#ifndef CURV #define CURV // A collection of 2D curvature/warp functions // torridgristle vec2 tg_warp(vec2 texCoord){ vec2 Distortion = vec2(warpX, warpY) * 15.; vec2 curvedCoords = texCoord * 2.0 - 1.0; float curvedCoordsDistance = sqrt(curvedCoords.x*curvedCoords.x+curvedCoords.y*curvedCoords.y); curvedCoords = curvedCoords / curvedCoordsDistance; curvedCoords = curvedCoords * (1.0-pow(vec2(1.0-(curvedCoordsDistance/1.4142135623730950488016887242097)),(1.0/(1.0+Distortion*0.2)))); curvedCoords = curvedCoords / (1.0-pow(vec2(0.29289321881345247559915563789515),(1.0/(vec2(1.0)+Distortion*0.2)))); curvedCoords = curvedCoords * 0.5 + 0.5; return curvedCoords; } // lottes // Distortion of scanlines, and end of screen alpha. vec2 tl_warp(vec2 pos) { pos = pos*2.0-1.0; pos *= vec2(1.0 + (pos.y*pos.y)*warpX, 1.0 + (pos.x*pos.x)*warpY); return pos*0.5 + 0.5; } /* Curvature by kokoko3k, GPL-3.0 license * w.x and w.y are global warp parameters * protrusion is the rounded shape near the middle * keep protrusion higher than ~0.5 */ vec2 Warp_koko(vec2 co, vec2 w, float protrusion) { float czoom = 1 - distance(co, vec2(0.5)); czoom = mix(czoom, czoom * protrusion, czoom); vec2 czoom2d = mix(vec2(1.0), vec2(czoom), w); vec2 coff = mix( vec2(0.0), vec2(0.625), w); return zoomxy(co, coff + czoom2d ); } // cgwg's geom // license: GPLv2 const float d = 1.5; const vec2 sinangle = vec2(1.0); const vec2 cosangle = vec2(1.0); const vec2 aspect = vec2(1.0, 0.75); float R = max(warpX, warpY); #define FIX(c) max(abs(c), 1e-5); float intersect(vec2 xy) { float A = dot(xy,xy) + d*d; float B = 2.0*(R*(dot(xy,sinangle) - d*cosangle.x*cosangle.y) - d*d); float C = d*d + 2.0*R*d*cosangle.x*cosangle.y; return (-B-sqrt(B*B - 4.0*A*C))/(2.0*A); } vec2 fwtrans(vec2 uv) { float r = FIX(sqrt(dot(uv,uv))); uv *= sin(r/R)/r; float x = 1.0-cos(r/R); float D = d/R + x*cosangle.x*cosangle.y+dot(uv,sinangle); return d*(uv*cosangle-x*sinangle)/D; } vec3 maxscale() { vec2 c = bkwtrans(-R * sinangle / (1.0 + R/d*cosangle.x*cosangle.y)); vec2 a = vec2(0.5,0.5)*aspect; vec2 lo = vec2(fwtrans(vec2(-a.x, c.y)).x, fwtrans(vec2( c.x, -a.y)).y)/aspect; vec2 hi = vec2(fwtrans(vec2(+a.x, c.y)).x, fwtrans(vec2( c.x, +a.y)).y)/aspect; return vec3((hi+lo)*aspect*0.5,max(hi.x-lo.x,hi.y-lo.y)); } vec2 bkwtrans(vec2 xy) { float c = intersect(xy); vec2 point = (vec2(c, c)*xy - vec2(-R, -R)*sinangle) / vec2(R, R); vec2 poc = point/cosangle; vec2 tang = sinangle/cosangle; float A = dot(tang, tang) + 1.0; float B = -2.0*dot(poc, tang); float C = dot(poc, poc) - 1.0; float a = (-B + sqrt(B*B - 4.0*A*C)) / (2.0*A); vec2 uv = (point - a*sinangle) / cosangle; float r = FIX(R*acos(a)); return uv*r/sin(r/R); } vec2 cgwg_warp(vec2 coord) { vec3 stretch = max_scale(); coord = (coord - vec2(0.5, 0.5))*aspect*stretch.z + stretch.xy; return (bkwtrans(coord) / vec2(1.0, 1.0)/aspect + vec2(0.5, 0.5)); } float corner(vec2 coord) { coord = (coord - vec2(0.5)) + vec2(0.5, 0.5); coord = min(coord, vec2(1.0) - coord) * aspect; vec2 cdist = vec2(cornersize); coord = (cdist - min(coord, cdist)); float dist = sqrt(dot(coord, coord)); return clamp((cdist.x - dist)*cornersmooth, 0.0, 1.0); } #endif