#version 450 /* Grade - CRT emulation and color manipulation shader Copyright (C) 2020-2023 Dogway (Jose Linares) This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ layout(push_constant) uniform Push { float g_signal_type; float g_crtgamut; float g_space_out; float g_hue_degrees; float g_U_SHIFT; float g_V_SHIFT; float g_U_MUL; float g_V_MUL; float g_CRT_b; float g_CRT_c; float g_CRT_l; float g_lum_fix; float g_vstr; float g_vpower; float g_sat; float g_vibr; float g_lum; float g_cntrst; float g_mid; float g_lift; float blr; float blg; float blb; float wlr; float wlg; float wlb; float rg; float rb; float gr; float gb; float br; float bg; } params; layout(std140, set = 0, binding = 0) uniform UBO { mat4 MVP; vec4 SourceSize; vec4 OriginalSize; vec4 OutputSize; uint FrameCount; float g_vignette; float g_Dark_to_Dim; float g_GCompress; float wp_temperature; float g_CRT_br; float g_CRT_bg; float g_CRT_bb; float g_CRT_rf; float g_CRT_sl; float g_satr; float g_satg; float g_satb; float g_digital; float g_analog; } global; /* Grade (17-07-2023) > See settings decriptions at: https://forums.libretro.com/t/dogways-grading-shader-slang/27148/442 > Ubershader grouping some monolithic color related shaders: ::color-mangler (hunterk), ntsc color tuning knobs (Doriphor), white_point (hunterk, Dogway), RA Reshade LUT. > and the addition of: ::analogue color emulation, phosphor gamut, color space + TRC support, vibrance, HUE vs SAT, vignette (shared by Syh), black level, rolled gain and sigmoidal contrast. **Thanks to those that helped me out keep motivated by continuous feedback and bug reports: **Syh, Nesguy, hunterk, and the libretro forum members. #####################################...STANDARDS...###################################### ########################################################################################## ### ### ### PAL ### ### Phosphor: 470BG (#3) ### ### WP: D65 (6504K) (in practice more like 7000K-7500K range) ### ### Saturation: -0.02 ### ### ### ### NTSC-U ### ### Phosphor: P22/SMPTE-C (#1 #-3)(or a SMPTE-C based CRT phosphor gamut) ### ### WP: D65 (6504K) (in practice more like 7000K-7500K range) ### ### ### ### NTSC-J (Default) ### ### Phosphor: NTSC-J (#2) (or a NTSC-J based CRT phosphor gamut) ### ### WP: 9300K+27MPCD (8945K) (CCT from x:0.281 y:0.311)(in practice ~8500K)### ### ### ### ### ########################################################################################## ########################################################################################## */ #pragma parameter g_signal_type "Signal Type (0:RGB 1:Composite)" 0.0 0.0 1.0 1.0 #pragma parameter g_crtgamut "Phosphor (-2:CRT-95s -1:P22-80s 1:P22-90s 2:NTSC-J 3:PAL)" 0.0 -3.0 3.0 1.0 #pragma parameter g_space_out "Diplay Color Space (-1:709 0:sRGB 1:P3-D65 2:2020 3:Adobe)" 0.0 -1.0 3.0 1.0 #pragma parameter g_Dark_to_Dim "Dark to Dim adaptation" 1.0 0.0 1.0 1.0 #pragma parameter g_GCompress "Gamut Compression" 0.0 0.0 1.0 1.0 // Analogue controls #pragma parameter g_analog "// ANALOG CONTROLS //" 0.0 0.0 1.0 1.0 #pragma parameter wp_temperature "White Point" 6504.0 5004.0 12004.0 100.0 #pragma parameter g_hue_degrees "CRT Hue" 0.0 -180.0 180.0 1.0 #pragma parameter g_U_SHIFT "CRT U Shift" 0.0 -0.2 0.2 0.01 #pragma parameter g_V_SHIFT "CRT V Shift" 0.0 -0.2 0.2 0.01 #pragma parameter g_U_MUL "CRT U Multiplier" 1.0 0.0 2.0 0.01 #pragma