#version 450 ///////////////////////////// GPL LICENSE NOTICE ///////////////////////////// // crt-royale: A full-featured CRT shader, with cheese. // Copyright (C) 2014 TroggleMonkey // // This program is free software; you can redistribute it and/or modify it // under the terms of the GNU General Public License as published by the Free // Software Foundation; either version 2 of the License, or any later version. // // This program is distributed in the hope that it will be useful, but WITHOUT // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for // more details. // // You should have received a copy of the GNU General Public License along with // this program; if not, write to the Free Software Foundation, Inc., 59 Temple // Place, Suite 330, Boston, MA 02111-1307 USA layout(push_constant) uniform Push { vec4 SourceSize; vec4 OriginalSize; vec4 OutputSize; uint FrameCount; } params; ///////////////////////////// SETTINGS MANAGEMENT //////////////////////////// #include "../../../../include/compat_macros.inc" #include "../user-settings.h" #include "derived-settings-and-constants.h" #include "bind-shader-params.h" ////////////////////////////////// INCLUDES ////////////////////////////////// #include "phosphor-mask-resizing.h" #pragma stage vertex layout(location = 0) in vec4 Position; layout(location = 1) in vec2 TexCoord; layout(location = 0) out vec2 src_tex_uv_wrap; layout(location = 1) out vec2 resize_magnification_scale; void main() { gl_Position = global.MVP * Position; float2 tex_uv = TexCoord; // First estimate the viewport size (the user will get the wrong number of // triads if it's wrong and mask_specify_num_triads is 1.0/true). const float viewport_y = IN.output_size.y / mask_resize_viewport_scale.y; const float aspect_ratio = geom_aspect_ratio_x / geom_aspect_ratio_y; const float2 estimated_viewport_size = float2(viewport_y * aspect_ratio, viewport_y); // Estimate the output size of MASK_RESIZE (the next pass). The estimated // x component shouldn't matter, because we're not using the x result, and // we're not swearing it's correct (if we did, the x result would influence // the y result to maintain the tile aspect ratio). const float2 estimated_mask_resize_output_size = float2(IN.output_size.y * aspect_ratio, IN.output_size.y); // Find the final intended [y] size of our resized phosphor mask tiles, // then the tile size for the current pass (resize y only): float2 mask_resize_tile_size = get_resized_mask_tile_size( estimated_viewport_size, estimated_mask_resize_output_size, false); float2 pass_output_tile_size = float2(min( mask_resize_src_lut_size.x, IN.output_size.x), mask_resize_tile_size.y); // We'll render resized tiles until filling the output FBO or meeting a // limit, so compute [wrapped] tile uv coords based on the output uv coords // and the number of tiles that will fit in the FBO. const float2 output_tiles_this_pass = IN.output_size / pass_output_tile_size; const float2 output_video_uv = tex_uv * IN.texture_size / IN.video_size; const float2 tile_uv_wrap = output_video_uv * output_tiles_this_pass; // The input LUT is just a single mask tile, so texture uv coords are the // same as tile uv coords (save frac() for the fragment shader). The // magnification scale is also straightforward: src_tex_uv_wrap = tile_uv_wrap; resize_magnification_scale = pass_output_tile_size / mask_resize_src_lut_size; } #pragma stage fragment layout(location = 0) in vec2 src_tex_uv_wrap; layout(location = 1) in vec2 resize_magnification_scale; layout(location = 0) out vec4 FragColor; layout(set = 0, binding = 2) uniform sampler2D Source; #ifdef PHOSPHOR_MASK_RESIZE_MIPMAPPED_LUT layout(set = 0, binding = 3) uniform sampler2D mask_grille_texture_large; layout(set = 0, binding = 4) uniform sampler2D mask_slot_texture_large; layout(set = 0, binding = 5) uniform sampler2D mask_shadow_texture_large; #else layout(set = 0, binding = 3) uniform sampler2D mask_grille_texture_small; layout(set = 0, binding = 4) uniform sampler2D mask_slot_texture_small; layout(set = 0, binding = 5) uniform sampler2D mask_shadow_texture_small; #endif void main() { // Resize the input phosphor mask tile to the final vertical size it will // appear on screen. Keep 1x horizontal size if possible (IN.output_size // >= mask_resize_src_lut_size), and otherwise linearly sample horizontally // to fit exactly one tile. Lanczos-resizing the phosphor mask achieves // much sharper results than mipmapping, and vertically resizing first // minimizes the total number of taps required. We output a number of // resized tiles >= mask_resize_num_tiles for easier tiled sampling later. //const float2 src_tex_uv_wrap = src_tex_uv_wrap; #ifdef PHOSPHOR_MASK_MANUALLY_RESIZE // Discard unneeded fragments in case our profile allows real branches. const float2 tile_uv_wrap = src_tex_uv_wrap; if(get_mask_sample_mode() < 0.5 && tile_uv_wrap.y <= mask_resize_num_tiles) { static const float src_dy = 1.0/mask_resize_src_lut_size.y; const float2 src_tex_uv = frac(src_tex_uv_wrap); float3 pixel_color; // If mask_type is static, this branch will be resolved statically. #ifdef PHOSPHOR_MASK_RESIZE_MIPMAPPED_LUT if(mask_type < 0.5) { pixel_color = downsample_vertical_sinc_tiled( mask_grille_texture_large, src_tex_uv, mask_resize_src_lut_size, src_dy, resize_magnification_scale.y, 1.0); } else if(mask_type < 1.5) { pixel_color = downsample_vertical_sinc_tiled( mask_slot_texture_large, src_tex_uv, mask_resize_src_lut_size, src_dy, resize_magnification_scale.y, 1.0); } else { pixel_color = downsample_vertical_sinc_tiled( mask_shadow_texture_large, src_tex_uv, mask_resize_src_lut_size, src_dy, resize_magnification_scale.y, 1.0); } #else if(mask_type < 0.5) { pixel_color = downsample_vertical_sinc_tiled( mask_grille_texture_small, src_tex_uv, mask_resize_src_lut_size, src_dy, resize_magnification_scale.y, 1.0); } else if(mask_type < 1.5) { pixel_color = downsample_vertical_sinc_tiled( mask_slot_texture_small, src_tex_uv, mask_resize_src_lut_size, src_dy, resize_magnification_scale.y, 1.0); } else { pixel_color = downsample_vertical_sinc_tiled( mask_shadow_texture_small, src_tex_uv, mask_resize_src_lut_size, src_dy, resize_magnification_scale.y, 1.0); } #endif // The input LUT was linear RGB, and so is our output: FragColor = float4(pixel_color, 1.0); } else { discard; } #else discard; FragColor = float4(1.0); #endif }