#define alpha_mark 0.1 #define pi 3.141592654 vec3 pixel_push_luminance(vec3 c, float strength) { //if (strength == 0.0) return c; //lighter without the check. float whiteness = max(max(c.r, c.g), c.b); whiteness = clamp(whiteness, 0.0, 1.0); return c * (1+vec3((1-whiteness) * strength)); } vec3 apply_fuzzy_main_pass(vec3 color) { if (DO_IN_GLOW == 1.0) color = pow(color,vec3(IN_GLOW_GAMMA))*IN_GLOW_POWER; if (DO_VMASK_AND_DARKLINES == 1.0) color *= mix ( (1.0 - ((RGB_MASK_STRENGTH*0.5)+(DARKLINES_STRENGTH*0.2))), 1.0, MASK_COMPENSATION) ; if (DO_HALO == 1.0) color += pow(color,vec3(HALO_GAMMA))*HALO_POWER; if (DO_SCANLINES == 1.0) color *= mix(0.5 + (SCANLINE_DARK*0.5), 1.0, SCANLINE_COMPENSATION); if (DO_CCORRECTION == 1.0) color = pow(color, vec3(GAMMA_OUT)); if (DO_VIGNETTE == 1.0) color *= 0.8 * (V_POWER); return color; } vec2 offsets_from_float(float in_param, int range){ return vec2( (int(in_param) % range) - range*0.5, floor(in_param / range) - range*0.5 ); } /*vec2 circles(float param, float c_radius, float aspect, float directions) { //given a 1d input param return full circles increasing radius. param = param*(pi/directions); float m = (c_radius * floor(param/pi)) * 100; return vec2(m * sin(param) * aspect, m * cos(param)) * vec2(aspect,1.0); } vec2 spiral(float param,float spr_radius,vec2 spr_offset, vec2 spr_scale) { //given a 1d input param returns a spiral float m = spr_radius * param; return vec2(m * sin(param), m * cos(param)) * spr_scale + spr_offset; } */ bool similar(float a, float b, float threshold) { return abs(a-b) < threshold; } bool vec2_similar(vec2 a, vec2 b, float threshold) { return abs(a.x-b.x) < threshold && abs(a.y-b.y) < threshold; } vec2 zoom(vec2 in_coords, float zoom_factor) { float off = 1.0/(zoom_factor*2.0) - 0.5; return (in_coords/zoom_factor)-off; } vec2 zoomxy(vec2 in_coords, vec2 zoom_factor) { vec2 off = 1.0/(zoom_factor*2.0) - 0.5; return (in_coords/zoom_factor)-off; } vec2 zoomout_coords(vec2 in_coords, float zoom_out, float aspect) { vec2 zoom = vec2( 1 + zoom_out, 1 + (zoom_out * aspect) ); vec2 offset = vec2( (zoom.x-1.0) / 2.0, (zoom.y-1.0) / 2.0 ); return (in_coords * zoom) - offset; } bool scanline_have_to_flicker(bool is_interlaced) { return ((SCANLINE_FLICKERING == 1.0) || ((SCANLINE_FLICKERING==2.0) && is_interlaced )); } bool is_interlaced() { return (params.OriginalSize.y > MIN_LINES_INTERLACED); } float scale_to_range(float x, float dmin, float dmax) { //Scales 0..1 range to a..b range return ( (dmax-dmin) * x ) + dmin; } vec3 scale_to_range_vec3(vec3 x, float dmin, float dmax) { //Scales 0..1 range to a..b range return ( (dmax-dmin) * x ) + dmin; } vec2 scale_to_range_vec2(vec2 x, float dmin, float dmax) { //Scales 0..1 range to a..b range return ( (dmax-dmin) * x ) + dmin; } #define RND_A 12.9898 #define RND_B 78.233 #define RND_C 43758.5453 float random(float power, vec2 seed) { //From pal-singlepass.slang //https://github.com/svofski/CRT //Copyright (c) 2016, Viacheslav Slavinsky //All rights reserved. float dt = dot(seed.xy, vec2(RND_A, RND_B)); float sn = mod(dt,3.14); float noise_out = fract(sin(sn) * RND_C) - 0.5; noise_out = clamp(noise_out, -power, power); return noise_out ; } //CURVATURE #define corner_aspect vec2(1.0, 0.75) float border(vec2 coord) { coord = (coord - vec2(0.5)) + vec2(0.5, 0.5); coord = min(coord, vec2(1.0) - coord) * corner_aspect; vec2 cdist = vec2(GEOM_CORNER_SIZE); coord = (cdist - min(coord, cdist)); float dist = sqrt(dot(coord, coord)); return clamp((cdist.x - dist)*GEOM_CORNER_SMOOTH, 0.0, 1.0); } vec2 Warp(vec2 uv,float wx, float wy){ uv = uv * 2.0 - 1.0; vec2 CRT_Distortion = vec2(wx, wy); float curvedCoordsDistance = length(uv); uv /= curvedCoordsDistance; uv *= (1.0-pow(vec2(1.0-(curvedCoordsDistance/1.4142135623730950488016887242097)),(1.0/(1.0+CRT_Distortion*0.2)))); uv /= (1.0-pow(vec2(0.29289321881345247559915563789515),(1.0/(vec2(1.0)+CRT_Distortion*0.2)))); uv = uv* 0.5 + 0.5; return uv; } //VIGNETTE - SPOT /* float gauss(float x, float x0, float sx, float size, float power){ float arg = x-x0; arg = -(1/size)/2.