parameter g_V_MUL "CRT V Multiplier" 1.0 0.0 2.0 0.01 #pragma parameter g_CRT_l "CRT Gamma" 2.50 2.30 2.60 0.01 #pragma parameter g_CRT_b "CRT Brightness" 50.0 0.0 100.0 1.0 #pragma parameter g_CRT_c "CRT Contrast" 50.0 0.0 100.0 1.0 #pragma parameter g_CRT_br "CRT Beam Red" 1.0 0.0 1.2 0.01 #pragma parameter g_CRT_bg "CRT Beam Green" 1.0 0.0 1.2 0.01 #pragma parameter g_CRT_bb "CRT Beam Blue" 1.0 0.0 1.2 0.01 #pragma parameter g_CRT_rf "CRT Lambert Refl. in %" 5.0 2.0 5.0 0.1 #pragma parameter g_CRT_sl "Surround Luminance -nits-" 0.0 0.0 100.0 1.0 #pragma parameter g_vignette "Vignette Toggle" 0.0 0.0 1.0 1.0 #pragma parameter g_vstr "Vignette Strength" 40.0 0.0 50.0 1.0 #pragma parameter g_vpower "Vignette Power" 0.20 0.0 0.5 0.01 // Digital controls #pragma parameter g_digital "// DIGITAL CONTROLS //" 0.0 0.0 1.0 1.0 #pragma parameter g_lum_fix "Sega Luma Fix" 0.0 0.0 1.0 1.0 #pragma parameter g_lum "Brightness" 0.0 -0.5 1.0 0.01 #pragma parameter g_cntrst "Contrast" 0.0 -1.0 1.0 0.05 #pragma parameter g_mid "Contrast Pivot" 0.5 0.0 1.0 0.01 #pragma parameter g_sat "Saturation" 0.0 -1.0 1.0 0.01 #pragma parameter g_vibr "Dullness/Vibrance" 0.0 -1.0 1.0 0.05 #pragma parameter g_satr "Hue vs Sat Red" 0.0 -1.0 1.0 0.01 #pragma parameter g_satg "Hue vs Sat Green" 0.0 -1.0 1.0 0.01 #pragma parameter g_satb "Hue vs Sat Blue" 0.0 -1.0 1.0 0.01 #pragma parameter g_lift "Black Level" 0.0 -0.5 0.5 0.01 #pragma parameter blr "Black-Red Tint" 0.0 0.0 1.0 0.01 #pragma parameter blg "Black-Green Tint" 0.0 0.0 1.0 0.01 #pragma parameter blb "Black-Blue Tint" 0.0 0.0 1.0 0.01 #pragma parameter wlr "White-Red Tint" 1.0 0.0 2.0 0.01 #pragma parameter wlg "White-Green Tint" 1.0 0.0 2.0 0.01 #pragma parameter wlb "White-Blue Tint" 1.0 0.0 2.0 0.01 #pragma parameter rg "Red-Green Tint" 0.0 -1.0 1.0 0.005 #pragma parameter rb "Red-Blue Tint" 0.0 -1.0 1.0 0.005 #pragma parameter gr "Green-Red Tint" 0.0 -1.0 1.0 0.005 #pragma parameter gb "Green-Blue Tint" 0.0 -1.0 1.0 0.005 #pragma parameter br "Blue-Red Tint" 0.0 -1.0 1.0 0.005 #pragma parameter bg "Blue-Green Tint" 0.0 -1.0 1.0 0.005 #define M_PI 3.1415926535897932384626433832795/180.0 #define RW vec3(0.950457397565471, 1.0, 1.089436035930324) #define signal params.g_signal_type #define crtgamut params.g_crtgamut #define SPC params.g_space_out #define hue_degrees params.g_hue_degrees #define U_SHIFT params.g_U_SHIFT #define V_SHIFT params.g_V_SHIFT #define U_MUL params.g_U_MUL #define V_MUL params.g_V_MUL #define CRT_l -(100000.*log((72981.-500000./(3.*max(2.3,params.g_CRT_l)))/9058.))/945461. #define lum_fix params.g_lum_fix #define vignette global.g_vignette #define GCompress global.g_GCompress #define vstr params.g_vstr #define vpower params.g_vpower #define g_sat params.g_sat #define vibr params.g_vibr #define beamr global.g_CRT_br #define beamg global.g_CRT_bg #define beamb global.g_CRT_bb #define satr global.g_satr #define satg global.g_satg #define satb global.g_satb #define lum params.g_lum #define cntrst params.g_cntrst #define mid params.g_mid #define lift params.g_lift #define blr params.blr #define blg params.blg #define blb params.blb #define wlr params.wlr #define wlg params.wlg #define wlb params.wlb #define rg params.rg #define rb params.rb #define gr params.gr #define gb params.gb #define br params.br #define bg params.bg #pragma stage vertex layout(location = 0) in vec4 Position; layout(location = 1) in vec2 TexCoord; layout(location = 0) out vec2 vTexCoord; void main() { gl_Position = global.MVP * Position; vTexCoord = TexCoord; } #pragma stage fragment layout(location = 0) in vec2 vTexCoord; layout(location = 0) out vec4 FragColor; layout(set = 0, binding = 2) uniform sampler2D Source; ///////////////////////// Color Space Transformations ////////////////////////// // 'D65' based mat3 RGB_to_XYZ_mat(mat3 primaries) { vec3 T = RW * inverse(primaries); mat3 TB = mat3( T.x, 0.0, 0.0, 0.0, T.y, 0.0, 0.0, 0.0, T.z); return TB * primaries; } vec3 RGB_to_XYZ(vec3 RGB, mat3 primaries) { return RGB * RGB_to_XYZ_mat(primaries); } vec3 XYZ_to_RGB(vec3 XYZ, mat3 primaries) { return XYZ * inverse(RGB_to_XYZ_mat(primaries)); } vec3 XYZtoYxy(vec3 XYZ) { float XYZrgb = XYZ.r+XYZ.g+XYZ.b; float Yxyg = (XYZrgb <= 0.0) ? 0.3805 : XYZ.r / XYZrgb; float Yxyb = (XYZrgb <= 0.0) ? 0.3769 : XYZ.g / XYZrgb; return vec3(XYZ.g, Yxyg, Yxyb); } vec3 YxytoXYZ(vec3 Yxy) { float Xs = Yxy.r * (Yxy.g/Yxy.b); float Xsz = (Yxy.r <= 0.0) ? 0.0 : 1.0; vec3 XYZ = vec3(Xsz,Xsz,Xsz) * vec3(Xs, Yxy.r, (Xs/Yxy.g)-Xs-Yxy.r); return XYZ; } ///////////////////////// White Point Mapping ///////////////////////// // // // PAL: D65 NTSC-U: D65 NTSC-J: CCT 9300K+27MPCD // PAL: 6503.512K NTSC-U: 6503.512K NTSC-J: ~8945.436K // [x:0.31266142 y:0.3289589] [x:0.281 y:0.311] // For NTSC-J there's not a common agreed value, measured consumer units span from 8229.87K to 8945.623K with accounts for 8800K as well. // Recently it's been standardized to 9300K which is closer to what master monitors (and not consumer units) were (x=0.2838 y=0.2984) (~9177.98K) // "RGB to XYZ -> Temperature -> XYZ to RGB" joint matrix vec3 wp_adjust(vec3 RGB, float temperature, mat3 primaries, mat3 display) { float temp3 = 1000. / temperature; float temp6 = 1000000. / pow(temperature, 2.0); float temp9 = 1000000000. / pow(temperature, 3.0); vec3 wp = vec3(1.0); wp.x = (temperature < 5500.) ? 0.244058 + 0.0989971 * temp3 + 2.96545 * temp6 - 4.59673 * temp9 : \ (temperature < 8000.) ? 0.200033 + 0.9545630 * temp3 - 2.53169 * temp6 + 7.08578 * temp9 : \ 0.237045 + 0.2437440 * temp3 + 1.94062 * temp6 - 2.11004 * temp9 ; wp.y = -0.275275 + 2.87396 * wp.x - 3.02034 * pow(wp.x,2.0) + 0.0297408 * pow(wp.x,3.0); wp.z = 1.0 - wp.x - wp.y; const mat3 CAT16 = mat3( 0.401288,-0.250268, -0.002079, 0.650173, 1.204414, 0.048952, -0.051461, 0.045854, 0.953127); vec3 VKV = (vec3(wp.x/wp.y,1.,wp.z/wp.y) * CAT16) / (RW * CAT16); mat3 VK = mat3( VKV.x, 0.0, 0.0, 0.0, VKV.y, 0.0, 0.0, 0.0, VKV.z); mat3 CAM = CAT16 * (VK * inverse(CAT16)); mat3 mata = RGB_to_XYZ_mat(primaries); mat3 matb = RGB_to_XYZ_mat(display); return RGB.rgb * ((mata * CAM) * inverse(matb)); } //////////////////////////////////////////////////////////////////////////////// // CRT EOTF Function //---------------------------------------------------------------------- float EOTF_1886a(float color, float bl, float brightness, float contrast) { // Defaults: // Black Level = 0.1 // Brightness = 0 // Contrast = 100 const float wl = 100.0; float b = pow(bl, 1./2.4); float a = pow(wl, 1./2.4)-b; b = (brightness-50.) / 250. + b/a; // -0.20 to +0.20 a = contrast!=50. ? pow(2.,(contrast-50.)