#version 450 layout(push_constant) uniform Push { vec4 SourceSize; vec4 OriginalSize; vec4 OutputSize; uint FrameCount; } params; layout(std140, set = 0, binding = 0) uniform UBO { mat4 MVP; } global; #include "smaa-common.h" #pragma stage vertex layout(location = 0) in vec4 Position; layout(location = 1) in vec2 TexCoord; layout(location = 0) out vec2 texcoord; layout(location = 1) out vec2 pixcoord; layout(location = 2) out vec4 offset[3]; void main() { gl_Position = global.MVP * Position; texcoord = TexCoord; pixcoord = texcoord * SMAA_RT_METRICS.zw; // We will use these offsets for the searches later on (see @PSEUDO_GATHER4): offset[0] = fma(SMAA_RT_METRICS.xyxy, vec4(-0.25, -0.125, 1.25, -0.125), texcoord.xyxy); offset[1] = fma(SMAA_RT_METRICS.xyxy, vec4(-0.125, -0.25, -0.125, 1.25), texcoord.xyxy); // And these for the searches, they indicate the ends of the loops: offset[2] = fma(SMAA_RT_METRICS.xxyy, vec4(-2.0, 2.0, -2.0, 2.0) * float(SMAA_MAX_SEARCH_STEPS), vec4(offset[0].xz, offset[1].yw)); } #pragma stage fragment layout(location = 0) in vec2 texcoord; layout(location = 1) in vec2 pixcoord; layout(location = 2) in vec4 offset[3]; layout(location = 0) out vec4 FragColor; layout(set = 0, binding = 2) uniform sampler2D Source; layout(set = 0, binding = 3) uniform sampler2D areaTex; layout(set = 0, binding = 4) uniform sampler2D searchTex; //----------------------------------------------------------------------------- // Blending Weight Calculation Pixel Shader (Second Pass) /** * Allows to decode two binary values from a bilinear-filtered access. */ vec2 SMAADecodeDiagBilinearAccess(vec2 e) { // Bilinear access for fetching 'e' have a 0.25 offset, and we are // interested in the R and G edges: // // +---G---+-------+ // | x o R x | // +-------+-------+ // // Then, if one of these edge is enabled: // Red: (0.75 * X + 0.25 * 1) => 0.25 or 1.0 // Green: (0.75 * 1 + 0.25 * X) => 0.75 or 1.0 // // This function will unpack the values (mad + mul + round): // wolframalpha.com: round(x * abs(5 * x - 5 * 0.75)) plot 0 to 1 e.r = e.r * abs(5.0 * e.r - 5.0 * 0.75); return round(e); } vec4 SMAADecodeDiagBilinearAccess(vec4 e) { e.rb = e.rb * abs(5.0 * e.rb - 5.0 * 0.75); return round(e); } /** * These functions allows to perform diagonal pattern searches. */ vec2 SMAASearchDiag1(sampler2D edgesTex, vec2 texcoord, vec2 dir, out vec2 e) { vec4 coord = vec4(texcoord, -1.0, 1.0); vec3 t = vec3(SMAA_RT_METRICS.xy, 1.0); while (coord.z < float(SMAA_MAX_SEARCH_STEPS_DIAG - 1) && coord.w > 0.9) { coord.xyz = fma(t, vec3(dir, 1.0), coord.xyz); e = textureLod(edgesTex, coord.xy, 0.0).rg; coord.w = dot(e, vec2(0.5, 0.5)); } return coord.zw; } vec2 SMAASearchDiag2(sampler2D edgesTex, vec2 texcoord, vec2 dir, out vec2 e) { vec4 coord = vec4(texcoord, -1.0, 1.0); coord.x += 0.25 * SMAA_RT_METRICS.x; // See @SearchDiag2Optimization vec3 t = vec3(SMAA_RT_METRICS.xy, 1.0); while (coord.z < float(SMAA_MAX_SEARCH_STEPS_DIAG - 1) && coord.w > 0.9) { coord.xyz = fma(t, vec3(dir, 1.0), coord.xyz); // @SearchDiag2Optimization // Fetch both edges at once using bilinear filtering: e = textureLod(edgesTex, coord.xy, 0.0).rg; e = SMAADecodeDiagBilinearAccess(e); // Non-optimized version: // e.g = textureLod(edgesTex, coord.xy, 0.0).g; // e.r = textureLod(edgesTex, coord.xy, ivec2(1, 0)).r; coord.w = dot(e, vec2(0.5, 0.5)); } return coord.zw; } /** * Similar to SMAAArea, this calculates the area corresponding to a certain * diagonal distance and crossing edges 'e'. */ vec2 SMAAAreaDiag(sampler2D areaTex, vec2 dist, vec2 e, float offset) { vec2 texcoord = fma(vec2(SMAA_AREATEX_MAX_DISTANCE_DIAG, SMAA_AREATEX_MAX_DISTANCE_DIAG), e, dist); // We do a scale and bias for mapping to texel space: texcoord = fma(SMAA_AREATEX_PIXEL_SIZE, texcoord, 0.5 * SMAA_AREATEX_PIXEL_SIZE); // Diagonal areas are on the second half of the texture: texcoord.x += 0.5; // Move to proper place, according to the subpixel offset: texcoord.y += SMAA_AREATEX_SUBTEX_SIZE * offset; // Do it! return SMAA_AREATEX_SELECT(textureLod(areaTex, texcoord, 0.0)); } /** * This searches for diagonal patterns and returns the corresponding weights. */ vec2 SMAACalculateDiagWeights(sampler2D edgesTex, sampler2D areaTex, vec2 texcoord, vec2 e, vec4 subsampleIndices) { vec2 weights = vec2(0.0, 0.0); // Search for the line ends: vec4 d; vec2 end; if (e.r > 0.0) { d.xz = SMAASearchDiag1(edgesTex, texcoord, vec2(-1.0, 1.0), end); d.x += float(end.y > 0.9); } else d.xz = vec2(0.0, 0.0); d.yw = SMAASearchDiag1(edgesTex, texcoord, vec2(1.0, -1.0), end); // SMAA_BRANCH if (d.x + d.y > 2.0) { // d.x + d.y + 1 > 3 // Fetch the crossing edges: vec4 coords = fma(vec4(-d.x + 0.25, d.x, d.y, -d.y - 0.25), SMAA_RT_METRICS.xyxy, texcoord.xyxy); vec4 c; c.xy = textureLodOffset(edgesTex, coords.xy, 0.0, ivec2(-1, 0)).rg; c.zw = textureLodOffset(edgesTex, coords.zw, 0.0, ivec2( 1, 0)).rg; c.yxwz = SMAADecodeDiagBilinearAccess(c.xyzw); // Non-optimized version: // vec4 coords = fma(vec4(-d.x, d.x, d.y, -d.y), SMAA_RT_METRICS.xyxy, texcoord.xyxy); // vec4 c; // c.x = textureLodOffset(edgesTex, coords.xy, 0.0, ivec2(-1, 0)).g; // c.y = textureLodOffset(edgesTex, coords.xy, 0.0, ivec2( 0, 0)).r; // c.z = textureLodOffset(edgesTex, coords.zw, 0.0, ivec2( 1, 0)).g; // c.w = textureLodOffset(edgesTex, coords.zw, 0.0, ivec2( 1, -1)).r; // Merge crossing edges at each side into a single value: vec2 cc = fma(vec2(2.0, 2.0), c.xz, c.yw); // Remove the crossing edge if we didn't found the end of the line: SMAAMovc(bvec2(step(0.9, d.zw)), cc, vec2(0.0, 0.0)); // Fetch the areas for this line: weights += SMAAAreaDiag(areaTex, d.xy, cc, subsampleIndices.z); } // Search for the line ends: d.xz = SMAASearchDiag2(edgesTex, texcoord, vec2(-1.0, -1.0), end); if (textureLodOffset(edgesTex, texcoord, 0.0, ivec2(1, 0)).r > 0.0) { d.yw = SMAASearchDiag2(edgesTex, texcoord, vec2(1.0, 1.0), end); d.y += float(end.y > 0.9); } else d.yw = vec2(0.0, 0.0); // SMAA_BRANCH if (d.x + d.y > 2.0) { // d.x + d.y + 1 > 3 // Fetch the crossing edges: vec4 coords = fma(vec4(-d.x, -d.x, d.y, d.y), SMAA_RT_METRICS.xyxy, texcoord.xyxy); vec4 c; c.x = textureLodOffset(edgesTex, coords.xy, 0.0, ivec2(-1, 0)).g; c.y = textureLodOffset(edgesTex, coords.xy, 0.0, ivec2( 0, -1)).r; c.zw = textureLodOffset(edgesTex, coords.zw, 0.0, ivec2( 1, 0)).gr; vec2 cc = fma(vec2(2.0, 2.0), c.xz, c.yw); // Remove the crossing edge if we didn't found the end of the line: SMAAMovc(bvec2(step(0.9, d.zw)), cc, vec2(0.0, 0.0)); // Fetch the areas for this line: weights += SMAAAreaDiag(areaTex, d.xy, cc, subsampleIndices.w).gr; } return weights; } //----------------------------------------------------------------------------- // Horizontal/Vertical Search Functions /** * This allows to determine how much length should we add in the last step * of the searches. It takes the bilinearly interpolated edge (see * @PSEUDO_GATHER4), and adds 0, 1 or 2, depending on which edges and * crossing edges are active. */ float SMAASearchLength(sampler2D searchTex, vec2 e, float offset) { // The texture is flipped vertically, with left and right cases taking half // of the space horizontally: vec2 scale = SMAA_SEARCHTEX_SIZE * vec2(0.5, -1.0); vec2 bias = SMAA_SEARCHTEX_SIZE * vec2(offset, 1.0); // Scale and bias to access texel centers: scale += vec2(-1.0, 1.0); bias += vec2( 0.5, -0.5); // Convert from pixel coordinates to texcoords: // (We use SMAA_SEARCHTEX_PACKED_SIZE because the texture is cropped) scale *= 1.0 / SMAA_SEARCHTEX_PACKED_SIZE; bias *= 1.0 / SMAA_SEARCHTEX_PACKED_SIZE; // Lookup the search texture: return SMAA_SEARCHTEX_SELECT(textureLod(searchTex, fma(scale, e, bias), 0.0)); } /** * Horizontal/vertical search functions for the 2nd pass. */ float SMAASearchXLeft(sampler2D edgesTex, sampler2D searchTex, vec2 texcoord, float end) { /** * @PSEUDO_GATHER4 * This texcoord has been offset by (-0.25, -0.125) in the vertex shader to * sample between edge, thus fetching four edges in a row. * Sampling with different offsets in each direction allows to disambiguate * which edges are active from the four fetched ones. */ vec2 e = vec2(0.0, 1.0); while (texcoord.x > end && e.g > 0.8281 && // Is there some edge not activated? e.r == 0.0) { // Or is there a crossing edge that breaks the line? e = textureLod(edgesTex, texcoord, 0.0).rg; texcoord = fma(-vec2(2.0, 0.0), SMAA_RT_METRICS.xy, texcoord); } float offset = fma(-(255.0 / 127.0), SMAASearchLength(searchTex, e, 0.0), 3.25); return fma(SMAA_RT_METRICS.x, offset, texcoord.x); // Non-optimized version: // We correct the previous (-0.25, -0.125) offset we applied: // texcoord.x += 0.25 * SMAA_RT_METRICS.x; // The searches are bias by 1, so adjust the coords accordingly: // texcoord.x += SMAA_RT_METRICS.x; // Disambiguate the length added by the last step: // texcoord.x += 2.0 * SMAA_RT_METRICS.x; // Undo last step // texcoord.x -= SMAA_RT_METRICS.x * (255.0 / 127.0) * SMAASearchLength(searchTex, e, 0.0); // return fma(SMAA_RT_METRICS.x, offset, texcoord.x); } float SMAASearchXRight(sampler2D edgesTex, sampler2D searchTex, vec2 texcoord, float end) { vec2 e = vec2(0.0, 1.0); while (texcoord.x < end && e.g > 0.8281 && // Is there some edge not activated? e.r == 0.0) { // Or is there a crossing edge that breaks the line? e = textureLod(edgesTex, texcoord, 0.0).rg; texcoord = fma(vec2(2.0, 0.0), SMAA_RT_METRICS.xy, texcoord); } float offset = fma(-(255.0 / 127.0), SMAASearchLength(searchTex, e, 0.5), 3.25); return fma(-SMAA_RT_METRICS.x, offset, texcoord.x); } float