/* A collection of CRT mask effects that work with LCD subpixel structures for small details author: hunterk license: public domain How to use it: Multiply your image by the vec3 output: FragColor.rgb *= mask_weights(gl_FragCoord.xy, 1.0, 1); In the vec3 version, the alpha channel stores the number of lit subpixels per pixel for use in brightness-loss compensation efforts. The function needs to be tiled across the screen using the physical pixels, e.g. gl_FragCoord (the "vec2 coord" input). In the case of slang shaders, we use (vTexCoord.st * OutputSize.xy). The "mask_intensity" (float value between 0.0 and 1.0) is how strong the mask effect should be. Full-strength red, green and blue subpixels on a white pixel are the ideal, and are achieved with an intensity of 1.0, though this darkens the image significantly and may not always be desirable. The "phosphor_layout" (int value between 0 and 19) determines which phophor layout to apply. 0 is no mask/passthru. Many of these mask arrays are adapted from cgwg's crt-geom-deluxe LUTs, and those have their filenames included for easy identification */ vec3 mask_weights(vec2 coord, float mask_intensity, int phosphor_layout){ vec3 weights = vec3(1.,1.,1.); float on = 1.; float off = 1.-mask_intensity; vec3 red = vec3(on, off, off); vec3 green = vec3(off, on, off); vec3 blue = vec3(off, off, on ); vec3 magenta = vec3(on, off, on ); vec3 yellow = vec3(on, on, off); vec3 cyan = vec3(off, on, on ); vec3 black = vec3(off, off, off); vec3 white = vec3(on, on, on ); int w, z = 0; // This pattern is used by a few layouts, so we'll define it here vec3 aperture_weights = mix(magenta, green, floor(mod(coord.x, 2.0))); if(phosphor_layout == 0) return weights; else if(phosphor_layout == 1){ // classic aperture for RGB panels; good for 1080p, too small for 4K+ // aka aperture_1_2_bgr weights = aperture_weights; return weights; } else if(phosphor_layout == 2){ // 2x2 shadow mask for RGB panels; good for 1080p, too small for 4K+ // aka delta_1_2x1_bgr vec3 inverse_aperture = mix(green, magenta, floor(mod(coord.x, 2.0))); weights = mix(aperture_weights, inverse_aperture, floor(mod(coord.y, 2.0))); return weights; } else if(phosphor_layout == 3){ // slot mask for RGB panels; looks okay at 1080p, looks better at 4K vec3 slotmask[3][4] = { {magenta, green, black, black}, {magenta, green, magenta, green}, {black, black, magenta, green} }; // find the vertical index w = int(floor(mod(coord.y, 3.0))); // find the horizontal index z = int(floor(mod(coord.x, 4.0))); // use the indexes to find which color to apply to the current pixel weights = slotmask[w][z]; return weights; } else if(phosphor_layout == 4){ // classic aperture for RBG panels; good for 1080p, too small for 4K+ weights = mix(yellow, blue, floor(mod(coord.x, 2.0))); return weights; } else if(phosphor_layout == 5){ // 2x2 shadow mask for RBG panels; good for 1080p, too small for 4K+ vec3 inverse_aperture = mix(blue, yellow, floor(mod(coord.x, 2.0))); weights = mix(mix(yellow, blue, floor(mod(coord.x, 2.0))), inverse_aperture, floor(mod(coord.y, 2.0))); return weights; } else if(phosphor_layout == 6){ // aperture_1_4_rgb; good for simulating lower vec3 ap4[4] = vec3[](red, green, blue, black); z = int(floor(mod(coord.x, 4.0))); weights = ap4[z]; return weights; } else if(phosphor_layout == 7){ // aperture_2_5_bgr vec3 ap3[5] = vec3[](red, magenta, blue, green, green); z = int(floor(mod(coord.x, 5.0))); weights = ap3[z]; return weights; } else if(phosphor_layout == 8){ // aperture_3_6_rgb vec3 big_ap[7] = vec3[](red, red, yellow, green, cyan, blue, blue); w = int(floor(mod(coord.x, 7.))); weights = big_ap[w]; return weights; } else if(phosphor_layout == 9){ // reduced TVL aperture for RGB panels // aperture_2_4_rgb vec3 big_ap_rgb[4] = vec3[](red, yellow, cyan, blue); w = int(floor(mod(coord.x, 4.))); weights = big_ap_rgb[w]; return weights; } else if(phosphor_layout == 10){ // reduced TVL aperture for RBG panels vec3 big_ap_rbg[4] = vec3[](red, magenta, cyan, green); w = int(floor(mod(coord.x, 4.))); weights = big_ap_rbg[w]; return weights; } else if(phosphor_layout == 11){ // delta_1_4x1_rgb; dunno why this is called 4x1 when it's obviously 4x2 /shrug vec3 delta1[2][4] = { {red, green, blue, black}, {blue, black, red, green} }; w = int(floor(mod(coord.y, 2.0))); z = int(floor(mod(coord.x, 4.0))); weights = delta1[w][z]; return weights; } else if(phosphor_layout == 12){ // delta_2_4x1_rgb vec3 delta[2][4] = { {red, yellow, cyan, blue}, {cyan, blue, red, yellow} }; w = int(floor(mod(coord.y, 2.0))); z = int(floor(mod(coord.x, 4.0))); weights = delta[w][z]; return weights; } else if(phosphor_layout == 13){ // delta_2_4x2_rgb vec3 delta[4][4] = { {red, yellow, cyan, blue}, {red, yellow, cyan, blue}, {cyan, blue, red, yellow}, {cyan, blue, red, yellow} }; w = int(floor(mod(coord.y, 4.0))); z = int(floor(mod(coord.x, 4.0))); weights = delta[w][z]; return weights; } else if(phosphor_layout == 14){ // slot mask for RGB panels; too low-pitch for 1080p, looks okay at 4K, but wants 8K+ vec3 slotmask[3][6] = { {magenta, green, black, black, black, black}, {magenta, green, black, magenta, green, black}, {black, black, black, magenta, green, black} }; w = int(floor(mod(coord.y, 3.0))); z = int(floor(mod(coord.x, 6.0))); weights = slotmask[w][z]; return weights; } else if(phosphor_layout == 15){ // slot_2_4x4_rgb vec3 slot2[4][8] = { {red, yellow, cyan, blue, red, yellow, cyan, blue }, {red, yellow, cyan, blue, black, black, black, black}, {red, yellow, cyan, blue, red, yellow, cyan, blue }, {black, black, black, black, red, yellow, cyan, blue } }; w = int(floor(mod(coord.y, 4.0))); z = int(floor(mod(coord.x, 8.0))); weights = slot2[w][z]; return weights; } else if(phosphor_layout == 16){ // slot mask for RBG panels; too low-pitch for 1080p, looks okay at 4K, but wants 8K+ vec3 slotmask[3][4] = { {yellow, blue, black, black}, {yellow, blue, yellow, blue}, {black, black, yellow, blue} }; w = int(floor(mod(coord.y, 3.0))); z = int(floor(mod(coord.x, 4.0))); weights = slotmask[w][z]; return weights; } else if(phosphor_layout == 17){ // slot_2_5x4_bgr vec3 slot2[4][10] = { {red, magenta, blue, green, green, red, magenta, blue, green, green}, {black, blue, blue, green, green, red, red, black, black, black}, {red, magenta, blue, green, green, red, magenta, blue, green, green}, {red, red, black, black, black, black, blue, blue, green, green} }; w = int(floor(mod(coord.y, 4.0))); z = int(floor(mod(coord.x, 10.0))); weights = slot2[w][z]; return weights; } else if(phosphor_layout == 18){ // same as above but for RBG panels vec3 slot2[4][10] = { {red, yellow, green, blue, blue, red, yellow, green, blue, blue }, {black, green, green, blue, blue, red, red, black, black, black}, {red, yellow, green, blue, blue, red, yellow, green, blue, blue }, {red, red, black, black, black, black, green, green, blue, blue } }; w = int(floor(mod(coord.y, 4.0))); z = int(floor(mod(coord.x, 10.0))); weights = slot2[w][z]; return weights; } else if(phosphor_layout == 19){ // slot_3_7x6_rgb vec3 slot[6][14] = { {red, red, yellow, green, cyan, blue, blue, red, red, yellow, green, cyan, blue, blue}, {red, red, yellow, green, cyan, blue, blue, red, red, yellow, green, cyan, blue, blue}, {red, red, yellow, green, cyan, blue, blue, black, black, black, black, black, black, black}, {red, red, yellow, green, cyan, blue, blue, red, red, yellow, green, cyan, blue, blue}, {red, red, yellow, green, cyan, blue, blue, red, red, yellow, green, cyan, blue, blue}, {black, black, black, black, black, black, black, black, red, red, yellow, green, cyan, blue} }; w = int(floor(mod(coord.y, 6.0))); z = int(floor(mod(coord.x, 14.0))); weights = slot[w][z]; return weights; } else if(phosphor_layout == 20){ // TATE slot mask for RGB layouts; this is not realistic obviously, but it looks nice and avoids chromatic aberration vec3 tatemask[4][4] = { {green, magenta, green, magenta}, {black, blue, green, red}, {green, magenta, green, magenta}, {green, red, black, blue} }; w = int(floor(mod(coord.y, 4.0))); z = int(floor(mod(coord.x, 4.0))); weights = tatemask[w][z]; return weights; } else return weights; } vec3 mask_weights_alpha(vec2 coord, float mask_intensity, int phosphor_layout, out float alpha){ vec3 weights = vec3(1.,1.,1.); float on = 1.; float off = 1.