/50.) : 1.; // 0.50 to +2.00 const float Vc = 0.35; // Offset float Lw = wl/100. * a; // White level float Lb = min( b * a,Vc); // Black level const float a1 = 2.6; // Shoulder gamma const float a2 = 3.0; // Knee gamma float k = Lw /pow(1. + Lb, a1); float sl = k * pow(Vc + Lb, a1-a2); // Slope for knee gamma color = color >= Vc ? k * pow(color + Lb, a1 ) : sl * pow(color + Lb, a2 ); return color; } vec3 EOTF_1886a_f3( vec3 color, float BlackLevel, float brightness, float contrast) { color.r = EOTF_1886a( color.r, BlackLevel, brightness, contrast); color.g = EOTF_1886a( color.g, BlackLevel, brightness, contrast); color.b = EOTF_1886a( color.b, BlackLevel, brightness, contrast); return color.rgb; } // Monitor Curve Functions: https://github.com/ampas/aces-dev //---------------------------------------------------------------------- float moncurve_f( float color, float gamma, float offs) { // Forward monitor curve color = clamp(color, 0.0, 1.0); float fs = (( gamma - 1.0) / offs) * pow( offs * gamma / ( ( gamma - 1.0) * ( 1.0 + offs)), gamma); float xb = offs / ( gamma - 1.0); color = ( color > xb) ? pow( ( color + offs) / ( 1.0 + offs), gamma) : color * fs; return color; } vec3 moncurve_f_f3( vec3 color, float gamma, float offs) { color.r = moncurve_f( color.r, gamma, offs); color.g = moncurve_f( color.g, gamma, offs); color.b = moncurve_f( color.b, gamma, offs); return color.rgb; } float moncurve_r( float color, float gamma, float offs) { // Reverse monitor curve color = clamp(color, 0.0, 1.0); float yb = pow( offs * gamma / ( ( gamma - 1.0) * ( 1.0 + offs)), gamma); float rs = pow( ( gamma - 1.0) / offs, gamma - 1.0) * pow( ( 1.0 + offs) / gamma, gamma); color = ( color > yb) ? ( 1.0 + offs) * pow( color, 1.0 / gamma) - offs : color * rs; return color; } vec3 moncurve_r_f3( vec3 color, float gamma, float offs) { color.r = moncurve_r( color.r, gamma, offs); color.g = moncurve_r( color.g, gamma, offs); color.b = moncurve_r( color.b, gamma, offs); return color.rgb; } //-------------------------- Luma Functions ---------------------------- // Performs better in gamma encoded space float contrast_sigmoid(float color, float cont, float pivot) { cont = pow(cont + 1., 3.); float knee = 1. / (1. + exp(cont * pivot)); float shldr = 1. / (1. + exp(cont * (pivot - 1.))); color =(1. / (1. + exp(cont * (pivot - color))) - knee) / (shldr - knee); return color; } // Performs better in gamma encoded space float contrast_sigmoid_inv(float color, float cont, float pivot) { cont = pow(cont - 1., 3.); float knee = 1. / (1. + exp (cont * pivot)); float shldr = 1. / (1. + exp (cont * (pivot - 1.))); color = pivot - log(1. / (color * (shldr - knee) + knee) - 1.) / cont; return color; } float rolled_gain(float color, float gain) { float gx = abs(gain) + 0.001; float anch = (gain > 0.0) ? 0.5 / (gx / 2.0) : 0.5 / gx; color = (gain > 0.0) ? color * ((color - anch) / (1.0 - anch)) : color * ((1.0 - anch) / (color - anch)) * (1.0 - gain); return color; } vec3 rolled_gain_v3(vec3 color, float gain) { color.r = rolled_gain(color.r, gain); color.g = rolled_gain(color.g, gain); color.b = rolled_gain(color.b, gain); return color.rgb; } float SatMask(float color_r, float color_g, float color_b) { float max_rgb = max(color_r, max(color_g, color_b)); float min_rgb = min(color_r, min(color_g, color_b)); float msk = clamp((max_rgb - min_rgb) / (max_rgb + min_rgb), 0.0, 1.0); return msk; } //---------------------- Gamut Compression ------------------- // RGB 'Desaturate' Gamut Compression (by Jed Smith: https://github.com/jedypod/gamut-compress) vec3 GamutCompression (vec3 rgb, float grey) { // Limit/Thres order is Cyan, Magenta, Yellow vec3 beam = max(vec3(0.0),vec3(beamg,(beamb+beamr)/2.,(beamr+beamg)/2.)); vec3 sat = max(vec3(0.0),vec3(satg, (satb +satr) /2.,(satr +satg) /2.)