/** * Copyright (C) 2013 Jorge Jimenez (jorge@iryoku.com) * Copyright (C) 2013 Jose I. Echevarria (joseignacioechevarria@gmail.com) * Copyright (C) 2013 Belen Masia (bmasia@unizar.es) * Copyright (C) 2013 Fernando Navarro (fernandn@microsoft.com) * Copyright (C) 2013 Diego Gutierrez (diegog@unizar.es) * * Permission is hereby granted, free of charge, to any person obtaining a copy * this software and associated documentation files (the "Software"), to deal in * the Software without restriction, including without limitation the rights to * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies * of the Software, and to permit persons to whom the Software is furnished to * do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. As clarification, there * is no requirement that the copyright notice and permission be included in * binary distributions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ //----------------------------------------------------------------------------- // Edge Detection Pixel Shaders (First Pass) /** * Luma Edge Detection * * IMPORTANT NOTICE: luma edge detection requires gamma-corrected colors, and * thus 'colorTex' should be a non-sRGB texture. */ float2 SMAALumaEdgeDetectionPS(float2 texcoord, float4 offset[3], SMAATexture2D(colorTex) #if SMAA_PREDICATION , SMAATexture2D(predicationTex) #endif ) { // Calculate the threshold: #if SMAA_PREDICATION float2 threshold = SMAACalculatePredicatedThreshold(texcoord, offset, SMAATexturePass2D(predicationTex)); #else float2 threshold = float2(SMAA_THRESHOLD, SMAA_THRESHOLD); #endif // Calculate lumas: float3 weights = float3(0.2126, 0.7152, 0.0722); float L = dot(SMAASamplePoint(colorTex, texcoord).rgb, weights); float Lleft = dot(SMAASamplePoint(colorTex, offset[0].xy).rgb, weights); float Ltop = dot(SMAASamplePoint(colorTex, offset[0].zw).rgb, weights); // We do the usual threshold: float4 delta; delta.xy = abs(L - float2(Lleft, Ltop)); float2 edges = step(threshold, delta.xy); // Then discard if there is no edge: if (dot(edges, float2(1.0, 1.0)) == 0.0) discard; // Calculate right and bottom deltas: float Lright = dot(SMAASamplePoint(colorTex, offset[1].xy).rgb, weights); float Lbottom = dot(SMAASamplePoint(colorTex, offset[1].zw).rgb, weights); delta.zw = abs(L - float2(Lright, Lbottom)); // Calculate the maximum delta in the direct neighborhood: float2 maxDelta = max(delta.xy, delta.zw); // Calculate left-left and top-top deltas: float Lleftleft = dot(SMAASamplePoint(colorTex, offset[2].xy).rgb, weights); float Ltoptop = dot(SMAASamplePoint(colorTex, offset[2].zw).rgb, weights); delta.zw = abs(float2(Lleft, Ltop) - float2(Lleftleft, Ltoptop)); // Calculate the final maximum delta: maxDelta = max(maxDelta.xy, delta.zw); float finalDelta = max(maxDelta.x, maxDelta.y); // Local contrast adaptation: edges.xy *= step(finalDelta, SMAA_LOCAL_CONTRAST_ADAPTATION_FACTOR * delta.xy); return edges; } /** * Color Edge Detection * * IMPORTANT NOTICE: color edge detection requires gamma-corrected colors, and * thus 'colorTex' should be a non-sRGB texture. */ float2 