*arg*arg/sx; float a = 1./(pow(2.*3.1415*sx, 0.5)); return a*exp(arg) * power; } float gauss_xy(float pos_x, float pos_y, float size, float power, float gmin, float gmax) { vec2 uv = vTexCoord.xy + vec2(pos_x,pos_y); float scale_uv = params.SourceSize.x / params.SourceSize.y; float gx = gauss(uv.x* scale_uv, 0.5*scale_uv, 0.1, size, power); float gy = gauss(uv.y, 0.5, 0.1, size, power); float light = gx*gy; return clamp(light,gmin,gmax); } */ //AMBILIGHT RELATED bool border_needed() { //returns if we need to draw on the border return (DO_AMBILIGHT + DO_BG_IMAGE > 0.0); } #define mark_useless(x) mark_outer_frame(x) vec4 mark_outer_frame(vec3 pixel) { return vec4(pixel.rgb,0.0) ; //For my mental sanity, I use a specific alpha channel value to mark a frame as a border return vec4(pixel.r,pixel.g,pixel.b,alpha_mark) ; } #define is_useless(x) is_outer_frame(x) bool is_outer_frame(vec4 pixel) { return pixel.a == 0.0; /*Check if a pixel is marked as border by comparing the value of its alpha channel Tolerance is needed, because precision can be as low as 1/256; since I don't need alpha channel, use an even large tolerance. */ return abs(pixel.a - alpha_mark) < 0.05; //<-- 0.05 allow about 20 alpha levels (1*0.05) } #define ar_tolerance 0.1 //To compensate when comparing different A/R bool is_rotated() { /* For some reason, probably retroarch rotates the view only on final viewport stage, transparent to the shader passes, The OutputSize of a pass that scales to viewport will have different aspect from the real final viewport. We exploit this to understand when a game is rotated. -->> This function only works if the calling pass scales to viewport. This will fail for very particular cases, eg: when output window is extremely tall */ return (abs((params.OutputSize.x/params.OutputSize.y) - (global.FinalViewportSize.x/global.FinalViewportSize.y)) > ar_tolerance); } float get_in_aspect() { if (ASPECT_X == -1) return 1.5; // ntsc if (ASPECT_X == -2) return 1.25; // pal if (ASPECT_X == -3) return 1.143; // 8/7 snes if (ASPECT_X == -4) return 1.428; // 10/7 megadrive if (ASPECT_X == -5) return params.OriginalSize.x/params.OriginalSize.y; //uncorrected if (ASPECT_X == 0) { return 1.3333333333333; //all mame games, not rotated } return ASPECT_X / ASPECT_Y ; } vec2 get_scaled_coords_aspect(vec2 pTexCoord, vec4 destsize, float in_aspect , bool is_rotated){ if (!border_needed()) return pTexCoord; //else float scale_x = 1.0; float scale_y = 1.0; float offset_x = 0.0 ; float offset_y = 0.0 ; if (is_rotated) { scale_y = destsize.x/(destsize.y / in_aspect ); offset_y = (0.5 * scale_y ) - 0.5 ; } else { scale_x = destsize.x/(destsize.y * in_aspect); offset_x = (0.5 * scale_x ) - 0.5 ; } vec2 scale_coord=vec2(pTexCoord.x*scale_x - offset_x , pTexCoord.y*scale_y - offset_y); return scale_coord; } vec2 get_scaled_coords(vec2 pTexCoord, vec4 destsize, bool is_rotated){ if (!border_needed()) return pTexCoord; //else float scale_x = 1.0; float scale_y = 1.0; float offset_x = 0.0 ; float offset_y = 0.0 ; float in_aspect = get_in_aspect(); if (is_rotated) { //I'm doing ping pong between th the following 2: //FIXME: verify if it depends on destsize being outputsize or finalviewportsize!! //scale_y = destsize.y/(destsize.x / in_aspect ); scale_y = destsize.x/(destsize.y / in_aspect ); offset_y = (0.5 * scale_y ) - 0.5 ; } else { //scale_x = params.OutputSize.x/(params.OutputSize.y * in_aspect); //scale_x = global.FinalViewportSize.x/(global.FinalViewportSize.y * in_aspect); scale_x = destsize.x/(destsize.y * in_aspect); offset_x = (0.5 * scale_x ) - 0.5 ; } vec2 scale_coord=vec2(pTexCoord.x*scale_x - offset_x , pTexCoord.y*scale_y - offset_y); return scale_coord; }