#version 450 /////////////////////////////////////////////////////////////////////////////// // // // GGGG IIIII AAA N N TTTTT PPPP AAA CCCC M M AAA N N // // G I A A NN N T P P A A C MM MM A A NN N // // G GG I AAAAA N N N T PPPP AAAAA C --- M M M AAAAA N N N // // G G I A A N NN T P A A C M M A A N NN // // GGGG IIIII A A N N T P A A CCCC M M A A N N // // // /////////////////////////////////////////////////////////////////////////////// layout(std140, set = 0, binding = 0) uniform UBO { mat4 MVP; vec4 OutputSize; vec4 OriginalSize; vec4 SourceSize; uint FrameCount; } global; #pragma stage vertex layout(location = 0) in vec4 Position; layout(location = 1) in vec2 TexCoord; layout(location = 0) out vec2 vTexCoord; const vec2 madd = vec2(0.5, 0.5); void main() { gl_Position = global.MVP * Position; vTexCoord = gl_Position.xy; } #pragma stage fragment layout(location = 0) in vec2 vTexCoord; layout(location = 0) out vec4 FragColor; float iGlobalTime = float(global.FrameCount)*0.025; vec2 iResolution = global.OutputSize.xy; // Parameters #define VOXEL_RESOLUTION 1.5 #define VOXEL_LIGHTING #define SHADOW #define GROUND #define GHOST //#define MOUSE #define HSV2RGB_FAST #define CAMERA_FOCAL_LENGTH 2.0 #define DELTA 0.01 #define RAY_LENGTH_MAX 500.0 #define RAY_STEP_MAX 100.0 #define AMBIENT 0.2 #define SPECULAR_POWER 2.0 #define SPECULAR_INTENSITY 0.3 #define SHADOW_LENGTH 150.0 #define SHADOW_POWER 3.0 #define FADE_POWER 1.0 #define BACKGROUND 0.7 #define GLOW 0.4 #define GAMMA 0.8 // Math constants #define PI 3.14159265359 #define SQRT3 1.73205080757 // Global variable to handle the glow effect float glowCounter; // PRNG (from https://www.shadertoy.com/view/4djSRW) float rand (in vec3 seed) { seed = fract (seed * vec3 (5.3983, 5.4427, 6.9371)); seed += dot (seed.yzx, seed.xyz + vec3 (21.5351, 14.3137, 15.3219)); return fract (seed.x * seed.y * seed.z * 95.4337); } // Distance to the voxel float distVoxel (in vec3 p) { // Update the glow counter ++glowCounter; // Rounded box const float voxelRadius = 0.25; return length (max (abs (p) - 0.5 + voxelRadius, 0.0)) - voxelRadius; } // Distance to the scene and color of the closest point vec2 distScene (in vec3 p, out vec3 P) { // Update the glow counter ++glowCounter; // Scaling p *= VOXEL_RESOLUTION; // Velocity, period of the waves, spacing of the gums float v = VOXEL_RESOLUTION * floor (iGlobalTime * 100.0 / VOXEL_RESOLUTION); const float k1 = 0.05; const float k2 = 60.0; // Giant Pac-Man float body = length (p); body = max (body - 32.0, 27.0 - body); float eyes = 6.0 - length (vec3 (abs (p.x) - 12.5, p.y - 19.5, p.z - 20.0)); float mouthAngle = PI * (0.07 + 0.07 * cos (2.0 * v * PI / k2)); float mouthTop = dot (p, vec3 (0.0, -cos (mouthAngle), sin (mouthAngle))) - 2.0; mouthAngle *= 2.5; float mouthBottom = dot (p, vec3 (0.0, cos (mouthAngle), sin (mouthAngle))); float pacMan = max (max (body, eyes), min (mouthTop, mouthBottom)); vec2 d = vec2 (pacMan, 0.13); P = p; // Gums vec3 q = vec3 (p.xy, mod (p.z + v, k2) - k2 * 0.5); float gum = max (length (q) - 6.0, -p.z); if (gum < d.x) { d = vec2 (gum, 0.35); P = q; } // Ground #ifdef GROUND q = vec3 (p.xy, p.z + v); float ground = (q.y + 50.0 + 14.0 * cos (q.x * k1) * cos (q.z * k1)) * 0.7; if (ground < d.x) { d = vec2 (ground, 0.55); P = q; } #endif // Ghost #ifdef GHOST v = VOXEL_RESOLUTION * floor ((130.0 + 60.0 * cos (iGlobalTime * 3.0)) / VOXEL_RESOLUTION); q = vec3 (p.xy, p.z + v); body = length (vec3 (q.x, max (q.y - 4.0, 0.0), q.z)); body = max (body - 28.0, 22.0 - body); eyes = 8.0 - length (vec3 (abs (q.x) - 12.0, q.y - 10.0, q.z - 22.0)); float bottom = (q.y + 28.0 + 4.0 * cos (p.x * 0.4) * cos (p.z * 0.4)) * 0.7; float ghost = max (max (body, eyes), -bottom); if (ghost < d.x) { d = vec2 (ghost, 0.76); P = q; } #endif // Scaling d.x /= VOXEL_RESOLUTION; return d; } // Distance to the (voxelized?) scene vec4 dist (inout vec3 p, in vec3 ray, in float voxelized, in float rayLengthMax) { vec3 P = p; vec2 d = vec2 (0.0, 0.0); float rayLength = 0.0; float rayLengthInVoxel = 0.0; float rayLengthCheckVoxel = 0.0; vec3 raySign = sign (ray); vec3 rayDeltaVoxel = raySign / ray; for (float rayStep = 0.0; rayStep < RAY_STEP_MAX; ++rayStep) { if (rayLength < rayLengthInVoxel) { d.x = distVoxel (fract (p + 0.5) - 0.5); if (d.x < DELTA) { break; } } else if (rayLength < rayLengthCheckVoxel) { vec3 rayDelta = (0.5 - raySign * (fract (p + 0.5) - 0.5)) * rayDeltaVoxel; float dNext = min (rayDelta.x, min (rayDelta.y, rayDelta.z)); d = distScene (floor (p + 0.5), P); if (d.x < 0.0) { rayDelta = rayDeltaVoxel - rayDelta; d.x = max (rayLengthInVoxel - rayLength, DELTA - min (rayDelta.x, min (rayDelta.y, rayDelta.z))); rayLengthInVoxel = rayLength + dNext; } else { d.x = DELTA + dNext; } } else { d = distScene (p, P); if (voxelized > 0.5) { if (d.x < SQRT3 * 0.5) { rayLengthCheckVoxel = rayLength + abs (d.x) + SQRT3 * 0.5; d.x = max (rayLengthInVoxel - rayLength + DELTA, d.x - SQRT3 * 0.5); } } else if (d.x < DELTA) { break; } } rayLength += d.x; if (rayLength > rayLengthMax) { break; } p += d.x * ray; } return vec4 (d, rayLength, rand (P)); } // Normal at a given point vec3 normal (in vec3 p, in float voxelized) { vec2 h = vec2 (DELTA, -DELTA); vec3 n; if (voxelized > 0.5) { p = fract (p + 0.5) - 0.5; n = h.xxx * distVoxel (p + h.xxx) + h.xyy * distVoxel (p + h.xyy) + h.yxy * distVoxel (p + h.yxy) + h.yyx * distVoxel (p + h.yyx); } else { n = h.xxx * distScene (p + h.xxx, n).x + h.xyy * distScene (p + h.xyy, n).x + h.yxy * distScene (p + h.yxy, n).x + h.yyx * distScene (p + h.yyx, n).x; } return normalize (n); } // HSV to RGB vec3 hsv2rgb (in vec3 hsv) { #ifdef HSV2RGB_SAFE hsv.yz = clamp (hsv.yz, 0.0, 1.0); #endif #ifdef HSV2RGB_FAST return hsv.z * (1.0 + 0.5 * hsv.y * (cos (2.0 * PI * (hsv.x + vec3 (0.0, 2.0 / 3.0, 1.0 / 3.0))) - 1.0)); #else return hsv.z * (1.0 + hsv.y * clamp (abs (fract (hsv.x + vec3 (0.0, 2.0 / 3.0, 1.0 / 3.0)) * 6.0 - 3.0) - 2.0, -1.0, 0.0)); #endif } // Main function void mainImage (out vec4 fragColor, in vec2 fragCoord) { // Get the fragment vec2 frag = (2.0 * fragCoord.xy - iResolution.xy) / iResolution.y; // Define the rendering mode float modeTiming = iGlobalTime * 0.234; float modeAngle = PI * cos (iGlobalTime * 0.2); modeAngle = dot (frag - vec2 (cos (iGlobalTime * 2.0), 0.0), vec2 (cos (modeAngle), sin (modeAngle))); float modeVoxel = step (0.5, fract (modeTiming / (4.0 * PI))); modeTiming = cos (modeTiming); float mode3D = smoothstep (0.8, 0.5, modeTiming); float modeSwitch = smoothstep (0.995, 1.0, modeTiming) + smoothstep (0.02, 0.0, abs (modeAngle)) * (1.0 - modeVoxel); modeVoxel += step (0.0, modeAngle) * (1.0 - modeVoxel); // Define the ray corresponding to this fragment vec3 ray = normalize (vec3 (frag, mix (8.0, CAMERA_FOCAL_LENGTH, mode3D))); // Compute the orientation of the camera float yawAngle = PI * (1.2 + 0.2 * cos (iGlobalTime * 0.5)); float pitchAngle = PI * (0.1 * cos (iGlobalTime * 0.3) - 0.05); #ifdef MOUSE yawAngle += 4.0 * PI * iMouse.x / iResolution.x; pitchAngle += PI * 0.3 * (1.0 - iMouse.y / iResolution.y); #endif yawAngle = mix (PI * 1.5, yawAngle, mode3D); pitchAngle *= mode3D; float cosYaw = cos (yawAngle); float sinYaw = sin (yawAngle); float cosPitch = cos (pitchAngle); float sinPitch = sin (pitchAngle); mat3 cameraOrientation; cameraOrientation [0] = vec3 (cosYaw, 0.0, -sinYaw); cameraOrientation [1] = vec3 (sinYaw * sinPitch, cosPitch, cosYaw * sinPitch); cameraOrientation [2] = vec3 (sinYaw * cosPitch, -sinPitch, cosYaw * cosPitch); ray = cameraOrientation * ray; // Compute the origin of the ray float cameraDist = mix (300.0, 95.0 + 50.0 * cos (iGlobalTime * 0.8), mode3D); vec3 origin = (vec3 (0.0, 0.0, 40.0 * sin (iGlobalTime * 0.2)) - cameraOrientation [2] * cameraDist) / VOXEL_RESOLUTION; // Compute the distance to the scene glowCounter = 0.0; vec4 d = dist (origin, ray, modeVoxel, RAY_LENGTH_MAX / VOXEL_RESOLUTION); // Set the background color vec3 finalColor = hsv2rgb (vec3 (0.2 * ray.y + 0.4 * modeVoxel - 0.37, 1.0, mode3D * BACKGROUND)); vec3 glowColor = GLOW * vec3 (1.0, 0.3, 0.0) * glowCounter / RAY_STEP_MAX; if (d.x < DELTA) { // Set the object color vec3 color = hsv2rgb (vec3 (d.y + 0.1 * d.w * modeVoxel, 0.5 + 0.5 * modeVoxel, 1.0)); // Lighting vec3 l = normalize (mix (vec3 (1.0, 0.0, 0.0), vec3 (1.25 + cos (iGlobalTime * 0.2), 1.0, 1.0), mode3D)); #ifdef VOXEL_LIGHTING if (modeVoxel > 0.5) { vec3 n = normal (floor (origin + 0.5), 0.0); float diffuse = max (0.0, dot (n, l)); float specular = pow (max (0.0, dot (reflect (ray, n), l)), SPECULAR_POWER) * SPECULAR_INTENSITY; color = (AMBIENT + diffuse) * color + specular; } #endif vec3 n = normal (origin, modeVoxel); float diffuse = dot (n, l); float specular; if (diffuse < 0.0) { diffuse = 0.0; specular = 0.0; } else { specular = pow (max (0.0, dot (reflect (ray, n), l)), SPECULAR_POWER) * SPECULAR_INTENSITY; #ifdef SHADOW origin += n * DELTA * 2.0; vec4 shadow = dist (origin, l, modeVoxel, SHADOW_LENGTH / VOXEL_RESOLUTION); if (shadow.x < DELTA) { shadow.z = pow (min (1.0, shadow.z * VOXEL_RESOLUTION / SHADOW_LENGTH), SHADOW_POWER); diffuse *= shadow.z; specular *= shadow.z; } #endif } color = (AMBIENT + diffuse) * color + specular; // Fading float fade = pow (max (0.0, 1.0 - d.z * VOXEL_RESOLUTION / RAY_LENGTH_MAX), FADE_POWER); finalColor = mix (finalColor, color, fade); } // Set the fragment color finalColor = mix (pow (finalColor, vec3 (GAMMA)) + glowColor, vec3 (1.0), modeSwitch); fragColor = vec4 (finalColor, 1.0); } void main(void) { //just some shit to wrap shadertoy's stuff vec2 FragCoord = vTexCoord.xy*global.OutputSize.xy; FragCoord.y = -FragCoord.y; mainImage(FragColor,FragCoord); }