+1.); // center at 1 float temp = max(0.0,abs(global.wp_temperature-7000.)-1000.)/825.+1.; // center at 1 vec3 WPD = global.wp_temperature < 7000. ? vec3(1.,temp,(temp-1.)/2.+1.) : vec3((temp-1.)/2.+1.,temp,1.); sat = max(0.0,g_sat+1.0)*(sat*beam) * WPD; mat2x3 LimThres = mat2x3( 0.100000,0.100000,0.100000, 0.125000,0.125000,0.125000); if (SPC < 1.0) { LimThres = \ crtgamut == 3.0 ? mat2x3( 0.000000,0.044065,0.000000, 0.000000,0.095638,0.000000) : \ crtgamut == 2.0 ? mat2x3( 0.006910,0.092133,0.000000, 0.039836,0.121390,0.000000) : \ crtgamut == 1.0 ? mat2x3( 0.018083,0.059489,0.017911, 0.066570,0.105996,0.066276) : \ crtgamut ==-1.0 ? mat2x3( 0.014947,0.098571,0.017911, 0.060803,0.123793,0.066276) : \ crtgamut ==-2.0 ? mat2x3( 0.004073,0.030307,0.012697, 0.028222,0.083075,0.056029) : \ crtgamut ==-3.0 ? mat2x3( 0.018424,0.053469,0.016841, 0.067146,0.102294,0.064393) : LimThres; } else if (SPC==1.0) { LimThres = \ crtgamut == 3.0 ? mat2x3( 0.000000,0.234229,0.007680, 0.000000,0.154983,0.042446) : \ crtgamut == 2.0 ? mat2x3( 0.078526,0.108432,0.006143, 0.115731,0.127194,0.037039) : \ crtgamut == 1.0 ? mat2x3( 0.021531,0.237184,0.013466, 0.072018,0.155438,0.057731) : \ crtgamut ==-1.0 ? mat2x3( 0.051640,0.103332,0.013550, 0.101092,0.125474,0.057912) : \ crtgamut ==-2.0 ? mat2x3( 0.032717,0.525361,0.023928, 0.085609,0.184491,0.075381) : \ crtgamut ==-3.0 ? mat2x3( 0.000000,0.377522,0.043076, 0.000000,0.172390,0.094873) : LimThres; } // Amount of outer gamut to affect vec3 th = 1.0-vec3(LimThres[1])*(0.4*sat+0.3); // Distance limit: How far beyond the gamut boundary to compress vec3 dl = 1.0+vec3(LimThres[0])*sat; // Calculate scale so compression function passes through distance limit: (x=dl, y=1) vec3 s = (vec3(1.0)-th)/sqrt(max(vec3(1.001), dl)-1.0); // Achromatic axis float ac = max(rgb.x, max(rgb.y, rgb.z)); // Inverse RGB Ratios: distance from achromatic axis vec3 d = ac==0.0?vec3(0.0):(ac-rgb)/abs(ac); // Compressed distance. Parabolic compression function: https://www.desmos.com/calculator/nvhp63hmtj vec3 cd; vec3 sf = s*sqrt(d-th+s*s/4.0)-s*sqrt(s*s/4.0)+th; cd.x = (d.x < th.x) ? d.x : sf.x; cd.y = (d.y < th.y) ? d.y : sf.y; cd.z = (d.z < th.z) ? d.z : sf.z; // Inverse RGB Ratios to RGB // and Mask with "luma" return mix(rgb, ac-cd.xyz*abs(ac), pow(grey,1.0/params.g_CRT_l)); } //*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/ // Matrices in column-major //----------------------- Y'UV color model ----------------------- // 0-235 YUV PAL // 0-235 YUV NTSC-J // 16-235 YUV NTSC // Bymax 0.885515 // Rymax 0.701088 // R'G'B' full range to Decorrelated Intermediate (Y,B-Y,R-Y) // Rows should sum to 0, except first one which sums 1 const mat3 YByRy = mat3( 0.298912, 0.586603, 0.114485, -0.298912,-0.586603, 0.885515, 0.701088,-0.586603,-0.114485); // Umax 0.435812284313725 // Vmax 0.615857694117647 // R'G'B' full to Y'UV limited // YUV is defined with headroom and footroom (TV range), // UV excursion is limited to Umax and Vmax // Y excursion is limited to 16-235 for NTSC-U and 0-235 for PAL and NTSC-J vec3 r601_YUV(vec3 RGB, float NTSC_U) { const float sclU = ((0.5*(235.-16.)+16.)