#version 450 /* NES NTSC Color Decoder shader Ported from Bisqwit's C++ NES Palette Generator https://forums.nesdev.com/viewtopic.php?p=85060#p85060 Use with Nestopia or FCEUmm libretro cores with the palette set to 'raw'. */ layout(std140, set = 0, binding = 0) uniform UBO { mat4 MVP; vec4 OutputSize; vec4 OriginalSize; vec4 SourceSize; uint FrameCount; } global; layout(push_constant) uniform Push { float nes_saturation; float nes_hue; float nes_contrast; float nes_brightness; float nes_gamma; } params; #pragma parameter nes_saturation "Saturation" 1.0 0.0 5.0 0.05 #pragma parameter nes_hue "Hue" 0.0 -360.0 360.0 1.0 #pragma parameter nes_contrast "Contrast" 1.0 0.0 2.0 0.05 #pragma parameter nes_brightness "Brightness" 1.0 0.0 2.0 0.05 #pragma parameter nes_gamma "Gamma" 1.8 1.0 2.5 0.05 #define saturation params.nes_saturation #define hue params.nes_hue #define contrast params.nes_contrast #define brightness params.nes_brightness #define gamma params.nes_gamma bool wave (int p, int color) { return ((color + p + 8) % 12 < 6); } float gammafix (float f) { return f < 0.0 ? 0.0 : pow(f, 2.2 / gamma); } vec3 MakeRGBColor(int emphasis, int level, int color) { float y = 0.0; float i = 0.0; float q = 0.0; float r = 0.0; float g = 0.0; float b = 0.0; // Voltage levels, relative to synch voltage float black = 0.518; float white = 1.962; float attenuation = 0.746; const float levels[8] = float[] ( 0.350 , 0.518, 0.962, 1.550, 1.094, 1.506, 1.962, 1.962); float low = levels[level + 4 * int(color == 0)]; float high = levels[level + 4 * int(color < 13)]; // Calculate the luma and chroma by emulating the relevant circuits: for(int p = 0; p < 12; p++) // 12 clock cycles per pixel. { // NES NTSC modulator (square wave between two voltage levels): float spot = wave(p, color) ? high : low; // De-emphasis bits attenuate a part of the signal: if ((bool(emphasis & 1) && wave(p, 12)) || (bool(emphasis & 2) && wave(p, 4)) || (bool(emphasis & 4) && wave(p, 8))) { spot *= attenuation; } // Normalize: float v = (spot - black) / (white - black); // Ideal TV NTSC demodulator: // Apply contrast/brightness v = (v - 0.5) * contrast + 0.5; v *= (brightness / 12.0); float hue_tweak = hue * 12.0 / 360.0; y += v; i += v * cos((3.141592653 / 6.0) * (p + hue_tweak) ); q += v * sin((3.141592653 / 6.0) * (p + hue_tweak) ); } i *= saturation; q *= saturation; // Convert YIQ into RGB according to a commonly used conversion matrix. r = clamp((1.0 * gammafix(y + 0.956 * i + 0.621 * q)), 0, 1.0); g = clamp((1.0 * gammafix(y + -0.272 * i + -0.647 * q)), 0, 1.0); b = clamp((1.0 * gammafix(y + -1.105 * i + 1.702 * q)), 0, 1.0); return vec3(r,g,b); } #pragma stage vertex layout(location = 0) in vec4 Position; layout(location = 1) in vec2 TexCoord; layout(location = 0) out vec2 vTexCoord; layout(location = 1) out float colorPhase; void main() { gl_Position = global.MVP * Position; vTexCoord = TexCoord; } #pragma stage fragment layout(location = 0) in vec2 vTexCoord; layout(location = 1) in float colorPhase; layout(location = 0) out vec4 FragColor; layout(set = 0, binding = 2) uniform sampler2D Source; void main() { vec4 c = texture(Source, vTexCoord.xy); // Extract the chroma, level, and emphasis from the normalized RGB triplet int color = int(floor((c.r * 15.0) + 0.5)); int level = int(floor((c.g * 3.0) + 0.5)); int emphasis = int(floor((c.b * 7.0) + 0.5)); vec3 out_color = MakeRGBColor(emphasis, level, color); FragColor = vec4(out_color, 1.0); }