-mask_intensity; vec3 red = vec3(on, off, off);// 1 vec3 green = vec3(off, on, off);// 1 vec3 blue = vec3(off, off, on );// 1 vec3 magenta = vec3(on, off, on );// 2 vec3 yellow = vec3(on, on, off);// 2 vec3 cyan = vec3(off, on, on );// 2 vec3 black = vec3(off, off, off);// 0 vec3 white = vec3(on, on, on );// 3 int w, z = 0; alpha = 1.; // This pattern is used by a few layouts, so we'll define it here vec3 aperture_weights = mix(magenta, green, floor(mod(coord.x, 2.0))); if(phosphor_layout == 0) return weights; else if(phosphor_layout == 1){ // classic aperture for RGB panels; good for 1080p, too small for 4K+ // aka aperture_1_2_bgr weights.rgb = aperture_weights; alpha = 3./6.; return weights; } else if(phosphor_layout == 2){ // 2x2 shadow mask for RGB panels; good for 1080p, too small for 4K+ // aka delta_1_2x1_bgr vec3 inverse_aperture = mix(green, magenta, floor(mod(coord.x, 2.0))); weights = mix(aperture_weights, inverse_aperture, floor(mod(coord.y, 2.0))); alpha = 6./12.; return weights; } else if(phosphor_layout == 3){ // slot mask for RGB panels; looks okay at 1080p, looks better at 4K vec3 slotmask[3][4] = { {magenta, green, black, black}, {magenta, green, magenta, green}, {black, black, magenta, green} }; // find the vertical index w = int(floor(mod(coord.y, 3.0))); // find the horizontal index z = int(floor(mod(coord.x, 4.0))); // use the indexes to find which color to apply to the current pixel weights = slotmask[w][z]; alpha = 12./36.; return weights; } else if(phosphor_layout == 4){ // classic aperture for RBG panels; good for 1080p, too small for 4K+ weights = mix(yellow, blue, floor(mod(coord.x, 2.0))); alpha = 3./6.; return weights; } else if(phosphor_layout == 5){ // 2x2 shadow mask for RBG panels; good for 1080p, too small for 4K+ vec3 inverse_aperture = mix(blue, yellow, floor(mod(coord.x, 2.0))); weights = mix(mix(yellow, blue, floor(mod(coord.x, 2.0))), inverse_aperture, floor(mod(coord.y, 2.0))); alpha = 6./12.; return weights; } else if(phosphor_layout == 6){ // aperture_1_4_rgb; good for simulating lower vec3 ap4[4] = vec3[](red, green, blue, black); z = int(floor(mod(coord.x, 4.0))); weights = ap4[z]; alpha = 3./12.; return weights; } else if(phosphor_layout == 7){ // aperture_2_5_bgr vec3 ap3[5] = vec3[](red, magenta, blue, green, green); z = int(floor(mod(coord.x, 5.0))); weights = ap3[z]; alpha = 6./15.; return weights; } else if(phosphor_layout == 8){ // aperture_3_6_rgb vec3 big_ap[7] = vec3[](red, red, yellow, green, cyan, blue, blue); w = int(floor(mod(coord.x, 7.))); weights = big_ap[w]; alpha = 8./18.; return weights; } else if(phosphor_layout == 9){ // reduced TVL aperture for RGB panels // aperture_2_4_rgb vec3 big_ap_rgb[4] = vec3[](red, yellow, cyan, blue); w = int(floor(mod(coord.x, 4.))); weights = big_ap_rgb[w]; alpha = 6./12.; return weights; } else if(phosphor_layout == 10){ // reduced TVL aperture for RBG panels vec3 big_ap_rbg[4] = vec3[](red, magenta, cyan, green); w = int(floor(mod(coord.x, 4.))); weights = big_ap_rbg[w]; alpha = 6./12.; return weights; } else if(phosphor_layout == 11){ // delta_1_4x1_rgb; dunno why this is called 4x1 when it's obviously 4x2 /shrug vec3 delta1[2][4] = { {red, green, blue, black}, {blue, black, red, green} }; w = int(floor(mod(coord.y, 2.0))); z = int(floor(mod(coord.x, 4.0))); weights = delta1[w][z]; alpha = 6./24.; return weights; } else if(phosphor_layout == 