#version 450 /* * Bandlimited pixel footprint shader. * Author: Themaister * License: MIT * Adapted from: https://github.com/Themaister/Granite/blob/master/assets/shaders/inc/bandlimited_pixel_filter.h */ precision highp float; precision highp int; layout(std140, set = 0, binding = 0) uniform UBO { mat4 MVP; vec4 SourceSize; float SMOOTHNESS; } global; #pragma parameter SMOOTHNESS "Smoothness" 0.5 0.0 5.0 0.1 #pragma stage vertex layout(location = 0) in vec4 Position; layout(location = 1) in vec2 TexCoord; layout(location = 0) out vec2 vTexCoord; void main() { gl_Position = global.MVP * Position; vTexCoord = TexCoord; } #pragma stage fragment layout(location = 0) in vec2 vTexCoord; layout(location = 0) out mediump vec4 FragColor; layout(set = 0, binding = 1) uniform mediump sampler2D Source; // The cosine filter convolved with rect has a support of 0.5 + d pixels. // We can sample 4x4 regions, so we can deal with 2.0 pixel range in our filter, // and the maximum extent value we can have is 1.5. const float maximum_support_extent = 1.5; struct BandlimitedPixelInfo { vec2 uv0; vec2 uv1; vec2 uv2; vec2 uv3; mediump vec4 weights; mediump float l; }; // Our Taylor approximation is not exact, normalize so the peak is 1. const float taylor_pi_half = 1.00452485553; const float taylor_normalization = 1.0 / taylor_pi_half; const float PI = 3.14159265359; const float PI_half = 0.5 * PI; #define gen_taylor(T) \ mediump T taylor_sin(mediump T p) \ { \ mediump T p2 = p * p; \ mediump T p3 = p * p2; \ mediump T p5 = p2 * p3; \ return clamp(taylor_normalization * (p - p3 * (1.0 / 6.0) + p5 * (1.0 / 120.0)), -1.0, 1.0); \ } // No templates in GLSL. Stamp out macros. gen_taylor(float) gen_taylor(vec2) gen_taylor(vec3) gen_taylor(vec4) // Given weights, compute a bilinear filter which implements the weight. // All weights are known to be non-negative, and separable. mediump vec3 compute_uv_phase_weight(mediump vec2 weights_u, mediump vec2 weights_v) { // The sum of a bilinear sample has combined weight of 1, we will need to adjust the resulting sample // to match our actual weight sum. mediump float w = dot(weights_u.xyxy, weights_v.xxyy); mediump float x = weights_u.y / max(weights_u.x + weights_u.y, 0.001); mediump float y = weights_v.y / max(weights_v.x + weights_v.y, 0.001); return vec3(x, y, w); } BandlimitedPixelInfo compute_pixel_weights(vec2 uv, vec2 size, vec2 inv_size) { // Get derivatives in texel space. // Need a non-zero derivative. vec2 extent = max(fwidth(uv) * size * (global.SMOOTHNESS + 0.5), 1.0 / 256.0); // Get base pixel and phase, range [0, 1). vec2 pixel = uv * size - 0.5; vec2 base_pixel = floor(pixel); vec2 phase = pixel - base_pixel; BandlimitedPixelInfo info; mediump vec2 inv_extent = 1.0 / extent; if (any(greaterThan(extent, vec2(maximum_support_extent)))) { // We need to just do regular minimization filtering. info = BandlimitedPixelInfo(vec2(0.0), vec2(0.0), vec2(0.0), vec2(0.0), vec4(0.0, 0.0, 0.0, 0.0), 0.0); } else if (all(lessThanEqual(extent, vec2(0.5)))) { // We can resolve the filter by just sampling a single 2x2 block. mediump vec2 shift = 0.5 + 0.5 * taylor_sin(PI_half * clamp(inv_extent * (phase - 0.5), -1.0, 1.0)); info = BandlimitedPixelInfo((base_pixel + 0.5 + shift) * inv_size, vec2(0.0), vec2(0.0), vec2(0.0), vec4(1.0, 0.0, 0.0, 0.0), 1.0); } else { // Full 4x4 sampling. // Fade between bandlimited and normal sampling. // Fully use bandlimited filter at LOD 0, normal filtering at approx. LOD -0.5. mediump float max_extent = max(extent.x, extent.y); mediump float l = clamp(1.0 - (max_extent - 1.0) / (maximum_support_extent - 1.0), 0.0, 1.0); mediump vec4 sine_phases_x = PI_half * clamp(inv_extent.x * (phase.x + vec4(1.5, 0.5, -0.5, -1.5)), -1.0, 1.0); mediump vec4 sines_x = taylor_sin(sine_phases_x); mediump vec4 sine_phases_y = PI_half * clamp(inv_extent.y * (phase.y + vec4(1.5, 0.5, -0.5, -1.5)), -1.0, 1.0); mediump vec4 sines_y = taylor_sin(sine_phases_y); mediump vec2 sine_phases_end = PI_half * clamp(inv_extent * (phase - 2.5), -1.0, 1.0); mediump vec2 sines_end = taylor_sin(sine_phases_end); mediump vec4 weights_x = 0.5 * (sines_x - vec4(sines_x.yzw, sines_end.x)); mediump vec4 weights_y = 0.5 * (sines_y - vec4(sines_y.yzw, sines_end.y)); mediump vec3 w0 = compute_uv_phase_weight(weights_x.xy, weights_y.xy); mediump vec3 w1 = compute_uv_phase_weight(weights_x.zw, weights_y.xy); mediump vec3 w2 = compute_uv_phase_weight(weights_x.xy, weights_y.zw); mediump vec3 w3 = compute_uv_phase_weight(weights_x.zw, weights_y.zw); info = BandlimitedPixelInfo((base_pixel - 0.5 + w0.xy) * inv_size, (base_pixel + vec2(1.5, -0.5) + w1.xy) * inv_size, (base_pixel + vec2(-0.5, 1.5) + w2.xy) * inv_size, (base_pixel + 1.5 + w3.xy) * inv_size, vec4(w0.z, w1.z, w2.z, w3.z), l); } return info; } mediump vec4 sample_bandlimited_pixel(sampler2D samp, vec2 uv, BandlimitedPixelInfo info, float lod) { mediump vec4 color = texture(samp, uv); if (info.l > 0.0) { mediump vec4 bandlimited = info.weights.x * textureLod(samp, info.uv0, lod); if (info.weights.x < 1.0) { bandlimited += info.weights.y * textureLod(samp, info.uv1, lod); bandlimited += info.weights.z * textureLod(samp, info.uv2, lod); bandlimited += info.weights.w * textureLod(samp, info.uv3, lod); } color = mix(color, bandlimited, info.l); } return color; } void main() { BandlimitedPixelInfo info = compute_pixel_weights(vTexCoord, global.SourceSize.xy, global.SourceSize.zw); mediump vec3 result = sample_bandlimited_pixel(Source, vTexCoord, info, 0.0).rgb; FragColor = vec4(sqrt(clamp(result, 0.0, 1.0)), 1.0); }