#version 450 /* Grade - CRT emulated color manipulation shader Copyright (C) 2020-2023 Dogway (Jose Linares) This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ layout(push_constant) uniform Push { float g_signal_type; float g_crtgamut; float g_space_out; float g_hue_degrees; float g_U_SHIFT; float g_V_SHIFT; float g_U_MUL; float g_V_MUL; float g_CRT_b; float g_CRT_c; float g_CRT_l; float g_lum_fix; float g_vstr; float g_vpower; float g_sat; float g_vibr; float g_lum; float g_cntrst; float g_mid; float g_lift; float blr; float blg; float blb; float wlr; float wlg; float wlb; float rg; float rb; float gr; float gb; float br; float bg; } params; layout(std140, set = 0, binding = 0) uniform UBO { mat4 MVP; vec4 SourceSize; vec4 OriginalSize; vec4 OutputSize; uint FrameCount; float g_vignette; float g_Dark_to_Dim; float wp_temperature; float g_CRT_br; float g_CRT_bg; float g_CRT_bb; float g_satr; float g_satg; float g_satb; } global; /* Grade (11-05-2023) > Ubershader grouping some monolithic color related shaders: ::color-mangler (hunterk), ntsc color tuning knobs (Doriphor), white_point (hunterk, Dogway), RA Reshade LUT. > and the addition of: ::analogue color emulation, phosphor gamut, color space + TRC support, vibrance, HUE vs SAT, vignette (shared by Syh), black level, rolled gain and sigmoidal contrast. **Thanks to those that helped me out keep motivated by continuous feedback and bug reports: **Syh, Nesguy, hunterk, and the libretro forum members. ######################################...PRESETS...####################################### ########################################################################################## ### ### ### PAL ### ### Phosphor: 470BG (#3) ### ### WP: D65 (6504K) (in practice more like 7000K-7500K range) ### ### Saturation: -0.02 ### ### ### ### NTSC-U ### ### Phosphor: P22/SMPTE-C (#1 #-3)(or a SMPTE-C based CRT phosphor gamut) ### ### WP: D65 (6504K) (in practice more like 7000K-7500K range) ### ### ### ### NTSC-J (Default) ### ### Phosphor: NTSC-J (#2) (or a NTSC-J based CRT phosphor gamut) ### ### WP: 9300K+27MPCD (8945K) (CCT from x:0.281 y:0.311)(in practice ~8600K)### ### ### ### ### ########################################################################################## ########################################################################################## */ #pragma parameter g_signal_type "Signal Type (0:RGB 1:Composite)" 0.0 0.0 1.0 1.0 #pragma parameter g_crtgamut "Phosphor (-2:CRT-95s -1:P22-80s 1:P22-90s 2:NTSC-J 3:PAL)" 0.0 -3.0 3.0 1.0 #pragma parameter g_space_out "Diplay Color Space (-1:709 0:sRGB 1:DCI 2:2020 3:Adobe)" 0.0 -1.0 3.0 1.0 #pragma parameter g_Dark_to_Dim "Dark to Dim adaptation" 0.0 0.0 1.0 1.0 // Analogue controls #pragma parameter g_hue_degrees "CRT Hue" 0.0 -360.0 360.0 1.0 #pragma parameter g_U_SHIFT "CRT U Shift" 0.0 -0.2 0.2 0.01 #pragma parameter g_V_SHIFT "CRT V Shift" 0.0 -0.2 0.2 0.01 #pragma parameter g_U_MUL "CRT U Multiplier" 1.0 0.0 2.0 0.01 #pragma parameter g_V_MUL "CRT V Multiplier" 1.0 0.0 2.0 0.01 #pragma parameter g_CRT_l "CRT Gamma" 2.50 2.30 2.60 0.01 #pragma parameter g_CRT_b "CRT Brightness" 0.0 0.0 100.0 1.0 #pragma parameter g_CRT_c "CRT Contrast" 100.0 50.0 150.0 1.0 #pragma parameter g_CRT_br "CRT Beam Red" 1.0 0.0 1.2 0.01 #pragma parameter g_CRT_bg "CRT Beam Green" 1.0 0.0 1.2 0.01 #pragma parameter g_CRT_bb "CRT Beam Blue" 1.0 0.0 1.2 0.01 #pragma parameter g_vignette "Vignette Toggle" 0.0 0.0 1.0 1.0 #pragma parameter g_vstr "Vignette Strength" 40.0 0.0 50.0 1.0 #pragma parameter g_vpower "Vignette Power" 0.20 0.0 0.5 0.01 // Digital controls #pragma parameter g_lum_fix "Sega Luma Fix" 0.0 0.0 1.0 1.0 #pragma parameter g_lum "Brightness" 0.0 -0.5 1.0 0.01 #pragma parameter g_cntrst "Contrast" 0.0 -1.0 1.0 0.05 #pragma parameter g_mid "Contrast Pivot" 0.5 0.0 1.0 0.01 #pragma parameter wp_temperature "White Point" 6504.0 5004.0 12004.0 100.0 #pragma parameter g_sat "Saturation" 0.0 -1.0 1.0 0.01 #pragma parameter g_vibr "Dullness/Vibrance" 0.0 -1.0 1.0 0.05 #pragma parameter g_satr "Hue vs Sat Red" 0.0 -1.0 1.0 0.01 #pragma parameter g_satg "Hue vs Sat Green" 0.0 -1.0 1.0 0.01 #pragma parameter g_satb "Hue vs Sat Blue" 0.0 -1.0 1.0 0.01 #pragma parameter g_lift "Black Level" 0.0 -0.5 0.5 0.01 #pragma parameter blr "Black-Red Tint" 0.0 0.0 1.0 0.01 #pragma parameter blg "Black-Green Tint" 0.0 0.0 1.0 0.01 #pragma parameter blb "Black-Blue Tint" 0.0 0.0 1.0 0.01 #pragma parameter wlr "White-Red Tint" 1.0 0.0 2.0 0.01 #pragma parameter wlg "White-Green Tint" 1.0 0.0 2.0 0.01 #pragma parameter wlb "White-Blue Tint" 1.0 0.0 2.0 0.01 #pragma parameter rg "Red-Green Tint" 0.0 -1.0 1.0 0.005 #pragma parameter rb "Red-Blue Tint" 0.0 -1.0 1.0 0.005 #pragma parameter gr "Green-Red Tint" 0.0 -1.0 1.0 0.005 #pragma parameter gb "Green-Blue Tint" 0.0 -1.0 1.0 0.005 #pragma parameter br "Blue-Red Tint" 0.0 -1.0 1.0 0.005 #pragma parameter bg "Blue-Green Tint" 0.0 -1.0 1.0 0.005 #define M_PI 3.1415926535897932384626433832795/180.0 #define signal params.g_signal_type #define crtgamut params.g_crtgamut #define SPC params.g_space_out #define hue_degrees params.g_hue_degrees #define U_SHIFT params.g_U_SHIFT #define V_SHIFT params.g_V_SHIFT #define U_MUL params.g_U_MUL #define V_MUL params.g_V_MUL #define g_CRT_l -(100000.*log((72981.-500000./(3.*max(2.3,params.g_CRT_l)))/9058.))/945461. #define lum_fix params.g_lum_fix #define vignette global.g_vignette #define vstr params.g_vstr #define vpower params.g_vpower #define g_sat params.g_sat #define vibr params.g_vibr #define beamr global.g_CRT_br #define beamg global.g_CRT_bg #define beamb global.g_CRT_bb #define satr global.g_satr #define satg global.g_satg #define satb global.g_satb #define lum params.g_lum #define cntrst params.g_cntrst #define mid params.g_mid #define lift