUT_GAMMA. FAKE_GAMMA causes it to ignore the values in INPUT_GAMMA and OUTPUT_GAMMA and approximate gamma correction in a way which is faster than true gamma whilst still looking better than having none. You must have GAMMA defined to enable FAKE_GAMMA. CURVATURE distorts the screen by CURVATURE_X and CURVATURE_Y. Curvature slows things down a lot. By default the shader uses linear blending horizontally. If you find this too blury, enable SHARPER. BLOOM_FACTOR controls the increase in width for bright scanlines. MASK_TYPE defines what, if any, shadow mask to use. MASK_BRIGHTNESS defines how much the mask type darkens the screen. */ #pragma stage vertex layout(location = 0) in vec4 Position; layout(location = 1) in vec2 TexCoord; layout(location = 0) out vec2 vTexCoord; layout(location = 1) out float filterWidth; void main() { gl_Position = global.MVP * Position; vTexCoord = TexCoord; filterWidth = (global.SourceSize.y * global.OutputSize.w) * 0.333333333; } #pragma stage fragment layout(location = 0) in vec2 vTexCoord; layout(location = 1) in float filterWidth; layout(location = 0) out vec4 FragColor; layout(set = 0, binding = 2) uniform sampler2D Source; #if defined(CURVATURE) vec2 CURVATURE_DISTORTION = vec2(CURVATURE_X, CURVATURE_Y); // Barrel distortion shrinks the display area a bit, this will allow us to counteract that. vec2 barrelScale = 1.0 - (0.23 * CURVATURE_DISTORTION); vec2 Distort(vec2 coord) { // coord *= screenScale; // not necessary in slang coord -= vec2(0.5); float rsq = coord.x * coord.x + coord.y * coord.y; coord += coord * (CURVATURE_DISTORTION * rsq); coord *= barrelScale; if (abs(coord.x) >= 0.5 || abs(coord.y) >= 0.5) coord = vec2(-1.0); // If out of bounds, return an invalid value. else { coord += vec2(0.5); // coord /= screenScale; // not necessary in slang } return coord; } #endif float CalcScanLineWeight(float dist) { return max(1.0-dist*dist*SCANLINE_WEIGHT, SCANLINE_GAP_BRIGHTNESS); } float CalcScanLine(float dy) { float scanLineWeight = CalcScanLineWeight(dy); #if defined(MULTISAMPLE) scanLineWeight += CalcScanLineWeight(dy - filterWidth); scanLineWeight += CalcScanLineWeight(dy + filterWidth); scanLineWeight *= 0.3333333; #endif return scanLineWeight; } void main() { vec2 texcoord = vTexCoord; #if defined(CURVATURE) texcoord = Distort(texcoord); if (texcoord.x < 0.0) { FragColor = vec4(0.0); return; } #endif vec2 texcoordInPixels = texcoord * global.SourceSize.xy; #if defined(SHARPER) vec2 tempCoord = floor(texcoordInPixels) + 0.5; vec2 coord = tempCoord * global.SourceSize.zw; vec2 deltas = texcoordInPixels - tempCoord; float scanLineWeight = CalcScanLine(deltas.y); vec2 signs = sign(deltas); deltas = abs(deltas) * 2.0; deltas.x = deltas.x * deltas.x; deltas.y = deltas.y * deltas.y * deltas.y; deltas *= 0.5 * global.SourceSize.zw * signs; vec2 tc = coord + deltas; #else float tempCoord = floor(texcoordInPixels.y) + 0.5; float coord = tempCoord * global.SourceSize.w; float deltas = texcoordInPixels.y - tempCoord; float scanLineWeight = CalcScanLine(deltas); float signs = sign(deltas); deltas = abs(deltas) * 2.0; deltas = deltas * deltas * deltas; deltas *= 0.5 * global.SourceSize.w * signs; vec2 tc = vec2(texcoord.x, coord + deltas); #endif vec3 colour = texture(Source, tc).rgb; #if defined(SCANLINES) #if defined(GAMMA) && defined(FAKE_GAMMA) colour = colour * colour; #elif defined(GAMMA) colour = pow(colour, vec3(INPUT_GAMMA)); #endif /* Apply scanlines */ scanLineWeight *= BLOOM_FACTOR; colour *= scanLineWeight; #if defined(GAMMA) && defined(FAKE_GAMMA) colour = sqrt(colour); #elif defined(GAMMA) colour = pow(colour, vec3(1.0/OUTPUT_GAMMA)); #endif #endif /* SCANLINES */ #if MASK_TYPE == 1 float whichMask = fract(gl_FragCoord.x * 0.5); vec3 mask = vec3(1.0); if (whichMask < 0.5) mask.rb = vec2(MASK_BRIGHTNESS); else mask.g = MASK_BRIGHTNESS; colour *= mask; #elif MASK_TYPE == 2 float whichMask = fract(gl_FragCoord.x * 0.3333333); vec3 mask = vec3(MASK_BRIGHTNESS); if (whichMask < 0.3333333) mask.r = 1.0; else if (whichMask < 0.6666666) mask.g = 1.0; else mask.b = 1.0; colour *= mask; #endif FragColor = vec4(colour, 1.0); }