/255.); // This yields Luma grey at around 0.49216 or 125.5 in 8-bit const float sclV = (240.-16.) /255. ; // This yields Chroma range at around 0.87843 or 224 in 8-bit mat3 conv_mat = mat3( vec3(YByRy[0]), vec3(sclU) * vec3(YByRy[1]), vec3(sclV) * vec3(YByRy[2])); // -0.147111592156863 -0.288700692156863 0.435812284313725 // 0.615857694117647 -0.515290478431373 -0.100567215686275 vec3 YUV = RGB.rgb * conv_mat; YUV.x = NTSC_U==1.0 ? YUV.x * 219.0 + 16.0 : YUV.x * 235.0; return vec3(YUV.x/255.0,YUV.yz); } // Y'UV limited to R'G'B' full vec3 YUV_r601(vec3 YUV, float NTSC_U) { const mat3 conv_mat = mat3( 1.0000000, -0.000000029378826483, 1.1383928060531616, 1.0000000, -0.396552562713623050, -0.5800843834877014, 1.0000000, 2.031872510910034000, 0.0000000000000000); YUV.x = (YUV.x - (NTSC_U == 1.0 ? 16.0/255.0 : 0.0 )) * (255.0/(NTSC_U == 1.0 ? 219.0 : 235.0)); return YUV.xyz * conv_mat; } // FP32 to 8-bit mid-tread uniform quantization float Quantize8(float col) { col = min(255.0,floor(col * 255.0 + 0.5)); return col; } vec3 Quantize8_f3(vec3 col) { col.r = Quantize8(col.r); col.g = Quantize8(col.g); col.b = Quantize8(col.b); return col.rgb; } //------------------------- LMS -------------------------- // Hunt-Pointer-Estevez D65 cone response // modification for IPT model const mat3 LMS = mat3( 0.4002, 0.7075, -0.0807, -0.2280, 1.1500, 0.0612, 0.0000, 0.0000, 0.9184); const mat3 IPT = mat3( 0.4000, 0.4000, 0.2000, 4.4550, -4.8510, 0.3960, 0.8056, 0.3572, -1.1628); //*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/ //----------------------- Phosphor Gamuts ----------------------- ////// STANDARDS /////// // SMPTE RP 145-1994 (SMPTE-C), 170M-1999 // SMPTE-C - Standard Phosphor (Rec.601 NTSC) // Standardized in 1982 (as CCIR Rec.601-1) after "Conrac Corp. & RCA" P22 phosphors (circa 1969) for consumer CRTs // ILLUMINANT: D65->[0.31266142,0.3289589] const mat3 SMPTE170M_ph = mat3( 0.630, 0.310, 0.155, 0.340, 0.595, 0.070, 0.030, 0.095, 0.775); // ITU-R BT.470/601 (B/G) // EBU Tech.3213 PAL - Standard Phosphor for Studio Monitors (also used in Sony BVMs and Higher-end PVMs) // ILLUMINANT: D65->[0.31266142,0.3289589] const mat3 SMPTE470BG_ph = mat3( 0.640, 0.290, 0.150, 0.330, 0.600, 0.060, 0.030, 0.110, 0.790); // NTSC-J P22 // Mix between averaging KV-20M20, KDS VS19, Dell D93, 4-TR-B09v1_0.pdf and Phosphor Handbook 'P22' // Phosphors based on 1975's EBU Tech.3123-E (formerly known as JEDEC-P22) // Typical P22 phosphors used in Japanese consumer CRTs with 9300K+27MPCD white point // ILLUMINANT: D93->[0.281000,0.311000] (CCT of 8945.436K) // ILLUMINANT: D97->[0.285000,0.285000] (CCT of 9696K) for Nanao MS-2930s series (around 10000.0K for wp_adjust() daylight fit) const mat3 P22_J_ph = mat3( 0.625, 0.280, 0.152, 0.350, 0.605, 0.062, 0.025, 0.115, 0.786); ////// P22 /////// // You can run any of these P22 primaries either through D65 or D93 indistinctly but typically these were D65 based. // P22_80 is roughly the same as the old P22 gamut in Grade 2020. P22 1979-1994 meta measurement. // ILLUMINANT: D65->[0.31266142,0.3289589] const mat3 P22_80s_ph = mat3( 0.6470, 0.2820, 0.1472, 0.3430, 0.6200, 0.0642, 0.0100, 0.0980, 0.7886); // P22 improved with tinted phosphors (Use this for NTSC-U 16-bits, and above for 8-bits) const mat3 P22_90s_ph = mat3( 0.6661, 0.3134, 0.1472, 0.3329, 0.6310, 0.0642, 0.0010, 0.0556, 0.7886); // RPTV (Rear Projection TV) for