params.g_lift #define blr params.blr #define blg params.blg #define blb params.blb #define wlr params.wlr #define wlg params.wlg #define wlb params.wlb #define rg params.rg #define rb params.rb #define gr params.gr #define gb params.gb #define br params.br #define bg params.bg #pragma stage vertex layout(location = 0) in vec4 Position; layout(location = 1) in vec2 TexCoord; layout(location = 0) out vec2 vTexCoord; void main() { gl_Position = global.MVP * Position; vTexCoord = TexCoord; } #pragma stage fragment layout(location = 0) in vec2 vTexCoord; layout(location = 0) out vec4 FragColor; layout(set = 0, binding = 2) uniform sampler2D Source; ///////////////////////// Color Space Transformations ////////////////////////// // 'D65' based mat3 RGB_to_XYZ_mat(mat3 primaries) { vec3 RW = vec3(0.950457397565471, 1., 1.089436035930324); vec3 T = RW * inverse(primaries); mat3 TB = mat3( T.x, 0, 0, 0, T.y, 0, 0, 0, T.z); return TB * primaries; } vec3 RGB_to_XYZ(vec3 RGB, mat3 primaries) { return RGB * RGB_to_XYZ_mat(primaries); } vec3 XYZ_to_RGB(vec3 XYZ, mat3 primaries) { return XYZ * inverse(RGB_to_XYZ_mat(primaries)); } vec3 XYZtoYxy(vec3 XYZ) { float XYZrgb = XYZ.r+XYZ.g+XYZ.b; float Yxyg = (XYZrgb <= 0.0) ? 0.3805 : XYZ.r / XYZrgb; float Yxyb = (XYZrgb <= 0.0) ? 0.3769 : XYZ.g / XYZrgb; return vec3(XYZ.g, Yxyg, Yxyb); } vec3 YxytoXYZ(vec3 Yxy) { float Xs = Yxy.r * (Yxy.g/Yxy.b); float Xsz = (Yxy.r <= 0.0) ? 0.0 : 1.0; vec3 XYZ = vec3(Xsz,Xsz,Xsz) * vec3(Xs, Yxy.r, (Xs/Yxy.g)-Xs-Yxy.r); return XYZ; } ///////////////////////// White Point Mapping ///////////////////////// // // // PAL: D65 NTSC-U: D65 NTSC-J: CCT NTSC-J // PAL: 6503.512K NTSC-U: 6503.512K NTSC-J: ~8945.436K // [x:0.31266142 y:0.3289589] [x:0.281 y:0.311] // For NTSC-J there's not a common agreed value, measured consumer units span from 8229.87K to 8945.623K with accounts for 8800K as well. // Recently it's been standardized to 9300K which is closer to what master monitors (and not consumer units) were (x=0.2838 y=0.2984) (~9177.98K) // "RGB to XYZ -> Temperature -> XYZ to RGB" joint matrix vec3 wp_adjust(vec3 RGB, float temperature, mat3 primaries, mat3 display) { float temp3 = 1000. / temperature; float temp6 = 1000000. / pow(temperature, 2.); float temp9 = 1000000000. / pow(temperature, 3.); vec3 wp = vec3(1.); wp.x = (temperature < 5500.) ? 0.244058 + 0.0989971 * temp3 + 2.96545 * temp6 - 4.59673 * temp9 : \ (temperature < 8000.) ? 0.200033 + 0.9545630 * temp3 - 2.53169 * temp6 + 7.08578 * temp9 : \ 0.237045 + 0.2437440 * temp3 + 1.94062 * temp6 - 2.11004 * temp9 ; wp.y = -0.275275 + 2.87396 * wp.x - 3.02034 * pow(wp.x,2) + 0.0297408 * pow(wp.x,3); wp.z = 1. - wp.x - wp.y; vec3 RW = vec3(0.950457397565471, 1., 1.089436035930324); // D65 Reference White const mat3 CAT16 = mat3( 0.401288,-0.250268, -0.002079, 0.650173, 1.204414, 0.048952, -0.051461, 0.045854, 0.953127); vec3 VKV = (vec3(wp.x/wp.y,1.,wp.z/wp.y) * CAT16) / (RW * CAT16); mat3 VK = mat3( VKV.x, 0.0, 0.0, 0.0, VKV.y, 0.0, 0.0, 0.0, VKV.z); mat3 CAM = CAT16 * (VK * inverse(CAT16)); mat3 mata = RGB_to_XYZ_mat(primaries); mat3 matb = RGB_to_XYZ_mat(display); return RGB.rgb * ((mata * CAM) * inverse(matb)); } //////////////////////////////////////////////////////////////////////////////// // CRT EOTF Function //---------------------------------------------------------------------- float EOTF_1886a(float color, float bl, float brightness, float contrast) { // Defaults: // Black Level = 0.1 // Brightness = 0 // Contrast = 100 float wl = 100.0; float b = pow(bl, 1/2.4); float a = pow(wl, 1/2.4)-b; b = brightness>0 ? (brightness/286.+b/a) : b/a; a = contrast!=100 ? contrast/100. : 1; float Vc = 0.35; // Offset float Lw = wl/100. * a; // White level float Lb = clamp(b * a,0.01,Vc); // Black level float a1 = 2.6; // Shoulder gamma float a2 = 3.0; // Knee gamma float k = Lw /pow(1 + Lb, a1); float sl = k * pow(Vc + Lb, a1-a2); // Slope for knee gamma color = color >= Vc ? k * pow(color + Lb, a1 ) : sl * pow(color + Lb, a2 ); return color; } vec3 EOTF_1886a_f3( vec3 color, float BlackLevel, float brightness, float contrast) { color.r = EOTF_1886a( color.r, BlackLevel, brightness, contrast); color.g = EOTF_1886a( color.g, BlackLevel, brightness, contrast); color.b = EOTF_1886a( color.b, BlackLevel, brightness, contrast); return color.rgb; } // Monitor Curve Functions: https://github.com/ampas/aces-dev //---------------------------------------------------------------------- float moncurve_f( float color, float gamma, float offs) { // Forward monitor curve color = clamp(color, 0.0, 1.0); float fs = (( gamma - 1.0) / offs) * pow( offs * gamma / ( ( gamma - 1.0) * ( 1.0 + offs)), gamma); float xb = offs / ( gamma - 1.0); color = ( color > xb) ? pow( ( color + offs) / ( 1.0 + offs), gamma) : color * fs; return color; } vec3 moncurve_f_f3( vec3 color, float gamma, float offs) { color.r = moncurve_f( color.r, gamma, offs); color.g = moncurve_f( color.g, gamma, offs); color.b = moncurve_f( color.b, gamma, offs); return color.rgb; } float moncurve_r( float color, float gamma, float offs) { // Reverse monitor curve color = clamp(color, 0.0, 1.0); float yb = pow( offs * gamma / ( ( gamma - 1.0) * ( 1.0 + offs)), gamma); float rs = pow( ( gamma - 1.0) / offs, gamma - 1.0) * pow( ( 1.0 + offs) / gamma, gamma); color = ( color > yb) ? ( 1.0 + offs) * pow( color, 1.0 / gamma) - offs : color * rs; return color; } vec3 moncurve_r_f3( vec3 color, float gamma, float offs) { color.r = moncurve_r( color.r, gamma, offs); color.g = moncurve_r( color.g, gamma, offs); color.b = moncurve_r( color.b, gamma, offs); return color.rgb; } //-------------------------- Luma Functions ---------------------------- // Performs better in gamma encoded space float contrast_sigmoid(float color, float cont, float pivot){ cont = pow(cont + 1., 3.); float knee = 1. / (1. + exp(cont * pivot)); float shldr = 1. / (1. + exp(cont * (pivot - 1.))); color =(1. / (1. + exp(cont * (pivot - color))) - knee) / (shldr - knee); return color; } // Performs better in gamma encoded space float contrast_sigmoid_inv(float color, float cont, float pivot){ cont = pow(cont - 1., 3.); float knee = 1. / (1. + exp (cont * pivot)); float shldr = 1. / (1. + exp (cont * (pivot - 1.))); color = pivot - log(1. / (color * (shldr - knee) + knee) - 1.) / cont; return color; } float rolled_gain(float color, float gain){ float gx = abs(gain) + 0.001; float anch = (gain > 0.0) ? 0.5 / (gx / 2.0) : 0.5 / gx; color = (gain > 0.0) ? color * ((color - anch) / (1 - anch)) : color * ((1 - anch) / (color - anch)) * (1 - gain); return color; } vec3 rolled_gain_v3(vec3 color, float gain){ color.r = rolled_gain(color.r, gain); color.g = rolled_gain(color.g, gain); color.b = rolled_gain(color.b, gain); return color.rgb; } float SatMask(float color_r, float color_g, float color_b) { float max_rgb = max(color_r, max(color_g, color_b)); float min_rgb = min(color_r, min(color_g, color_b)); float msk = clamp((max_rgb - min_rgb) / (max_rgb + min_rgb), 0.0, 1.0); return msk; } //---------------------- Range Expansion/Compression ------------------- // 0-235 YUV PAL // 0-235 YUV NTSC-J // 16-235 YUV NTSC // to Studio Swing/Broadcast Safe/SMPTE legal/Limited Range vec3 PCtoTV(vec3 col, float luma_swing, float Umax, float Vmax, float max_swing) { col *= 255.; vec2 UVmax = (max_swing == 1.0) ? vec2(Umax,Vmax) * 224. : vec2(Umax,Vmax) * 239.; col.x = (luma_swing == 1.0) ? ((col.x * 219.) / 255.) + 16. : col.x; col.yz = (((col.yz - 128.) * (UVmax * 2.)) / 255.) + UVmax; return col.xyz / 255.; } // to Full Swing/Full Range vec3 TVtoPC(vec3 col, float luma_swing, float Umax, float Vmax, float max_swing) { col *= 255.; vec2 UVmax = (max_swing == 1.0) ? vec2(Umax,Vmax) * 224. : vec2(Umax,Vmax) * 239.; col.x = (luma_swing == 1.0) ? ((col.x - 16.) / 219.) * 255. : col.x; col.yz = (((col.yz - UVmax) / (UVmax * 2.)) * 255.) + 128.; return col.xyz / 255.; } //*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/ // Matrices in OpenGL column-major //----------------------- Y'UV color model ----------------------- // Bymax 0.885515 // Rymax 0.701088 // R'G'B' full range to Decorrelated Intermediate (Y,B-Y,R-Y) // Rows should sum to 0, except first one which sums 1 const mat3 YByRy = mat3( 0.298912, 0.586603, 0.114485, -0.298912,-0.586603, 0.885515, 0.701088,-0.586603,-0.114485); // Umax 0.435812284313725 // Vmax 0.615857694117647 // YUV is defined with headroom and footroom (TV range), // we need to limit the excursion to 16-235. // This is still R'G'B' full to YUV full though vec3 r601_YUV(vec3 RGB) { float sclU = ((0.5*(235-16)+16)/255.); // This yields Luma grey at around 0.49216 or 125.5 in 8-bit float sclV = (240-16) /255. ; // This yields Chroma range