#version 450 layout(push_constant) uniform Push { vec4 OutputSize; vec4 OriginalSize; vec4 SourceSize; uint FrameCount; float CRTgamma; float monitorgamma; float d; float R; float cornersize; float cornersmooth; float x_tilt; float y_tilt; float overscan_x; float overscan_y; float DOTMASK; float SHARPER; float scanline_weight; float CURVATURE; float interlace_detect; } registers; layout(std140, set = 0, binding = 0) uniform UBO { mat4 MVP; vec4 OutputSize; } global; #pragma parameter CRTgamma "CRTGeom Target Gamma" 2.4 0.1 5.0 0.1 #pragma parameter monitorgamma "CRTGeom Monitor Gamma" 2.2 0.1 5.0 0.1 #pragma parameter d "CRTGeom Distance" 1.5 0.1 3.0 0.1 #pragma parameter CURVATURE "CRTGeom Curvature Toggle" 1.0 0.0 1.0 1.0 #pragma parameter R "CRTGeom Curvature Radius" 2.0 0.1 10.0 0.1 #pragma parameter cornersize "CRTGeom Corner Size" 0.03 0.001 1.0 0.005 #pragma parameter cornersmooth "CRTGeom Corner Smoothness" 1000.0 80.0 2000.0 100.0 #pragma parameter x_tilt "CRTGeom Horizontal Tilt" 0.0 -0.5 0.5 0.05 #pragma parameter y_tilt "CRTGeom Vertical Tilt" 0.0 -0.5 0.5 0.05 #pragma parameter overscan_x "CRTGeom Horiz. Overscan %" 100.0 -125.0 125.0 1.0 #pragma parameter overscan_y "CRTGeom Vert. Overscan %" 100.0 -125.0 125.0 1.0 #pragma parameter DOTMASK "CRTGeom Dot Mask Toggle" 0.3 0.0 0.3 0.3 #pragma parameter SHARPER "CRTGeom Sharpness" 1.0 1.0 3.0 1.0 #pragma parameter scanline_weight "CRTGeom Scanline Weight" 0.3 0.1 0.5 0.05 #pragma parameter interlace_detect "CRTGeom Interlacing Simulation" 1.0 0.0 1.0 1.0 /* CRT-interlaced Copyright (C) 2010-2012 cgwg, Themaister and DOLLS This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. (cgwg gave their consent to have the original version of this shader distributed under the GPL in this message: http://board.byuu.org/viewtopic.php?p=26075#p26075 "Feel free to distribute my shaders under the GPL. After all, the barrel distortion code was taken from the Curvature shader, which is under the GPL." ) This shader variant is pre-configured with screen curvature */ // Comment the next line to disable interpolation in linear gamma (and // gain speed). #define LINEAR_PROCESSING // Enable 3x oversampling of the beam profile; improves moire effect caused by scanlines+curvature #define OVERSAMPLE // Use the older, purely gaussian beam profile; uncomment for speed #define USEGAUSSIAN // Macros. #define FIX(c) max(abs(c), 1e-5); #define PI 3.141592653589 #ifdef LINEAR_PROCESSING # define TEX2D(c) pow(texture(Source, (c)), vec4(registers.CRTgamma)) #else # define TEX2D(c) texture(Source, (c)) #endif // aspect ratio vec2 aspect = vec2(1.0, 0.75); vec2 overscan = vec2(1.01, 1.01); #pragma stage vertex layout(location = 0) in vec4 Position; layout(location = 1) in vec2 TexCoord; layout(location = 0) out vec2 vTexCoord; layout(location = 1) out vec2 sinangle; layout(location = 2) out vec2 cosangle; layout(location = 3) out vec3 stretch; layout(location = 4) out vec2 ilfac; layout(location = 5) out vec2 one; layout(location = 6) out float mod_factor; layout(location = 7) out vec2 TextureSize; float intersect(vec2 xy) { float A = dot(xy,xy) + registers.d*registers.d; float B = 2.0*(registers.R*(dot(xy,sinangle)-registers.d*cosangle.x*cosangle.y)-registers.d*registers.d); float C = registers.d*registers.d + 2.0*registers.R*registers.d*cosangle.x*cosangle.y; return (-B-sqrt(B*B-4.0*A*C))/(2.0*A); } vec2 