SMAAColorEdgeDetectionPS(float2 texcoord, float4 offset[3], SMAATexture2D(colorTex) #if SMAA_PREDICATION , SMAATexture2D(predicationTex) #endif ) { // Calculate the threshold: #if SMAA_PREDICATION float2 threshold = SMAACalculatePredicatedThreshold(texcoord, offset, predicationTex); #else float2 threshold = float2(SMAA_THRESHOLD, SMAA_THRESHOLD); #endif // Calculate color deltas: float4 delta; float3 C = SMAASamplePoint(colorTex, texcoord).rgb; float3 Cleft = SMAASamplePoint(colorTex, offset[0].xy).rgb; float3 t = abs(C - Cleft); delta.x = max(max(t.r, t.g), t.b); float3 Ctop = SMAASamplePoint(colorTex, offset[0].zw).rgb; t = abs(C - Ctop); delta.y = max(max(t.r, t.g), t.b); // We do the usual threshold: float2 edges = step(threshold, delta.xy); // Then discard if there is no edge: if (dot(edges, float2(1.0, 1.0)) == 0.0) discard; // Calculate right and bottom deltas: float3 Cright = SMAASamplePoint(colorTex, offset[1].xy).rgb; t = abs(C - Cright); delta.z = max(max(t.r, t.g), t.b); float3 Cbottom = SMAASamplePoint(colorTex, offset[1].zw).rgb; t = abs(C - Cbottom); delta.w = max(max(t.r, t.g), t.b); // Calculate the maximum delta in the direct neighborhood: float2 maxDelta = max(delta.xy, delta.zw); // Calculate left-left and top-top deltas: float3 Cleftleft = SMAASamplePoint(colorTex, offset[2].xy).rgb; t = abs(C - Cleftleft); delta.z = max(max(t.r, t.g), t.b); float3 Ctoptop = SMAASamplePoint(colorTex, offset[2].zw).rgb; t = abs(C - Ctoptop); delta.w = max(max(t.r, t.g), t.b); // Calculate the final maximum delta: maxDelta = max(maxDelta.xy, delta.zw); float finalDelta = max(maxDelta.x, maxDelta.y); // Local contrast adaptation: edges.xy *= step(finalDelta, SMAA_LOCAL_CONTRAST_ADAPTATION_FACTOR * delta.xy); return edges; } /** * Depth Edge Detection */ float2 SMAADepthEdgeDetectionPS(float2 texcoord, float4 offset[3], SMAATexture2D(depthTex)) { float3 neighbours = SMAAGatherNeighbours(texcoord, offset, SMAATexturePass2D(depthTex)); float2 delta = abs(neighbours.xx - float2(neighbours.y, neighbours.z)); float2 edges = step(SMAA_DEPTH_THRESHOLD, delta); if (dot(edges, float2(1.0, 1.0)) == 0.0) discard; return edges; } //----------------------------------------------------------------------------- // Diagonal Search Functions #if !defined(SMAA_DISABLE_DIAG_DETECTION) /** * Allows to decode two binary values from a bilinear-filtered access. */ float2 SMAADecodeDiagBilinearAccess(float2 e) { // Bilinear access for fetching 'e' have a 0.25 offset, and we are // interested in the R and G edges: // // +---G---+-------+ // | x o R x | // +-------+-------+ // // Then, if one of these edge is enabled: // Red: (0.75 * X + 0.25 * 1) => 0.25 or 1.0 // Green: (0.75 * 1 + 0.25 * X) => 0.75 or 1.0 // // This function will unpack the values (mad + mul + round): // wolframalpha.com: round(x * abs(5 * x - 5 * 0.75)) plot 0 to 1 e.r = e.r * abs(5.0 * e.r - 5.0 * 0.75); return round(e); } float4 SMAADecodeDiagBilinearAccess(float4 e) { e.rb = e.rb * abs(5.0 * e.rb - 5.0 * 0.75); return round(e); } /** * These functions allows to perform diagonal pattern searches. */ float2 SMAASearchDiag1(SMAATexture2D(edgesTex), float2 texcoord, float2 dir, out float2 e) { float4 coord = float4(texcoord, -1.0, 1.0); float3 t = float3(SMAA_RT_METRICS.xy, 1.0); while (coord.z < float(SMAA_MAX_SEARCH_STEPS_DIAG - 1) && coord.w > 0.9) { coord.xyz = mad(t, float3(dir, 1.0), coord.xyz); e = SMAASampleLevelZero(edgesTex, coord.xy).rg; coord.w = dot(e, float2(0.5, 0.5)); } return coord.zw; } float2 SMAASearchDiag2(SMAATexture2D(edgesTex), float2 texcoord, float2 dir, out float2 e) { float4 coord = float4(texcoord, -1.0, 1.0); coord.x += 0.25 * SMAA_RT_METRICS.x; // See @SearchDiag2Optimization float3 t = float3(SMAA_RT_METRICS.xy, 1.0); while (coord.z < float(SMAA_MAX_SEARCH_STEPS_DIAG - 1) && coord.w > 0.9) { coord.xyz = mad(t, float3(dir, 1.0), coord.xyz); // @SearchDiag2Optimization // Fetch both edges at once using bilinear filtering: e = SMAASampleLevelZero(edgesTex, coord.xy).rg; e = SMAADecodeDiagBilinearAccess(e); // Non-optimized version: // e.g = SMAASampleLevelZero(edgesTex, coord.xy).g; // e.r = SMAASampleLevelZeroOffset(edgesTex, coord.xy, int2(1, 0)).r; coord.w = dot(e, float2(0.5, 0.5)); } return coord.zw; } /** * Similar to SMAAArea, this calculates the area corresponding to a certain * diagonal distance and crossing edges 'e'. */ float2 SMAAAreaDiag(SMAATexture2D(areaTex), float2 dist, float2 e, float offset) { float2 texcoord = mad(float2(SMAA_AREATEX_MAX_DISTANCE_DIAG, SMAA_AREATEX_MAX_DISTANCE_DIAG), e, dist); // We do a scale and bias for mapping to texel space: texcoord = mad(SMAA_AREATEX_PIXEL_SIZE, texcoord, 0.5 * SMAA_AREATEX_PIXEL_SIZE); // Diagonal areas are on the second half of the texture: texcoord.x += 0.5; // Move to proper place, according to the subpixel offset: texcoord.y += SMAA_AREATEX_SUBTEX_SIZE * offset; // Do it! return SMAA_AREATEX_SELECT(SMAASampleLevelZero(areaTex, texcoord)); } /** * This searches for diagonal patterns and returns the corresponding weights. */ float2 SMAACalculateDiagWeights(SMAATexture2D(edgesTex), SMAATexture2D(areaTex), float2 texcoord, float2 e, float4 subsampleIndices) { float2 weights = float2(0.0, 0.0); // Search for the line ends: float4 d; float2 end; if (e.r > 0.0) { d.xz = SMAASearchDiag1(SMAATexturePass2D(edgesTex), texcoord, float2(-1.0, 1.0), end); d.x += float(end.y > 0.9); } else d.xz = float2(0.0, 0.0); d.yw = SMAASearchDiag1(SMAATexturePass2D(edgesTex), texcoord, float2(1.0, -1.0), end); SMAA_BRANCH if (d.x + d.y > 2.0) { // d.x + d.y + 1 > 3 // Fetch the crossing edges: float4 coords = mad(float4(-d.x + 0.25, d.x, d.y, -d.y - 0.25), SMAA_RT_METRICS.xyxy, texcoord.xyxy); float4 c; c.xy = SMAASampleLevelZeroOffset(edgesTex, coords.xy, int2(-1, 0)).rg; c.zw = SMAASampleLevelZeroOffset(edgesTex, coords.zw, int2( 1, 0)).rg; c.yxwz = SMAADecodeDiagBilinearAccess(c.xyzw); // Non-optimized version: // float4 coords = mad(float4(-d.x, d.x, d.y, -d.y), SMAA_RT_METRICS.xyxy, texcoord.xyxy); // float4 c; // c.x = SMAASampleLevelZeroOffset(edgesTex, coords.xy, int2(-1, 0)).g; // c.y = SMAASampleLevelZeroOffset(edgesTex, coords.xy, int2( 0, 