#define kPi 3.1415926536f #define kEuler 2.718281828459f #define kMax 1.0f #define kBeamWidth 0.5f const mat4 kCubicBezier = mat4( 1.0f, 0.0f, 0.0f, 0.0f, -3.0f, 3.0f, 0.0f, 0.0f, 3.0f, -6.0f, 3.0f, 0.0f, -1.0f, 3.0f, -3.0f, 1.0f ); const vec4 kFallOffControlPoints = vec4(0.0f, 0.0f, 0.0f, 1.0f); const vec4 kAttackControlPoints = vec4(0.0f, 1.0f, 1.0f, 1.0f); //const vec4 kScanlineControlPoints = vec4(1.0f, 1.0f, 0.0f, 0.0f); vec4 RedBeamControlPoints(const bool falloff) { float inner_attack = clamp(HCRT_RED_BEAM_ATTACK, 0.0f, 1.0); float outer_attack = clamp(HCRT_RED_BEAM_ATTACK - 1.0f, 0.0f, 1.0); return falloff ? kFallOffControlPoints + vec4(0.0f, outer_attack, inner_attack, 0.0f) : kAttackControlPoints - vec4(0.0f, inner_attack, outer_attack, 0.0f); } vec4 GreenBeamControlPoints(const bool falloff) { float inner_attack = clamp(HCRT_GREEN_BEAM_ATTACK, 0.0f, 1.0); float outer_attack = clamp(HCRT_GREEN_BEAM_ATTACK - 1.0f, 0.0f, 1.0); return falloff ? kFallOffControlPoints + vec4(0.0f, outer_attack, inner_attack, 0.0f) : kAttackControlPoints - vec4(0.0f, inner_attack, outer_attack, 0.0f); } vec4 BlueBeamControlPoints(const bool falloff) { float inner_attack = clamp(HCRT_BLUE_BEAM_ATTACK, 0.0f, 1.0); float outer_attack = clamp(HCRT_BLUE_BEAM_ATTACK - 1.0f, 0.0f, 1.0); return falloff ? kFallOffControlPoints + vec4(0.0f, outer_attack, inner_attack, 0.0f) : kAttackControlPoints - vec4(0.0f, inner_attack, outer_attack, 0.0f); } float Bezier(const float t0, const vec4 control_points) { vec4 t = vec4(1.0, t0, t0*t0, t0*t0*t0); return dot(t, control_points * kCubicBezier); } float ToLinear1(float channel) { return (channel > 0.04045f) ? pow(abs(channel) * (1.0f / 1.055f) + (0.055f / 1.055f), 2.4f) : channel * (1.0f / 12.92f); } vec3 ToLinear(vec3 colour) { return vec3(ToLinear1(colour.r), ToLinear1(colour.g), ToLinear1(colour.b)); } float Contrast1(float linear, float channel) { return (channel > 0.04045f) ? linear * pow(abs(channel) * (1.0f / 1.055f) + (0.055f / 1.055f), HCRT_CONTRAST) : channel * (1.0f / 12.92f); } vec3 Contrast(vec3 linear, vec3 colour) { return vec3(Contrast1(linear.r, colour.r), Contrast1(linear.g, colour.g), Contrast1(linear.b, colour.b)); } vec3 Ramp(const vec3 luminance, const vec3 colour) { return clamp(luminance * colour, 0.0, 1.0); } vec3 ScanlineColour(const vec2 source_size, const vec3 source_tex_coord_x, const vec3 narrowed_source_pixel_offset, inout vec3 next_prev) { const vec3 current_source_position_y = (vec3(vTexCoord.y * source_size.y) - vec3(HCRT_RED_VERTICAL_CONVERGENCE, HCRT_GREEN_VERTICAL_CONVERGENCE, HCRT_BLUE_VERTICAL_CONVERGENCE)) + next_prev; const vec3 current_source_center_y = floor(current_source_position_y) + 0.5f; const vec3 source_tex_coord_y = current_source_center_y / source_size.y; const vec3 scanline_delta = fract(current_source_position_y) - 0.5f; const float scanline_size = global.OutputSize.y / source_size.y; // Slightly increase the beam width to get maximum brightness vec3 beam_distance = abs(scanline_delta - next_prev) - (kBeamWidth / scanline_size); beam_distance = vec3(beam_distance.x < 0.0f ? 0.0f : beam_distance.x, beam_distance.y < 0.0f ? 0.0f : beam_distance.y, beam_distance.z < 0.0f ? 0.0f : beam_distance.z); const vec3 scanline_distance = beam_distance * 2.0f; next_prev.x = scanline_delta.x > 0.0f ? 1.0f : -1.0f; next_prev.y = scanline_delta.y > 0.0f ? 1.0f : -1.0f; next_prev.z = scanline_delta.z > 0.0f ? 1.0f : -1.0f; const vec2 red_tex_coord_0 = vec2(source_tex_coord_x.x, source_tex_coord_y.x); const vec2 red_tex_coord_1 = vec2(source_tex_coord_x.x + (1.0f / source_size.x), source_tex_coord_y.x); const vec2 green_tex_coord_0 = vec2(source_tex_coord_x.y, source_tex_coord_y.y); const vec2 green_tex_coord_1 = vec2(source_tex_coord_x.y + (1.0f / source_size.x), source_tex_coord_y.y); const vec2 blue_tex_coord_0 = vec2(source_tex_coord_x.z, source_tex_coord_y.z); const vec2 blue_tex_coord_1 = vec2(source_tex_coord_x.z + (1.0f / source_size.x), source_tex_coord_y.z); const float red_0 = COMPAT_TEXTURE(Source, red_tex_coord_0).x; const float red_1 = COMPAT_TEXTURE(Source, red_tex_coord_1).x; const float green_0 = COMPAT_TEXTURE(Source, green_tex_coord_0).y; const float green_1 = COMPAT_TEXTURE(Source, green_tex_coord_1).y; const float blue_0 = COMPAT_TEXTURE(Source, blue_tex_coord_0).z; const float blue_1 = COMPAT_TEXTURE(Source, blue_tex_coord_1).z; const vec3 sdr_colour_0 = vec3(red_0, green_0, blue_0); const vec3 sdr_colour_1 = vec3(red_1, green_1, blue_1); const vec3 sdr_linear_0 = ToLinear(sdr_colour_0); const vec3 sdr_linear_1 = ToLinear(sdr_colour_1); const vec3 sdr_constrast_0 = Contrast(sdr_linear_0, sdr_colour_0); const vec3 sdr_constrast_1 = Contrast(sdr_linear_1, sdr_colour_1); #if WHITE_BALANCE_CONTROL //const vec3 sdr_balanced_0 = WhiteBalance(sdr_constrast_0, HCRT_WHITE_TEMPERATURE, HCRT_WHITE_TINT); //const vec3 sdr_balanced_1 = WhiteBalance(sdr_constrast_1, HCRT_WHITE_TEMPERATURE, HCRT_WHITE_TINT); #else const vec3 sdr_balanced_0 = sdr_constrast_0; const vec3 sdr_balanced_1 = sdr_constrast_1; #endif // WHITE_BALANCE_CONTROL // HACK: To get maximum brightness we just set paper white luminance to max luminance const vec3 hdr_colour_0 = InverseTonemapConditional(sdr_balanced_0); const vec3 hdr_colour_1 = InverseTonemapConditional(sdr_balanced_1); /* Horizontal interpolation between pixels */ const vec3 horiz_interp = vec3(Bezier(narrowed_source_pixel_offset.x, RedBeamControlPoints(sdr_linear_0.x > sdr_linear_1.x)), Bezier(narrowed_source_pixel_offset.y, GreenBeamControlPoints(sdr_linear_0.y > sdr_linear_1.y)), Bezier(narrowed_source_pixel_offset.z, BlueBeamControlPoints(sdr_linear_0.z > sdr_linear_1.z))); const vec3 hdr_colour = mix(hdr_colour_0, hdr_colour_1, horiz_interp); const vec3 sdr_colour = mix(sdr_linear_0, sdr_linear_1, horiz_interp); const float red_scanline_distance = clamp(scanline_distance.x / ((sdr_colour.r * (HCRT_RED_SCANLINE_MAX - HCRT_RED_SCANLINE_MIN)) + HCRT_RED_SCANLINE_MIN), 0.0f, 1.0f); const float green_scanline_distance = clamp(scanline_distance.y / ((sdr_colour.g * (HCRT_GREEN_SCANLINE_MAX - HCRT_GREEN_SCANLINE_MIN)) + HCRT_GREEN_SCANLINE_MIN), 0.0f, 1.0f); const float blue_scanline_distance = clamp(scanline_distance.z / ((sdr_colour.b * (HCRT_BLUE_SCANLINE_MAX - HCRT_BLUE_SCANLINE_MIN)) + HCRT_BLUE_SCANLINE_MIN), 0.0f, 1.0f); const vec4 red_control_points = vec4(1.0f, 1.0f, sdr_colour.r * HCRT_RED_SCANLINE_ATTACK, 0.0f); const vec4 green_control_points = vec4(1.0f, 1.0f, sdr_colour.g * HCRT_GREEN_SCANLINE_ATTACK, 0.0f); const vec4 blue_control_points = vec4(1.0f, 1.0f, sdr_colour.b * HCRT_BLUE_SCANLINE_ATTACK, 0.0f); const vec3 luminance = vec3(Bezier(red_scanline_distance, red_control_points), Bezier(green_scanline_distance, green_control_points), Bezier(blue_scanline_distance, blue_control_points)); return luminance * hdr_colour; } vec3 GenerateScanline(const vec2 source_size) { const vec3 current_source_position_x = vec3(vTexCoord.x * source_size.x) - vec3(HCRT_RED_HORIZONTAL_CONVERGENCE, HCRT_GREEN_HORIZONTAL_CONVERGENCE, HCRT_BLUE_HORIZONTAL_CONVERGENCE); const vec3 current_source_center_x = floor(current_source_position_x) + 0.5f; const vec3 source_tex_coord_x = current_source_center_x / source_size.x; const vec3 source_pixel_offset = fract(current_source_position_x); const vec3 beam_sharpness = vec3(HCRT_RED_BEAM_SHARPNESS, HCRT_GREEN_BEAM_SHARPNESS, HCRT_BLUE_BEAM_SHARPNESS); const vec3 narrowed_source_pixel_offset = clamp(((source_pixel_offset - vec3(0.5f)) * beam_sharpness) + vec3(0.5f), vec3(0.0f), vec3(1.0f)); vec3 next_prev = vec3(0.0f); const vec3 scanline_colour0 = ScanlineColour(source_size, source_tex_coord_x, narrowed_source_pixel_offset, next_prev); // Optionally sample the neighbouring scanline vec3 scanline_colour1 = vec3(0.0f); if(HCRT_RED_SCANLINE_MAX > 1.0f || HCRT_GREEN_SCANLINE_MAX > 1.0f || HCRT_BLUE_SCANLINE_MAX > 1.0f) { scanline_colour1 = ScanlineColour(source_size, source_tex_coord_x, narrowed_source_pixel_offset, next_prev); } return scanline_colour0 * HCRT_BRIGHTNESS + scanline_colour1; }