bkwtrans(vec2 xy) { float c = intersect(xy); vec2 point = (vec2(c, c)*xy - vec2(-registers.R, -registers.R)*sinangle) / vec2(registers.R, registers.R); vec2 poc = point/cosangle; vec2 tang = sinangle/cosangle; float A = dot(tang, tang) + 1.0; float B = -2.0*dot(poc, tang); float C = dot(poc, poc) - 1.0; float a = (-B + sqrt(B*B - 4.0*A*C))/(2.0*A); vec2 uv = (point - a*sinangle)/cosangle; float r = FIX(registers.R*acos(a)); return uv*r/sin(r/registers.R); } vec2 fwtrans(vec2 uv) { float r = FIX(sqrt(dot(uv,uv))); uv *= sin(r/registers.R)/r; float x = 1.0-cos(r/registers.R); float D = registers.d/registers.R + x*cosangle.x*cosangle.y+dot(uv,sinangle); return registers.d*(uv*cosangle-x*sinangle)/D; } vec3 maxscale() { vec2 c = bkwtrans(-registers.R * sinangle / (1.0 + registers.R/registers.d*cosangle.x*cosangle.y)); vec2 a = vec2(0.5,0.5)*aspect; vec2 lo = vec2(fwtrans(vec2(-a.x, c.y)).x, fwtrans(vec2( c.x, -a.y)).y)/aspect; vec2 hi = vec2(fwtrans(vec2(+a.x, c.y)).x, fwtrans(vec2( c.x, +a.y)).y)/aspect; return vec3((hi+lo)*aspect*0.5,max(hi.x-lo.x,hi.y-lo.y)); } // Calculate the influence of a scanline on the current pixel. // // 'distance' is the distance in texture coordinates from the current // pixel to the scanline in question. // 'color' is the colour of the scanline at the horizontal location of // the current pixel. vec4 scanlineWeights(float distance, vec4 color) { // "wid" controls the width of the scanline beam, for each RGB // channel The "weights" lines basically specify the formula // that gives you the profile of the beam, i.e. the intensity as // a function of distance from the vertical center of the // scanline. In this case, it is gaussian if width=2, and // becomes nongaussian for larger widths. Ideally this should // be normalized so that the integral across the beam is // independent of its width. That is, for a narrower beam // "weights" should have a higher peak at the center of the // scanline than for a wider beam. #ifdef USEGAUSSIAN vec4 wid = 0.3 + 0.1 * pow(color, vec4(3.0)); vec4 weights = vec4(distance / wid); return 0.4 * exp(-weights * weights) / wid; #else vec4 wid = 2.0 + 2.0 * pow(color, vec4(4.0)); vec4 weights = vec4(distance / registers.scanline_weight); return 1.4 * exp(-pow(weights * inversesqrt(0.5 * wid), wid)) / (0.6 + 0.2 * wid); #endif } void main() { gl_Position = global.MVP * Position; vTexCoord = TexCoord * vec2(1.00001); // Precalculate a bunch of useful values we'll need in the fragment // shader. sinangle = sin(vec2(registers.x_tilt, registers.y_tilt)); cosangle = cos(vec2(registers.x_tilt, registers.y_tilt)); stretch = maxscale(); TextureSize = vec2(registers.SHARPER * registers.SourceSize.x, registers.SourceSize.y); ilfac = vec2(1.0, clamp(floor(registers.SourceSize.y/200.0), 1.0, 2.0)); // The size of one texel, in texture-coordinates. one = ilfac / TextureSize; // Resulting X pixel-coordinate of the pixel we're drawing. mod_factor = vTexCoord.x * registers.SourceSize.x * registers.OutputSize.x / registers.SourceSize.x; } #pragma stage fragment layout(location = 0) in vec2 vTexCoord; layout(location = 1) in vec2 sinangle; layout(location = 2) in vec2 cosangle; layout(location = 3) in vec3 stretch; layout(location = 4) in vec2 ilfac; layout(location = 5) in vec2 one; layout(location = 6) in float mod_factor; layout(location = 7) in vec2 