0)).r; // c.z = SMAASampleLevelZeroOffset(edgesTex, coords.zw, int2( 1, 0)).g; // c.w = SMAASampleLevelZeroOffset(edgesTex, coords.zw, int2( 1, -1)).r; // Merge crossing edges at each side into a single value: float2 cc = mad(float2(2.0, 2.0), c.xz, c.yw); // Remove the crossing edge if we didn't found the end of the line: SMAAMovc(bool2(step(0.9, d.zw)), cc, float2(0.0, 0.0)); // Fetch the areas for this line: weights += SMAAAreaDiag(SMAATexturePass2D(areaTex), d.xy, cc, subsampleIndices.z); } // Search for the line ends: d.xz = SMAASearchDiag2(SMAATexturePass2D(edgesTex), texcoord, float2(-1.0, -1.0), end); if (SMAASampleLevelZeroOffset(edgesTex, texcoord, int2(1, 0)).r > 0.0) { d.yw = SMAASearchDiag2(SMAATexturePass2D(edgesTex), texcoord, float2(1.0, 1.0), end); d.y += float(end.y > 0.9); } else d.yw = float2(0.0, 0.0); SMAA_BRANCH if (d.x + d.y > 2.0) { // d.x + d.y + 1 > 3 // Fetch the crossing edges: float4 coords = mad(float4(-d.x, -d.x, d.y, d.y), SMAA_RT_METRICS.xyxy, texcoord.xyxy); float4 c; c.x = SMAASampleLevelZeroOffset(edgesTex, coords.xy, int2(-1, 0)).g; c.y = SMAASampleLevelZeroOffset(edgesTex, coords.xy, int2( 0, -1)).r; c.zw = SMAASampleLevelZeroOffset(edgesTex, coords.zw, int2( 1, 0)).gr; float2 cc = mad(float2(2.0, 2.0), c.xz, c.yw); // Remove the crossing edge if we didn't found the end of the line: SMAAMovc(bool2(step(0.9, d.zw)), cc, float2(0.0, 0.0)); // Fetch the areas for this line: weights += SMAAAreaDiag(SMAATexturePass2D(areaTex), d.xy, cc, subsampleIndices.w).gr; } return weights; } #endif //----------------------------------------------------------------------------- // Horizontal/Vertical Search Functions /** * This allows to determine how much length should we add in the last step * of the searches. It takes the bilinearly interpolated edge (see * @PSEUDO_GATHER4), and adds 0, 1 or 2, depending on which edges and * crossing edges are active. */ float SMAASearchLength(SMAATexture2D(searchTex), float2 e, float offset) { // The texture is flipped vertically, with left and right cases taking half // of the space horizontally: float2 scale = SMAA_SEARCHTEX_SIZE * float2(0.5, -1.0); float2 bias = SMAA_SEARCHTEX_SIZE * float2(offset, 1.0); // Scale and bias to access texel centers: scale += float2(-1.0, 1.0); bias += float2( 0.5, -0.5); // Convert from pixel coordinates to texcoords: // (We use SMAA_SEARCHTEX_PACKED_SIZE because the texture is cropped) scale *= 1.0 / SMAA_SEARCHTEX_PACKED_SIZE; bias *= 1.0 / SMAA_SEARCHTEX_PACKED_SIZE; // Lookup the search texture: return SMAA_SEARCHTEX_SELECT(SMAASampleLevelZero(searchTex, mad(scale, e, bias))); } /** * Horizontal/vertical search functions for the 2nd pass. */ float SMAASearchXLeft(SMAATexture2D(edgesTex), SMAATexture2D(searchTex), float2 texcoord, float end) { /** * @PSEUDO_GATHER4 * This texcoord has been offset by (-0.25, -0.125) in the vertex shader to * sample between edge, thus fetching four edges in a row. * Sampling with different offsets in each direction allows to disambiguate * which edges are active from the four fetched ones. */ float2 e = float2(0.0, 