at around 0.87843 or 224 in 8-bit mat3 conv_mat = mat3( vec3(YByRy[0]), vec3(sclU) * vec3(YByRy[1]), vec3(sclV) * vec3(YByRy[2])); // -0.147111592156863 -0.288700692156863 0.435812284313725 // 0.615857694117647 -0.515290478431373 -0.100567215686275 return RGB.rgb * conv_mat; } vec3 YUV_r601(vec3 YUV) { mat3 conv_mat = mat3( 1.0000000, -0.000000029378826483, 1.1383928060531616, 1.0000000, -0.396552562713623050, -0.5800843834877014, 1.0000000, 2.031872510910034000, 0.0000000000000000); return YUV.xyz * conv_mat; } //------------------------- LMS -------------------------- // Hunt-Pointer-Estevez D65 cone response // modification for IPT model const mat3 LMS = mat3( 0.4002, 0.7075, -0.0807, -0.2280, 1.1500, 0.0612, 0.0000, 0.0000, 0.9184); const mat3 IPT = mat3( 0.4000, 0.4000, 0.2000, 4.4550, -4.8510, 0.3960, 0.8056, 0.3572, -1.1628); //*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/ //----------------------- Phosphor Gamuts ----------------------- ////// STANDARDS /////// // SMPTE RP 145-1994 (SMPTE-C), 170M-1999 // SMPTE-C - Standard Phosphor (Rec.601 NTSC) // ILLUMINANT: D65->[0.31266142,0.3289589] const mat3 SMPTE170M_ph = mat3( 0.630, 0.310, 0.155, 0.340, 0.595, 0.070, 0.030, 0.095, 0.775); // ITU-R BT.470/601 (B/G) // EBU Tech.3213 PAL - Standard Phosphor for Studio Monitors // ILLUMINANT: D65->[0.31266142,0.3289589] const mat3 SMPTE470BG_ph = mat3( 0.640, 0.290, 0.150, 0.330, 0.600, 0.060, 0.030, 0.110, 0.790); // NTSC-J P22 // Mix between averaging KV-20M20, KDS VS19, Dell D93, 4-TR-B09v1_0.pdf and Phosphor Handbook 'P22' // ILLUMINANT: D93->[0.281000,0.311000] (CCT of 8945.436K) // ILLUMINANT: D97->[0.285000,0.285000] (CCT of 9696K) for Nanao MS-2930s series const mat3 P22_J_ph = mat3( 0.625, 0.280, 0.152, 0.350, 0.605, 0.062, 0.025, 0.115, 0.786); ////// P22 /////// // You can run any of these P22 primaries either through D65 or D93 indistinctly but typically these were D65 based. // P22_80 is roughly the same as the old P22 gamut in Grade 2020. P22 1979-1994 meta measurement. // ILLUMINANT: D65->[0.31266142,0.3289589] const mat3 P22_80s_ph = mat3( 0.6470, 0.2820, 0.1472, 0.3430, 0.6200, 0.0642, 0.0100, 0.0980, 0.7886); // P22 improved with tinted phosphors (Use this for NTSC-U 16-bits, and above for 8-bits) const mat3 P22_90s_ph = mat3( 0.6661, 0.3134, 0.1472, 0.3329, 0.6310, 0.0642, 0.0010, 0.0556, 0.7886); // CRT for Projection Tubes for NTSC-U late 90s, early 00s const mat3 CRT_95s_ph = mat3( 0.640, 0.341, 0.150, 0.335, 0.586, 0.070, 0.025, 0.073, 0.780); //*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/ //----------------------- Display Primaries ----------------------- // sRGB (IEC 61966-2-1) and ITU-R BT.709-6 (originally CCIR Rec.709) const mat3 sRGB_prims = mat3( 0.640, 0.300, 0.150, 0.330, 0.600, 0.060, 0.030, 0.100, 0.790); // Adobe RGB (1998) const mat3 Adobe_prims = mat3( 0.640, 0.210, 0.150, 0.330, 0.710, 0.060, 0.030, 