NTSC-U late 90s, early 00s const mat3 RPTV_95s_ph = mat3( 0.640, 0.341, 0.150, 0.335, 0.586, 0.070, 0.025, 0.073, 0.780); //*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/ //----------------------- Display Primaries ----------------------- // sRGB (IEC 61966-2-1) and ITU-R BT.709-6 (originally CCIR Rec.709) const mat3 sRGB_prims = mat3( 0.640, 0.300, 0.150, 0.330, 0.600, 0.060, 0.030, 0.100, 0.790); // Adobe RGB (1998) const mat3 Adobe_prims = mat3( 0.640, 0.210, 0.150, 0.330, 0.710, 0.060, 0.030, 0.080, 0.790); // BT-2020/BT-2100 (from 630nm, 532nm and 467nm) const mat3 rec2020_prims = mat3( 0.707917792, 0.170237195, 0.131370635, 0.292027109, 0.796518542, 0.045875976, 0.000055099, 0.033244263, 0.822753389); // SMPTE RP 432-2 (DCI-P3) const mat3 DCIP3_prims = mat3( 0.680, 0.265, 0.150, 0.320, 0.690, 0.060, 0.000, 0.045, 0.790); //*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/ void main() { // Retro Sega Systems: Genesis, 32x, CD and Saturn 2D had color palettes designed in TV levels to save on transformations. float lum_exp = (lum_fix == 1.0) ? (255.0/239.0) : 1.0; vec3 src = texture(Source, vTexCoord.xy).rgb * lum_exp; // Clipping Logic / Gamut Limiting bool NTSC_U = crtgamut < 2.0; vec2 UVmax = vec2(Quantize8(0.435812284313725), Quantize8(0.615857694117647)); vec2 Ymax = NTSC_U ? vec2(16.0, 235.0) : vec2(0.0, 235.0); // Assumes framebuffer in Rec.601 full range with baked gamma // Quantize to 8-bit to replicate CRT's circuit board arithmetics vec3 col = clamp(Quantize8_f3(r601_YUV(src, NTSC_U ? 1.0 : 0.0)), vec3(Ymax.x, -UVmax.x, -UVmax.y), \ vec3(Ymax.y, UVmax.x, UVmax.y))/255.0; // YUV Analogue Color Controls (HUE + Color Shift + Color Burst) float hue_radians = hue_degrees * M_PI; float hue = atan(col.z, col.y) + hue_radians; float chroma = sqrt(col.z * col.z + col.y * col.y); // Euclidean Distance col.y = (mod((chroma * cos(hue) + 1.0) + U_SHIFT, 2.0) - 1.0) * U_MUL; col.z = (mod((chroma * sin(hue) + 1.0) + V_SHIFT, 2.0) - 1.0) * V_MUL; // Back to R'G'B' full col = signal > 0.0 ? max(Quantize8_f3(YUV_r601(col.xyz, NTSC_U ? 1.0 : 0.0))/255.0, 0.0) : src; // CRT EOTF. To Display Referred Linear: Undo developer baked CRT gamma (from 2.40 at default 0.1 CRT black level, to 2.60 at 0.0 CRT black level) col = EOTF_1886a_f3(col, CRT_l, params.g_CRT_b, params.g_CRT_c); //_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ // \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \ // HUE vs HUE vec4 screen = vec4(max(col, 0.0), 1.0); // r g b alpha ; alpha does nothing for our purposes mat4 color = mat4(wlr, rg, rb, 0.0, //red tint gr, wlg, gb, 0.0, //green tint br, bg, wlb, 0.0, //blue tint blr/20., blg/20., blb/20., 0.0); //black tint screen *= transpose(color); // CRT Phosphor Gamut (0.0 is sRGB/noop) mat3 m_in; if (crtgamut == -3.0) { m_in = SMPTE170M_ph; } else if (crtgamut == -2.0) { m_in = RPTV_95s_ph; } else if (crtgamut == -1.0) { m_in = P22_80s_ph; } else if (crtgamut == 1.0) { m_in = P22_90s_ph; } else if (crtgamut == 2.0) { m_in = P22_J_ph; } else if (crtgamut == 3.0) { m_in = SMPTE470BG_ph; } else { m_in = sRGB_prims; } // Display color space mat3 m_ou; if (SPC == 1.0) { m_ou = DCIP3_prims; } else if (SPC == 2.0) { m_ou = rec2020_prims; } else if (SPC == 3.0) { m_ou = Adobe_prims; } else { m_ou = sRGB_prims; } // White Point Mapping col = wp_adjust(screen.rgb, global.wp_temperature, m_in, m_ou); // SAT + HUE