#version 450 layout(push_constant) uniform Push { vec4 SourceSize; vec4 OriginalSize; vec4 OutputSize; uint FrameCount; float CURVATURE_toggle, CRTgamma, overscan_x, overscan_y, distance, radius, tiltangle_x, tiltangle_y, cornersize, cornersmooth; } params; #pragma parameter CURVATURE_toggle "Curvature Toggle" 1.0 0.0 1.0 1.0 #define CURVATURE bool(params.CURVATURE_toggle) // gamma of simulated CRT #pragma parameter CRTgamma "CRT Gamma" 2.4 1.0 4.0 0.05 #define CRTgamma params.CRTgamma // overscan (e.g. 1.02 for 2% overscan) #pragma parameter overscan_x "Overscan X" 1.0 0.0 2.0 0.01 #pragma parameter overscan_y "Overscan Y" 1.0 0.0 2.0 0.01 #define overscan vec2(params.overscan_x, params.overscan_y) #pragma parameter distance "Viewing Distance" 2.0 0.1 5.0 0.1 #define distance params.distance // radius of curvature #pragma parameter radius "Curvature Radius" 2.0 0.1 5.0 0.1 #define radius params.radius // tilt angle in radians // (behavior might be a bit wrong if both components are nonzero) #pragma parameter tiltangle_x "Tilt Angle X" 0.0 -1.0 1.0 0.05 #pragma parameter tiltangle_y "Tilt Angle Y" 0.0 -1.0 1.0 0.05 #define tiltangle vec2(params.tiltangle_x, params.tiltangle_y) + 0.001 // size of curved corners #pragma parameter cornersize "Corner Size" 0.02 0.0001 0.1 0.01 #define cornersize params.cornersize // border smoothness parameter // decrease if borders are too aliased #pragma parameter cornersmooth "Corner Smoothness" 800.0 0.8 2000.0 50.0 #define cornersmooth params.cornersmooth layout(std140, set = 0, binding = 0) uniform UBO { mat4 MVP; } global; #pragma stage vertex layout(location = 0) in vec4 Position; layout(location = 1) in vec2 TexCoord; layout(location = 0) out vec2 texCoord; layout(location = 1) out vec3 stretch; const vec2 aspect = vec2(1.0, 0.75); float d = distance; float R = radius; vec2 sinangle = sin(tiltangle); vec2 cosangle = cos(tiltangle); vec2 one; float mod_factor; vec2 ilfac; #define FIX(c) max(abs(c), 1e-5); float intersect(vec2 xy) { float A = dot(xy,xy)+d*d; float B = 2.0*(R*(dot(xy,sinangle)-d*cosangle.x*cosangle.y)-d*d); float C = d*d + 2.0*R*d*cosangle.x*cosangle.y; return (-B-sqrt(B*B-4.0*A*C))/(2.0*A); } vec2 bkwtrans(vec2 xy) { float c = intersect(xy); vec2 point = vec2(c)*xy; point -= vec2(-R)*sinangle; point /= vec2(R); vec2 tang = sinangle/cosangle; vec2 poc = point/cosangle; float A = dot(tang,tang)+1.0; float B = -2.0*dot(poc,tang); float C = dot(poc,poc)-1.0; float a = (-B+sqrt(B*B-4.0*A*C))/(2.0*A); vec2 uv = (point-a*sinangle)/cosangle; float r = R*acos(a); return uv*r/sin(r/R); } vec2 fwtrans(vec2 uv) { float r = FIX(sqrt(dot(uv,uv))); uv *= sin(r/R)/r; float x = 1.0-cos(r/R); float D = d/R + x*cosangle.x*cosangle.y+dot(uv,sinangle); return d*(uv*cosangle-x*sinangle)/D; } vec3 maxscale() { vec2 c = bkwtrans(-R * sinangle / (1.0 + R/d*cosangle.x*cosangle.y)); vec2 a = vec2(0.5,0.5)*aspect; vec2 lo = vec2(fwtrans(vec2(-a.x,c.y)).x, fwtrans(vec2(c.x,-a.y)).y)/aspect; vec2 hi = vec2(fwtrans(vec2(+a.x,c.y)).x, fwtrans(vec2(c.x,+a.y)).y)/aspect; return vec3((hi+lo)*aspect*0.5,max(hi.x-lo.x,hi.y-lo.y)); } void main() { gl_Position = global.MVP * Position; texCoord = TexCoord; stretch = maxscale(); } #pragma stage fragment layout(location = 0) in vec2 texCoord; layout(location = 1) in vec3 stretch; layout(location = 0) out vec4 FragColor; layout(set = 0, binding = 2) uniform sampler2D Source; // Comment the next line to disable interpolation in linear gamma (and gain speed). //#define LINEAR_PROCESSING // Enable 3x oversampling of the beam profile #define OVERSAMPLE // Use the older, purely gaussian beam profile //#define USEGAUSSIAN // gamma of display monitor (typically 2.2 is correct) #define monitorgamma 2.2 // aspect ratio const vec2 aspect = vec2(1.0, 0.75); // lengths are measured in units of (approximately) the width of the monitor // simulated distance from viewer to monitor float d = distance; float R = radius; vec2 sinangle = sin(tiltangle); vec2 cosangle = cos(tiltangle); #define one (params.SourceSize.zw) // Macros. #define FIX(c) max(abs(c), 1e-5); #define PI 3.141592653589 #ifdef LINEAR_PROCESSING # define TEX2D(c) pow(texture(Source, (c)), vec4(CRTgamma)) #else # define TEX2D(c) texture(Source, (c)) #endif #define FIX(c) max(abs(c), 1e-5); float intersect(vec2 xy) { float A = dot(xy,xy)+d*d; float B = 2.0*(R*(dot(xy,sinangle)-d*cosangle.x*cosangle.y)-d*d); float C = d*d + 2.0*R*d*cosangle.x*cosangle.y; return (-B-sqrt(B*B-4.0*A*C))/(2.0*A); } vec2 bkwtrans(vec2 xy) { float c = intersect(xy); vec2 point = vec2(c)*xy; point -= vec2(-R)*sinangle; point /= vec2(R); vec2 tang = sinangle/cosangle; vec2 poc = point/cosangle; float A = dot(tang,tang)+1.0; float B = -2.0*dot(poc,tang); float C = dot(poc,poc)-1.0; float a = (-B+sqrt(B*B-4.0*A*C))/(2.0*A); vec2 uv = (point-a*sinangle)/cosangle; float r = FIX(R*acos(a)); return uv*r/sin(r/R); } vec2 transform(vec2 coord) { coord = (coord-vec2(0.5))*aspect*stretch.z+stretch.xy; return (bkwtrans(coord)/overscan/aspect+vec2(0.5)); } float corner(vec2 coord) { coord = (coord - vec2(0.5)) * overscan + vec2(0.5); coord = min(coord, vec2(1.0)-coord) * aspect; vec2 cdist = vec2(cornersize); coord = (cdist - min(coord,cdist)); float dist = sqrt(dot(coord,coord)); return clamp((cdist.x-dist)*cornersmooth,0.0, 1.0); } // Calculate the influence of a scanline on the current pixel. // // 'dist' is the distance in texture coordinates from the current // pixel to the scanline in question. // 'color' is the colour of the scanline at the horizontal location of // the current pixel. vec4 scanlineWeights(float dist, vec4 color) { // "wid" controls the width of the scanline beam, for each RGB channel // The "weights" lines basically specify the formula that gives // you the profile of the beam, i.e. the intensity as // a function of distance from the vertical center of the // scanline. In this case, it is gaussian if width=2, and // becomes nongaussian for larger widths. Ideally this should // be normalized so that the integral across the beam is // independent of its width. That is, for a narrower beam // "weights" should have a higher peak at the center of the // scanline than for a wider beam. #ifdef USEGAUSSIAN vec4 wid = 0.3 + 0.1 * pow(color, vec4(3.0)); vec4 weights = vec4(dist / wid); return 0.4 * exp(-weights * weights) / wid; #else vec4 wid = 2.0 + 2.0 * pow(color, vec4(4.0)); vec4 weights = vec4(dist / 0.3); return 1.4 * exp(-pow(weights * inversesqrt(0.5 * wid), wid)) / (0.6 + 0.2 * wid); #endif } void main() { // Here's a helpful diagram to keep in mind while trying to // understand the code: // // | | | | | // ------------------------------- // | | | | | // | 01 | 11 | 21 | 31 | <-- current scanline // | | @ | | | // ------------------------------- // | | | | | // | 02 | 12 | 22 | 32 | <-- next scanline // | | | | | // ------------------------------- // | | | | | // // Each character-cell represents a pixel on the output // surface, "@" represents the current pixel (always somewhere // in the bottom half of the current scan-line, or the top-half // of the next scanline). The grid of lines represents the // edges of the texels of the underlying texture. // Texture coordinates of the texel containing the active pixel. vec2 xy = CURVATURE ? transform(texCoord) : texCoord; float cval = corner(xy); // Of all the pixels that are mapped onto the texel we are // currently rendering, which pixel are we currently rendering? vec2 ratio_scale = xy * params.SourceSize.xy - vec2(0.5); #ifdef OVERSAMPLE float filter_ = fwidth(ratio_scale.y); #endif vec2 uv_ratio = fract(ratio_scale); // Snap to the center of the underlying texel. xy = (floor(ratio_scale) + vec2(0.5)) / params.SourceSize.xy; // Calculate Lanczos scaling coefficients describing the effect // of various neighbour texels in a scanline on the current // pixel. vec4 coeffs = PI * vec4(1.0 + uv_ratio.x, uv_ratio.x, 1.0 - uv_ratio.x, 2.0 - uv_ratio.x); // Prevent division by zero. coeffs = FIX(coeffs); // Lanczos2 kernel. coeffs = 2.0 * sin(coeffs) * sin(coeffs / 2.0) / (coeffs * coeffs); // Normalize. coeffs /= dot(coeffs, vec4(1.0)); // Calculate the effective colour of the current and next // scanlines at the horizontal location of the current pixel, // using the Lanczos coefficients above. vec4 col = clamp(mat4( TEX2D(xy + vec2(-one.x, 0.0)), TEX2D(xy), TEX2D(xy + vec2(one.x, 0.0)), TEX2D(xy + vec2(2.0 * one.x, 0.0))) * coeffs, 0.0, 1.0); vec4 col2 = clamp(mat4( TEX2D(xy + vec2(-one.x, one.y)), TEX2D(xy + vec2(0.0, one.y)), TEX2D(xy + one), TEX2D(xy + vec2(2.0 * one.x, one.y))) * coeffs, 0.0, 1.0); #ifndef LINEAR_PROCESSING col = pow(col , vec4(CRTgamma)); col2 = pow(col2, vec4(CRTgamma)); #endif // Calculate the influence of the current and next scanlines on // the current pixel. vec4 weights = scanlineWeights(uv_ratio.y, col); vec4 weights2 = scanlineWeights(1.0 - uv_ratio.y, col2); #ifdef OVERSAMPLE uv_ratio.y =uv_ratio.y+1.0/3.0*filter_; weights = (weights+scanlineWeights(uv_ratio.y, col))/3.0; weights2=(weights2+scanlineWeights(abs(1.0-uv_ratio.y), col2))/3.0; uv_ratio.y =uv_ratio.y-2.0/3.0*filter_; weights=weights+scanlineWeights(abs(uv_ratio.y), col)/3.0; weights2=weights2+scanlineWeights(abs(1.0-uv_ratio.y), col2)/3.0; #endif vec3 mul_res = (col * weights + col2 * weights2).rgb * vec3(cval); // dot-mask emulation: // Output pixels are alternately tinted green and magenta. vec3 dotMaskWeights = mix( vec3(1.0, 0.7, 1.0), vec3(0.7, 1.0, 0.7), floor(mod(texCoord.x*params.OutputSize.x, 2.0)) ); mul_res *= dotMaskWeights; // Convert the image gamma for display on our output device. mul_res = pow(mul_res, vec3(1.0 / monitorgamma)); // Color the texel. FragColor = vec4(mul_res, 1.0); }