0.080, 0.790); // BT-2020/BT-2100 (from 630nm, 532nm and 467nm) const mat3 rec2020_prims = mat3( 0.707917792, 0.170237195, 0.131370635, 0.292027109, 0.796518542, 0.045875976, 0.000055099, 0.033244263, 0.822753389); // SMPTE RP 432-2 (DCI-P3) const mat3 DCIP3_prims = mat3( 0.680, 0.265, 0.150, 0.320, 0.690, 0.060, 0.000, 0.045, 0.790); //*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/ void main() { // Retro Sega Systems: Genesis, 32x, CD and Saturn 2D had color palettes designed in TV levels to save on transformations. float lum_exp = (lum_fix == 1.0) ? (255./239.) : 1.; vec3 src = texture(Source, vTexCoord.xy).rgb * lum_exp; // Clipping Logic / Gamut Limiting vec2 UVmax = vec2(0.435812284313725, 0.615857694117647); // Assumes framebuffer in Rec.601 full range with baked gamma vec3 col = clamp(r601_YUV(src), vec3(0.0, -UVmax.x, -UVmax.y) , \ vec3(1.0, UVmax.x, UVmax.y)); col = crtgamut < 2.0 ? PCtoTV(col, 1.0, UVmax.x, UVmax.y, 1.0) : col; // YUV Analogue Color Controls (HUE + Color Shift + Color Burst) float hue_radians = hue_degrees * M_PI; float hue = atan(col.z, col.y) + hue_radians; float chroma = sqrt(col.z * col.z + col.y * col.y); col = vec3(col.x, chroma * cos(hue), chroma * sin(hue)); col.y = (mod((col.y + 1.0) + U_SHIFT, 2.0) - 1.0) * U_MUL; col.z = (mod((col.z + 1.0) + V_SHIFT, 2.0) - 1.0) * V_MUL; // Back to RGB col = crtgamut < 2.0 ? TVtoPC(col, 1.0, UVmax.x, UVmax.y, 1.0) : col; col = clamp(YUV_r601(col), 0., 1.); // CRT EOTF. To Display Referred Linear: Undo developer baked CRT gamma (from 2.40 at default 0.1 CRT black level, to 2.61 at 0.0 CRT black level) col = EOTF_1886a_f3(col, g_CRT_l, params.g_CRT_b, params.g_CRT_c); //_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ // \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \ // HUE vs HUE vec4 screen = vec4(max(col, 0.0), 1.0); // r g b alpha ; alpha does nothing for our purposes mat4 color = mat4(wlr, rg, rb, 0.0, //red tint gr, wlg, gb, 0.0, //green tint br, bg, wlb, 0.0, //blue tint blr/20., blg/20., blb/20., 0.0); //black tint screen *= transpose(color); // CRT Phosphor Gamut (0.0 is noop) mat3 m_in; if (crtgamut == -3.0) { m_in = SMPTE170M_ph; } else if (crtgamut == -2.0) { m_in = CRT_95s_ph; } else if (crtgamut == -1.0) { m_in = P22_80s_ph; } else if (crtgamut == 0.0) { m_in = sRGB_prims; } else if (crtgamut == 1.0) { m_in = P22_90s_ph; } else if (crtgamut == 2.0) { m_in = P22_J_ph; } else if (crtgamut == 3.0) { m_in = SMPTE470BG_ph; } m_in = (global.LUT1_toggle == 0.0) ? m_in : sRGB_prims; // Display color space mat3 m_ou; if (SPC == 1.0) { m_ou = DCIP3_prims; } else if (SPC == 2.0) { m_ou = rec2020_prims; } else if (SPC == 3.0) { m_ou = Adobe_prims; } else { m_ou = sRGB_prims; } // White Point Mapping col = wp_adjust(screen.rgb, global.wp_temperature, m_in, m_ou); // SAT + HUE vs SAT (in IPT space) vec3 coeff = RGB_to_XYZ_mat(m_in)[1]; vec3 src_h = RGB_to_XYZ(screen.rgb, m_in) * LMS; src_h.x = src_h.x >= 0.0 ? pow(src_h.x, 0.43) : -pow(-src_h.x, 0.43); src_h.y = src_h.y >= 0.0 ? pow(src_h.y, 0.43) : -pow(-src_h.y, 0.43); src_h.z = src_h.z >= 0.0 ? pow(src_h.z, 0.43) : -pow(-src_h.z, 0.43); src_h.xyz *= IPT; float hue_at = atan(src_h.z, src_h.y); chroma = sqrt(src_h.z * src_h.z + src_h.y * src_h.y); // red 320º green 220º blue 100º float hue_radians_r = 320.0 * M_PI; float hue_r = cos(hue_at + hue_radians_r); float hue_radians_g = 220.0 * M_PI; float hue_g = cos(hue_at + hue_radians_g); float hue_radians_b = 100.0 * M_PI; float hue_b = cos(hue_at + hue_radians_b); float msk = dot(clamp(vec3(hue_r, hue_g, hue_b) * chroma * 2, 0., 1.), -vec3(satr, satg, satb)); src_h = mix(col, vec3(dot(coeff, col)), msk); float sat_msk = (vibr < 0.0) ? 1.0 - abs(SatMask(src_h.x, src_h.y, src_h.z) - 1.0) * abs(vibr) : \ 1.0 - (SatMask(src_h.x, src_h.y, src_h.z) * vibr) ; float sat = g_sat + 1.0; float msat = 1.0 - sat; float msatx = msat * coeff.x; float msaty = msat * coeff.y; float msatz = msat * coeff.z; mat3 adjust = mat3(msatx + sat, msatx , msatx , msaty , msaty + sat, msaty , msatz , msatz , msatz + sat); src_h = mix(src_h, adjust * src_h, clamp(sat_msk, 0., 1.)); src_h = clamp(src_h*vec3(beamr,beamg,beamb),0.0,1.0); // Sigmoidal Luma Contrast under 'Yxy' decorrelated model (in gamma space) vec3 Yxy = XYZtoYxy(RGB_to_XYZ(src_h, m_ou)); float toGamma = clamp(moncurve_r(Yxy.r, 2.40, 0.055), 0., 1.); toGamma = (Yxy.r > 0.5) ? contrast_sigmoid_inv(toGamma, 2.3, 0.5) : toGamma; float sigmoid = (cntrst > 0.0) ? contrast_sigmoid(toGamma, cntrst, mid) : contrast_sigmoid_inv(toGamma, cntrst, mid); vec3 contrast = vec3(moncurve_f(sigmoid, 2.40, 0.055), Yxy.g, Yxy.b); vec3 XYZsrgb = XYZ_to_RGB(YxytoXYZ(contrast), m_ou); contrast = (cntrst == 0.0) ? src_h : XYZsrgb; // Lift + Gain -PP Digital Controls- (Could do in Yxy but performance reasons) src_h = clamp(rolled_gain_v3(contrast, clamp(lum, -0.49, 0.99)), 0., 1.); src_h += (lift / 20.0) * (1.0 - contrast); // Vignetting & Black Level (in linear space, so after EOTF^-1 it's power shaped; 0.5 thres converts to ~0.75) vec2 vpos = vTexCoord*(global.OriginalSize.xy/global.SourceSize.xy); vpos *= 1.0 - vpos.xy; float vig = vpos.x * vpos.y * vstr; vig = min(pow(vig, vpower), 1.0); vig = vig >= 0.5 ? smoothstep(0,1,vig) : vig; src_h *= (vignette == 1.0) ? vig : 1.0; // Dark to Dim adaptation OOTF; only for 709 and 2020 vec3 src_D = global.g_Dark_to_Dim > 0.0 ? pow(src_h,vec3(0.9811)) : src_h; // EOTF^-1 - Inverted Electro-Optical Transfer Function vec3 TRC = (SPC == 3.0) ? clamp(pow(src_h, vec3(1./(563./256.))), 0., 1.) : \ (SPC == 2.0) ? moncurve_r_f3(src_D, 2.20 + 0.022222, 0.0993) : \ (SPC == 1.0) ? clamp(pow(src_h, vec3(1./(2.20 + 0.40))), 0., 1.) : \ (SPC == 0.0) ? moncurve_r_f3(src_h, 2.20 + 0.20, 0.0550) : \ clamp(pow( src_D, vec3(1./(2.20 + 0.20))), 0., 1.) ; FragColor = vec4(TRC, 1.0); }