TextureSize; layout(location = 0) out vec4 FragColor; layout(set = 0, binding = 2) uniform sampler2D Source; float intersect(vec2 xy) { float A = dot(xy,xy) + registers.d*registers.d; float B = 2.0*(registers.R*(dot(xy,sinangle) - registers.d*cosangle.x*cosangle.y) - registers.d*registers.d); float C = registers.d*registers.d + 2.0*registers.R*registers.d*cosangle.x*cosangle.y; return (-B-sqrt(B*B - 4.0*A*C))/(2.0*A); } vec2 bkwtrans(vec2 xy) { float c = intersect(xy); vec2 point = (vec2(c, c)*xy - vec2(-registers.R, -registers.R)*sinangle) / vec2(registers.R, registers.R); vec2 poc = point/cosangle; vec2 tang = sinangle/cosangle; float A = dot(tang, tang) + 1.0; float B = -2.0*dot(poc, tang); float C = dot(poc, poc) - 1.0; float a = (-B + sqrt(B*B - 4.0*A*C)) / (2.0*A); vec2 uv = (point - a*sinangle) / cosangle; float r = FIX(registers.R*acos(a)); return uv*r/sin(r/registers.R); } vec2 fwtrans(vec2 uv) { float r = FIX(sqrt(dot(uv, uv))); uv *= sin(r/registers.R)/r; float x = 1.0 - cos(r/registers.R); float D = registers.d/registers.R + x*cosangle.x*cosangle.y + dot(uv,sinangle); return registers.d*(uv*cosangle - x*sinangle)/D; } vec3 maxscale() { vec2 c = bkwtrans(-registers.R * sinangle / (1.0 + registers.R/registers.d*cosangle.x*cosangle.y)); vec2 a = vec2(0.5, 0.5)*aspect; vec2 lo = vec2(fwtrans(vec2(-a.x, c.y)).x, fwtrans(vec2( c.x, -a.y)).y)/aspect; vec2 hi = vec2(fwtrans(vec2(+a.x, c.y)).x, fwtrans(vec2( c.x, +a.y)).y)/aspect; return vec3((hi+lo)*aspect*0.5,max(hi.x-lo.x, hi.y-lo.y)); } // Calculate the influence of a scanline on the current pixel. // // 'distance' is the distance in texture coordinates from the current // pixel to the scanline in question. // 'color' is the colour of the scanline at the horizontal location of // the current pixel. vec4 scanlineWeights(float distance, vec4 color) { // "wid" controls the width of the scanline beam, for each RGB // channel The "weights" lines basically specify the formula // that gives you the profile of the beam, i.e. the intensity as // a function of distance from the vertical center of the // scanline. In this case, it is gaussian if width=2, and // becomes nongaussian for larger widths. Ideally this should // be normalized so that the integral across the beam is // independent of its width. That is, for a narrower beam // "weights" should have a higher peak at the center of the // scanline than for a wider beam. #ifdef USEGAUSSIAN vec4 wid = 0.3 + 0.1 * pow(color, vec4(3.0)); vec4 weights = vec4(distance / wid); return 0.4 * exp(-weights * weights) / wid; #else vec4 wid = 2.0 + 2.0 * pow(color, vec4(4.0)); vec4 weights = vec4(distance / registers.scanline_weight); return 1.4 * exp(-pow(weights * inversesqrt(0.5 * wid), wid)) / (0.6 + 0.2 * wid); #endif } vec2 transform(vec2 coord) { coord = (coord - vec2(0.5, 0.5))*aspect*stretch.z + stretch.xy; return (bkwtrans(coord) / vec2(registers.overscan_x / 100.0, registers.overscan_y / 100.0)/aspect + vec2(0.5, 0.5)); } float corner(vec2 coord) { coord = (coord - vec2(0.5)) * vec2(registers.overscan_x / 100.0, registers.overscan_y / 100.0) + vec2(0.5, 0.5); coord = min(coord, vec2(1.0) - coord) * aspect; vec2 cdist = vec2(registers.cornersize); coord = (cdist - min(coord, cdist)); float dist = sqrt(dot(coord, coord)); return clamp((cdist.x - dist)*registers.cornersmooth, 0.0, 1.0); } void main() { // Here's a helpful diagram to keep