1.0); while (texcoord.x > end && e.g > 0.8281 && // Is there some edge not activated? e.r == 0.0) { // Or is there a crossing edge that breaks the line? e = SMAASampleLevelZero(edgesTex, texcoord).rg; texcoord = mad(-float2(2.0, 0.0), SMAA_RT_METRICS.xy, texcoord); } float offset = mad(-(255.0 / 127.0), SMAASearchLength(SMAATexturePass2D(searchTex), e, 0.0), 3.25); return mad(SMAA_RT_METRICS.x, offset, texcoord.x); // Non-optimized version: // We correct the previous (-0.25, -0.125) offset we applied: // texcoord.x += 0.25 * SMAA_RT_METRICS.x; // The searches are bias by 1, so adjust the coords accordingly: // texcoord.x += SMAA_RT_METRICS.x; // Disambiguate the length added by the last step: // texcoord.x += 2.0 * SMAA_RT_METRICS.x; // Undo last step // texcoord.x -= SMAA_RT_METRICS.x * (255.0 / 127.0) * SMAASearchLength(SMAATexturePass2D(searchTex), e, 0.0); // return mad(SMAA_RT_METRICS.x, offset, texcoord.x); } float SMAASearchXRight(SMAATexture2D(edgesTex), SMAATexture2D(searchTex), float2 texcoord, float end) { float2 e = float2(0.0, 1.0); while (texcoord.x < end && e.g > 0.8281 && // Is there some edge not activated? e.r == 0.0) { // Or is there a crossing edge that breaks the line? e = SMAASampleLevelZero(edgesTex, texcoord).rg; texcoord = mad(float2(2.0, 0.0), SMAA_RT_METRICS.xy, texcoord); } float offset = mad(-(255.0 / 127.0), SMAASearchLength(SMAATexturePass2D(searchTex), e, 0.5), 3.25); return mad(-SMAA_RT_METRICS.x, offset, texcoord.x); } float SMAASearchYUp(SMAATexture2D(edgesTex), SMAATexture2D(searchTex), float2 texcoord, float end) { float2 e = float2(1.0, 0.0); while (texcoord.y > end && e.r > 0.8281 && // Is there some edge not activated? e.g == 0.0) { // Or is there a crossing edge that breaks the line? e = SMAASampleLevelZero(edgesTex, texcoord).rg; texcoord = mad(-float2(0.0, 2.0), SMAA_RT_METRICS.xy, texcoord); } float offset = mad(-(255.0 / 127.0), SMAASearchLength(SMAATexturePass2D(searchTex), e.gr, 0.0), 3.25); return mad(SMAA_RT_METRICS.y, offset, texcoord.y); } float SMAASearchYDown(SMAATexture2D(edgesTex), SMAATexture2D(searchTex), float2 texcoord, float end) { float2 e = float2(1.0, 0.0); while (texcoord.y < end && e.r > 0.8281 && // Is there some edge not activated? e.g == 0.0) { // Or is there a crossing edge that breaks the line? e = SMAASampleLevelZero(edgesTex, texcoord).rg; texcoord = mad(float2(0.0, 2.0), SMAA_RT_METRICS.xy, texcoord); } float offset = mad(-(255.0 / 127.0), SMAASearchLength(SMAATexturePass2D(searchTex), e.gr, 0.5), 3.25); return mad(-SMAA_RT_METRICS.y, offset, texcoord.y); } /** * Ok, we have the distance and both crossing edges. So, what are the areas * at each side of current edge? */ float2 SMAAArea(SMAATexture2D(areaTex), float2 dist, float e1, float e2, float offset) { // Rounding prevents precision errors of bilinear filtering: float2 texcoord = mad(float2(SMAA_AREATEX_MAX_DISTANCE, SMAA_AREATEX_MAX_DISTANCE), round(4.0 * float2(e1, e2)), dist); // We do a scale and bias for mapping to texel space: texcoord = mad(SMAA_AREATEX_PIXEL_SIZE, texcoord, 0.5 * SMAA_AREATEX_PIXEL_SIZE); // Move to proper place, according to the subpixel offset: texcoord.y = mad(SMAA_AREATEX_SUBTEX_SIZE, offset, texcoord.y); // Do it! return SMAA_AREATEX_SELECT(SMAASampleLevelZero(areaTex, texcoord)); } //----------------------------------------------------------------------------- // Corner Detection Functions void SMAADetectHorizontalCornerPattern(SMAATexture2D(edgesTex), inout float2 weights, float4 texcoord, float2 d) { #if !defined(SMAA_DISABLE_CORNER_DETECTION) float2 leftRight = step(d.xy, d.yx); float2 rounding = (1.0 - SMAA_CORNER_ROUNDING_NORM) * leftRight; rounding /= leftRight.x + leftRight.y; // Reduce blending for pixels in the center of a line. float2 factor = float2(1.0, 1.0); factor.x -= rounding.x * SMAASampleLevelZeroOffset(edgesTex, texcoord.xy, int2(0, 1)).r; factor.x -= rounding.y * SMAASampleLevelZeroOffset(edgesTex, texcoord.zw, int2(1, 1)).r; factor.y -= rounding.x * SMAASampleLevelZeroOffset(edgesTex, texcoord.xy, int2(0, -2)).r; factor.y -= rounding.y * SMAASampleLevelZeroOffset(edgesTex, texcoord.zw, int2(1, -2)).r; weights *= saturate(factor); #endif } void SMAADetectVerticalCornerPattern(SMAATexture2D(edgesTex), inout float2 weights, float4 texcoord, float2 d) { #if !defined(SMAA_DISABLE_CORNER_DETECTION) float2 leftRight = step(d.xy, d.yx); float2 rounding = (1.0 - SMAA_CORNER_ROUNDING_NORM) * leftRight; rounding /= leftRight.x + leftRight.y; float2 factor = float2(1.0, 1.0); factor.x -= rounding.x * SMAASampleLevelZeroOffset(edgesTex, texcoord.xy, int2( 1, 0)).g; factor.x -= rounding.y * SMAASampleLevelZeroOffset(edgesTex, texcoord.zw, int2( 1, 1)).g; factor.y -= rounding.x * SMAASampleLevelZeroOffset(edgesTex, texcoord.xy, int2(-2, 0)).g; factor.y -= rounding.y * SMAASampleLevelZeroOffset(edgesTex, texcoord.zw, int2(-2, 1)).g; weights *= saturate(factor); #endif } //----------------------------------------------------------------------------- // Blending Weight Calculation Pixel Shader (Second Pass) float4 SMAABlendingWeightCalculationPS(float2 texcoord, float2 pixcoord, float4 offset[3], SMAATexture2D(edgesTex), SMAATexture2D(areaTex), SMAATexture2D(searchTex), float4 subsampleIndices) { // Just pass zero for SMAA 1x, see @SUBSAMPLE_INDICES. float4 weights = float4(0.0, 0.0, 0.0, 0.0); float2 e = SMAASample(edgesTex, texcoord).rg; SMAA_BRANCH if (e.g > 0.0) { // Edge at north #if !defined(SMAA_DISABLE_DIAG_DETECTION) // Diagonals have both north and west edges, so searching for them in // one of the boundaries is enough. weights.rg = SMAACalculateDiagWeights(SMAATexturePass2D(edgesTex), SMAATexturePass2D(areaTex), texcoord, e, subsampleIndices); // We give priority to diagonals, so if we find a diagonal we skip // horizontal/vertical processing. SMAA_BRANCH if (weights.r == -weights.g) { // weights.r + weights.g == 0.0 #endif float2 d; // Find the distance to the left: float3 coords; coords.x = SMAASearchXLeft(SMAATexturePass2D(edgesTex), SMAATexturePass2D(searchTex), offset[0].xy, offset[2].x); coords.y = offset[1].y; // offset[1].y = texcoord.y - 0.25 * SMAA_RT_METRICS.y (@CROSSING_OFFSET) d.x = coords.x; // Now fetch the left crossing edges, two at a time using bilinear // filtering. Sampling at -0.25 (see @CROSSING_OFFSET) enables to // discern what value each edge has: float e1 = SMAASampleLevelZero(edgesTex, coords.xy).r; // Find the distance to the right: coords.z = SMAASearchXRight(SMAATexturePass2D(edgesTex), SMAATexturePass2D(searchTex), offset[0].zw, offset[2].y); d.y = coords.z; // We want the distances to be in pixel units (doing this here allow to // better interleave arithmetic and memory accesses): d = abs(round(mad(SMAA_RT_METRICS.zz, d, -pixcoord.xx))); // SMAAArea below needs a sqrt, as the areas texture is compressed // quadratically: float2 sqrt_d = sqrt(d); // Fetch the right crossing edges: float e2 = SMAASampleLevelZeroOffset(edgesTex, coords.zy, int2(1, 0)).r; // Ok, we know how this pattern looks like, now it is time for getting // the actual area: weights.rg = SMAAArea(SMAATexturePass2D(areaTex), sqrt_d, e1, e2, subsampleIndices.y); // Fix corners: coords.y = texcoord.y; SMAADetectHorizontalCornerPattern(SMAATexturePass2D(edgesTex), weights.rg, coords.xyzy, d); #if !defined(SMAA_DISABLE_DIAG_DETECTION) } else e.r = 0.0; // Skip vertical processing. #endif } SMAA_BRANCH if (e.r > 0.0) { // Edge at west float2 d; // Find the distance to the top: float3 coords; coords.y = SMAASearchYUp(SMAATexturePass2D(edgesTex), SMAATexturePass2D(searchTex), offset[1].xy, offset[2].z); coords.x = offset[0].x; // offset[1].x = texcoord.x - 0.25 * SMAA_RT_METRICS.x; d.x = coords.y; // Fetch the top crossing edges: float e1 = SMAASampleLevelZero(edgesTex, coords.xy).g; // Find the distance to the bottom: coords.z = SMAASearchYDown(SMAATexturePass2D(edgesTex), SMAATexturePass2D(searchTex), offset[1].zw, offset[2].w); d.y = coords.z; // We want the distances to be in pixel units: d = abs(round(mad(SMAA_RT_METRICS.ww, d, -pixcoord.yy))); // SMAAArea below needs a sqrt, as the areas texture is compressed // quadratically: float2 sqrt_d = sqrt(d); // Fetch the bottom crossing edges: float e2 = SMAASampleLevelZeroOffset(edgesTex, coords.xz, int2(0, 1)).g; // Get the area for this direction: weights.ba = SMAAArea(SMAATexturePass2D(areaTex), sqrt_d, e1, e2, subsampleIndices.x); // Fix corners: coords.x = texcoord.x; SMAADetectVerticalCornerPattern(SMAATexturePass2D(edgesTex), weights.ba, coords.xyxz, d); } return weights; } //----------------------------------------------------------------------------- // Neighborhood Blending Pixel Shader (Third Pass) float4 SMAANeighborhoodBlendingPS(float2 texcoord, float4 offset, SMAATexture2D(colorTex), SMAATexture2D(blendTex) #if SMAA_REPROJECTION , SMAATexture2D(velocityTex) #endif ) { // Fetch the blending weights for current pixel: float4 a; a.x = SMAASample(blendTex, offset.xy).a; // Right a.y = SMAASample(blendTex, offset.zw).g; // Top a.wz = SMAASample(blendTex, texcoord).xz; // Bottom / Left // Is there any blending weight with a value greater than 0.0? SMAA_BRANCH if (dot(a, float4(1.0, 1.0, 1.0, 1.0)) < 1e-5) { float4 color = SMAASampleLevelZero(colorTex, texcoord); #if