12){ // delta_2_4x1_rgb vec3 delta[2][4] = { {red, yellow, cyan, blue}, {cyan, blue, red, yellow} }; w = int(floor(mod(coord.y, 2.0))); z = int(floor(mod(coord.x, 4.0))); weights = delta[w][z]; alpha = 12./24.; return weights; } else if(phosphor_layout == 13){ // delta_2_4x2_rgb vec3 delta[4][4] = { {red, yellow, cyan, blue}, {red, yellow, cyan, blue}, {cyan, blue, red, yellow}, {cyan, blue, red, yellow} }; w = int(floor(mod(coord.y, 4.0))); z = int(floor(mod(coord.x, 4.0))); weights = delta[w][z]; alpha = 24./48.; return weights; } else if(phosphor_layout == 14){ // slot mask for RGB panels; too low-pitch for 1080p, looks okay at 4K, but wants 8K+ vec3 slotmask[3][6] = { {magenta, green, black, black, black, black}, {magenta, green, black, magenta, green, black}, {black, black, black, magenta, green, black} }; w = int(floor(mod(coord.y, 3.0))); z = int(floor(mod(coord.x, 6.0))); weights = slotmask[w][z]; alpha = 12./54.; return weights; } else if(phosphor_layout == 15){ // slot_2_4x4_rgb vec3 slot2[4][8] = { {red, yellow, cyan, blue, red, yellow, cyan, blue }, {red, yellow, cyan, blue, black, black, black, black}, {red, yellow, cyan, blue, red, yellow, cyan, blue }, {black, black, black, black, red, yellow, cyan, blue } }; w = int(floor(mod(coord.y, 4.0))); z = int(floor(mod(coord.x, 8.0))); weights = slot2[w][z]; alpha = 36./96.; return weights; } else if(phosphor_layout == 16){ // slot mask for RBG panels; too low-pitch for 1080p, looks okay at 4K, but wants 8K+ vec3 slotmask[3][4] = { {yellow, blue, black, black}, {yellow, blue, yellow, blue}, {black, black, yellow, blue} }; w = int(floor(mod(coord.y, 3.0))); z = int(floor(mod(coord.x, 4.0))); weights = slotmask[w][z]; alpha = 14./36.; return weights; } else if(phosphor_layout == 17){ // slot_2_5x4_bgr vec3 slot2[4][10] = { {red, magenta, blue, green, green, red, magenta, blue, green, green}, {black, blue, blue, green, green, red, red, black, black, black}, {red, magenta, blue, green, green, red, magenta, blue, green, green}, {red, red, black, black, black, black, blue, blue, green, green} }; w = int(floor(mod(coord.y, 4.0))); z = int(floor(mod(coord.x, 10.0))); weights = slot2[w][z]; alpha = 36./120.; return weights; } else if(phosphor_layout == 18){ // same as above but for RBG panels vec3 slot2[4][10] = { {red, yellow, green, blue, blue, red, yellow, green, blue, blue }, {black, green, green, blue, blue, red, red, black, black, black}, {red, yellow, green, blue, blue, red, yellow, green, blue, blue }, {red, red, black, black, black, black, green, green, blue, blue } }; w = int(floor(mod(coord.y, 4.0))); z = int(floor(mod(coord.x, 10.0))); weights = slot2[w][z]; alpha = 36./120.; return weights; } else if(phosphor_layout == 19){ // slot_3_7x6_rgb vec3 slot[6][14] = { {red, red, yellow, green, cyan, blue, blue, red, red, yellow, green, cyan, blue, blue}, {red, red, yellow, green, cyan, blue, blue, red, red, yellow, green, cyan, blue, blue}, {red, red, yellow, green, cyan, blue, blue, black, black, black, black, black, black, black}, {red, red, yellow, green, cyan, blue, blue, red, red, yellow, green, cyan, blue, blue}, {red, red, yellow, green, cyan, blue, blue, red, red, yellow, green, cyan, blue, blue}, {black, black, black, black, black, black, black, black, red, red, yellow, green, cyan, blue} }; w = int(floor(mod(coord.y, 6.0))); z = int(floor(mod(coord.x, 14.0))); weights = slot[w][z]; alpha = 89./252.; // 49+(2*20) return weights; } else if(phosphor_layout == 20){ // TATE slot mask for RGB layouts; this is not realistic obviously, but it looks nice and avoids chromatic aberration vec3 tatemask[4][4] = { {green, magenta, green, magenta}, {black, blue, green, red}, {green, magenta, green, magenta}, {green, red, black, blue} }; w = int(floor(mod(coord.y, 4.0))); z = int(floor(mod(coord.x, 4.0))); weights = tatemask[w][z]; alpha = 18./48.; return weights; } else return weights; }