in mind while trying to // understand the code: // // | | | | | // ------------------------------- // | | | | | // | 01 | 11 | 21 | 31 | <-- current scanline // | | @ | | | // ------------------------------- // | | | | | // | 02 | 12 | 22 | 32 | <-- next scanline // | | | | | // ------------------------------- // | | | | | // // Each character-cell represents a pixel on the output // surface, "@" represents the current pixel (always somewhere // in the bottom half of the current scan-line, or the top-half // of the next scanline). The grid of lines represents the // edges of the texels of the underlying texture. // Texture coordinates of the texel containing the active pixel. vec2 xy; if (registers.CURVATURE > 0.5) xy = transform(vTexCoord); else xy = vTexCoord; float cval = corner(xy); // Of all the pixels that are mapped onto the texel we are // currently rendering, which pixel are we currently rendering? vec2 ilvec = vec2(0.0, ilfac.y * registers.interlace_detect > 1.5 ? mod(float(registers.FrameCount), 2.0) : 0.0); vec2 ratio_scale = (xy * TextureSize - vec2(0.5, 0.5) + ilvec) / ilfac; vec2 uv_ratio = fract(ratio_scale); // Snap to the center of the underlying texel. xy = (floor(ratio_scale)*ilfac + vec2(0.5, 0.5) - ilvec) / TextureSize; // Calculate Lanczos scaling coefficients describing the effect // of various neighbour texels in a scanline on the current // pixel. vec4 coeffs = PI * vec4(1.0 + uv_ratio.x, uv_ratio.x, 1.0 - uv_ratio.x, 2.0 - uv_ratio.x); // Prevent division by zero. coeffs = FIX(coeffs); // Lanczos2 kernel. coeffs = 2.0 * sin(coeffs) * sin(coeffs / 2.0) / (coeffs * coeffs); // Normalize. coeffs /= dot(coeffs, vec4(1.0)); // Calculate the effective colour of the current and next // scanlines at the horizontal location of the current pixel, // using the Lanczos coefficients above. vec4 col = clamp( mat4( TEX2D(xy + vec2(-one.x, 0.0)), TEX2D(xy), TEX2D(xy + vec2(one.x, 0.0)), TEX2D(xy + vec2(2.0 * one.x, 0.0)) ) * coeffs, 0.0, 1.0 ); vec4 col2 = clamp( mat4( TEX2D(xy + vec2(-one.x, one.y)), TEX2D(xy + vec2(0.0, one.y)), TEX2D(xy + one), TEX2D(xy + vec2(2.0 * one.x, one.y)) ) * coeffs, 0.0, 1.0 ); #ifndef LINEAR_PROCESSING col = pow(col , vec4(registers.CRTgamma)); col2 = pow(col2, vec4(registers.CRTgamma)); #endif // Calculate the influence of the current and next scanlines on // the current pixel. vec4 weights = scanlineWeights(uv_ratio.y, col); vec4 weights2 = scanlineWeights(1.0 - uv_ratio.y, col2); #ifdef OVERSAMPLE float filter_ = fwidth(ratio_scale.y); uv_ratio.y = uv_ratio.y + 1.0/3.0*filter_; weights = (weights + scanlineWeights(uv_ratio.y, col))/3.0; weights2 = (weights2 + scanlineWeights(abs(1.0 - uv_ratio.y), col2))/3.0; uv_ratio.y = uv_ratio.y - 2.0/3.0*filter_; weights = weights + scanlineWeights(abs(uv_ratio.y), col)/3.0; weights2 = weights2 + scanlineWeights(abs(1.0 - uv_ratio.y), col2)/3.0; #endif vec3 mul_res = (col * weights + col2 * weights2).rgb * vec3(cval); // dot-mask emulation: // Output pixels are alternately tinted green and magenta. vec3 dotMaskWeights = mix( vec3(1.0, 1.0 - registers.DOTMASK, 1.0), vec3(1.0 - registers.DOTMASK, 1.0, 1.0 - registers.DOTMASK), floor(mod(mod_factor, 2.0)) ); mul_res *= dotMaskWeights; // Convert the image gamma for display on our output device. mul_res = pow(mul_res, vec3(1.0 / registers.monitorgamma)); FragColor = vec4(mul_res, 1.0); }