vs SAT (in IPT space) vec3 coeff = RGB_to_XYZ_mat(m_in)[1]; vec3 src_h = RGB_to_XYZ(screen.rgb, m_in) * LMS; src_h.x = src_h.x >= 0.0 ? pow(src_h.x, 0.43) : -pow(-src_h.x, 0.43); src_h.y = src_h.y >= 0.0 ? pow(src_h.y, 0.43) : -pow(-src_h.y, 0.43); src_h.z = src_h.z >= 0.0 ? pow(src_h.z, 0.43) : -pow(-src_h.z, 0.43); src_h.xyz *= IPT; float hue_at = atan(src_h.z, src_h.y); chroma = sqrt(src_h.z * src_h.z + src_h.y * src_h.y); // red 320º green 220º blue 100º float hue_radians_r = 320.0 * M_PI; float hue_r = cos(hue_at + hue_radians_r); float hue_radians_g = 220.0 * M_PI; float hue_g = cos(hue_at + hue_radians_g); float hue_radians_b = 100.0 * M_PI; float hue_b = cos(hue_at + hue_radians_b); float msk = dot(clamp(vec3(hue_r, hue_g, hue_b) * chroma * 2.0, 0.0, 1.0), -vec3(satr, satg, satb)); src_h = mix(col, vec3(dot(coeff, col)), msk); float sat_msk = (vibr < 0.0) ? 1.0 - abs(SatMask(src_h.x, src_h.y, src_h.z) - 1.0) * abs(vibr) : \ 1.0 - (SatMask(src_h.x, src_h.y, src_h.z) * vibr) ; float sat = g_sat + 1.0; float msat = 1.0 - sat; float msatx = msat * coeff.x; float msaty = msat * coeff.y; float msatz = msat * coeff.z; mat3 adjust = mat3(msatx + sat, msatx , msatx , msaty , msaty + sat, msaty , msatz , msatz , msatz + sat); src_h = mix(src_h, adjust * src_h, clamp(sat_msk, 0.0, 1.0)); src_h *= vec3(beamr,beamg,beamb); // RGB 'Desaturate' Gamut Compression (by Jed Smith: https://github.com/jedypod/gamut-compress) coeff = RGB_to_XYZ_mat(m_ou)[1]; src_h = GCompress==1.0 ? clamp(GamutCompression(src_h, dot(coeff.xyz, src_h)), 0.0, 1.0) : clamp(src_h, 0.0, 1.0); // Sigmoidal Luma Contrast under 'Yxy' decorrelated model (in gamma space) vec3 Yxy = XYZtoYxy(RGB_to_XYZ(src_h, m_ou)); float toGamma = clamp(moncurve_r(Yxy.r, 2.40, 0.055), 0.0, 1.0); toGamma = (Yxy.r > 0.5) ? contrast_sigmoid_inv(toGamma, 2.3, 0.5) : toGamma; float sigmoid = (cntrst > 0.0) ? contrast_sigmoid(toGamma, cntrst, mid) : contrast_sigmoid_inv(toGamma, cntrst, mid); vec3 contrast = vec3(moncurve_f(sigmoid, 2.40, 0.055), Yxy.g, Yxy.b); vec3 XYZsrgb = XYZ_to_RGB(YxytoXYZ(contrast), m_ou); contrast = (cntrst == 0.0) ? src_h : XYZsrgb; // Lift + Gain -PP Digital Controls- (Could do in Yxy but performance reasons) src_h = clamp(rolled_gain_v3(contrast, clamp(lum, -0.49, 0.99)), 0.0, 1.0); src_h += (lift / 20.0) * (1.0 - contrast); // Vignetting (in linear space, so after EOTF^-1 it's power shaped; 0.5 thres converts to ~0.75) vec2 vpos = vTexCoord*(global.OriginalSize.xy/global.SourceSize.xy); vpos *= 1.0 - vpos.xy; float vig = vpos.x * vpos.y * vstr; vig = min(pow(vig, vpower), 1.0); vig = vig >= 0.5 ? smoothstep(0.0,1.0,vig) : vig; src_h *= (vignette == 1.0) ? vig : 1.0; // Dark to Dim adaptation OOTF; for 709, P3-D65 and 2020 float DtD = global.g_Dark_to_Dim > 0.0 ? 1.0/0.9811 : 1.0; // EOTF^-1 - Inverted Electro-Optical Transfer Function vec3 TRC = (SPC == 3.0) ? clamp(pow(src_h, vec3(1./ (563./256.))), 0., 1.) : \ (SPC == 0.0) ? moncurve_r_f3(src_h, 2.20 + 0.20, 0.0550) : \ clamp(pow( src_h, vec3(1./((2.20 + 0.20)*DtD))), 0., 1.) ; // External Flare for Surround Illuminant 2700K (Soft White) at F0 (Lambertian reflectance); defines offset thus also black lift vec3 Flare = 0.01 * (global.g_CRT_rf/5.0)*(0.049433*global.g_CRT_sl - 0.188367) * vec3(0.459993/0.410702,1.0,0.129305/0.410702); TRC = global.g_CRT_sl > 0.0 ? min(TRC+Flare,1.0) : TRC; FragColor = vec4(TRC, 1.0); }