SMAA_REPROJECTION float2 velocity = SMAA_DECODE_VELOCITY(SMAASampleLevelZero(velocityTex, texcoord)); // Pack velocity into the alpha channel: color.a = sqrt(5.0 * length(velocity)); #endif return color; } else { bool h = max(a.x, a.z) > max(a.y, a.w); // max(horizontal) > max(vertical) // Calculate the blending offsets: float4 blendingOffset = float4(0.0, a.y, 0.0, a.w); float2 blendingWeight = a.yw; SMAAMovc(bool4(h, h, h, h), blendingOffset, float4(a.x, 0.0, a.z, 0.0)); SMAAMovc(bool2(h, h), blendingWeight, a.xz); blendingWeight /= dot(blendingWeight, float2(1.0, 1.0)); // Calculate the texture coordinates: float4 blendingCoord = mad(blendingOffset, float4(SMAA_RT_METRICS.xy, -SMAA_RT_METRICS.xy), texcoord.xyxy); // We exploit bilinear filtering to mix current pixel with the chosen // neighbor: float4 color = blendingWeight.x * SMAASampleLevelZero(colorTex, blendingCoord.xy); color += blendingWeight.y * SMAASampleLevelZero(colorTex, blendingCoord.zw); #if SMAA_REPROJECTION // Antialias velocity for proper reprojection in a later stage: float2 velocity = blendingWeight.x * SMAA_DECODE_VELOCITY(SMAASampleLevelZero(velocityTex, blendingCoord.xy)); velocity += blendingWeight.y * SMAA_DECODE_VELOCITY(SMAASampleLevelZero(velocityTex, blendingCoord.zw)); // Pack velocity into the alpha channel: color.a = sqrt(5.0 * length(velocity)); #endif return color; } } //----------------------------------------------------------------------------- // Temporal Resolve Pixel Shader (Optional Pass) float4 SMAAResolvePS(float2 texcoord, SMAATexture2D(currentColorTex), SMAATexture2D(previousColorTex) #if SMAA_REPROJECTION , SMAATexture2D(velocityTex) #endif ) { #if SMAA_REPROJECTION // Velocity is assumed to be calculated for motion blur, so we need to // inverse it for reprojection: float2 velocity = -SMAA_DECODE_VELOCITY(SMAASamplePoint(velocityTex, texcoord).rg); // Fetch current pixel: float4 current = SMAASamplePoint(currentColorTex, texcoord); // Reproject current coordinates and fetch previous pixel: float4 previous = SMAASamplePoint(previousColorTex, texcoord + velocity); // Attenuate the previous pixel if the velocity is different: float delta = abs(current.a * current.a - previous.a * previous.a) / 5.0; float weight = 0.5 * saturate(1.0 - sqrt(delta) * SMAA_REPROJECTION_WEIGHT_SCALE); // Blend the pixels according to the calculated weight: return lerp(current, previous, weight); #else // Just blend the pixels: float4 current = SMAASamplePoint(currentColorTex, texcoord); float4 previous = SMAASamplePoint(previousColorTex, texcoord); return lerp(current, previous, 0.5); #endif } //----------------------------------------------------------------------------- // Separate Multisamples Pixel Shader (Optional Pass) #ifdef SMAALoad void SMAASeparatePS(float4 position, float2 texcoord, out float4 target0, out float4 target1, SMAATexture2DMS2(colorTexMS)) { int2 pos = int2(position.xy); target0 = SMAALoad(colorTexMS, pos, 0); target1 = SMAALoad(colorTexMS, pos, 1); } #endif //-----------------------------------------------------------------------------