SMAASearchYUp(sampler2D edgesTex, sampler2D searchTex, vec2 texcoord, float end) { vec2 e = vec2(1.0, 0.0); while (texcoord.y > end && e.r > 0.8281 && // Is there some edge not activated? e.g == 0.0) { // Or is there a crossing edge that breaks the line? e = textureLod(edgesTex, texcoord, 0.0).rg; texcoord = fma(-vec2(0.0, 2.0), SMAA_RT_METRICS.xy, texcoord); } float offset = fma(-(255.0 / 127.0), SMAASearchLength(searchTex, e.gr, 0.0), 3.25); return fma(SMAA_RT_METRICS.y, offset, texcoord.y); } float SMAASearchYDown(sampler2D edgesTex, sampler2D searchTex, vec2 texcoord, float end) { vec2 e = vec2(1.0, 0.0); while (texcoord.y < end && e.r > 0.8281 && // Is there some edge not activated? e.g == 0.0) { // Or is there a crossing edge that breaks the line? e = textureLod(edgesTex, texcoord, 0.0).rg; texcoord = fma(vec2(0.0, 2.0), SMAA_RT_METRICS.xy, texcoord); } float offset = fma(-(255.0 / 127.0), SMAASearchLength(searchTex, e.gr, 0.5), 3.25); return fma(-SMAA_RT_METRICS.y, offset, texcoord.y); } /** * Ok, we have the distance and both crossing edges. So, what are the areas * at each side of current edge? */ vec2 SMAAArea(sampler2D areaTex, vec2 dist, float e1, float e2, float offset) { // Rounding prevents precision errors of bilinear filtering: vec2 texcoord = fma(vec2(SMAA_AREATEX_MAX_DISTANCE, SMAA_AREATEX_MAX_DISTANCE), round(4.0 * vec2(e1, e2)), dist); // We do a scale and bias for mapping to texel space: texcoord = fma(SMAA_AREATEX_PIXEL_SIZE, texcoord, 0.5 * SMAA_AREATEX_PIXEL_SIZE); // Move to proper place, according to the subpixel offset: texcoord.y = fma(SMAA_AREATEX_SUBTEX_SIZE, offset, texcoord.y); // Do it! return SMAA_AREATEX_SELECT(textureLod(areaTex, texcoord, 0.0)); } //----------------------------------------------------------------------------- // Corner Detection Functions void SMAADetectHorizontalCornerPattern(sampler2D edgesTex, inout vec2 weights, vec4 texcoord, vec2 d) { #if !defined(SMAA_DISABLE_CORNER_DETECTION) vec2 leftRight = step(d.xy, d.yx); vec2 rounding = (1.0 - SMAA_CORNER_ROUNDING_NORM) * leftRight; rounding /= leftRight.x + leftRight.y; // Reduce blending for pixels in the center of a line. vec2 factor = vec2(1.0, 1.0); factor.x -= rounding.x * textureLodOffset(edgesTex, texcoord.xy, 0.0, ivec2(0, 1)).r; factor.x -= rounding.y * textureLodOffset(edgesTex, texcoord.zw, 0.0, ivec2(1, 1)).r; factor.y -= rounding.x * textureLodOffset(edgesTex, texcoord.xy, 0.0, ivec2(0, -2)).r; factor.y -= rounding.y * textureLodOffset(edgesTex, texcoord.zw, 0.0, ivec2(1, -2)).r; weights *= clamp(factor, 0.0, 1.0); #endif } void SMAADetectVerticalCornerPattern(sampler2D edgesTex, inout vec2 weights, vec4 texcoord, vec2 d) { #if !defined(SMAA_DISABLE_CORNER_DETECTION) vec2 leftRight = step(d.xy, d.yx); vec2 rounding = (1.0 - SMAA_CORNER_ROUNDING_NORM) * leftRight; rounding /= leftRight.x + leftRight.y; vec2 factor = vec2(1.0, 1.0); factor.x -= rounding.x * textureLodOffset(edgesTex, texcoord.xy, 0.0, ivec2( 1, 0)).g; factor.x -= rounding.y * textureLodOffset(edgesTex, texcoord.zw, 0.0, ivec2( 1, 1)).g; factor.y -= rounding.x * textureLodOffset(edgesTex, texcoord.xy, 0.0, ivec2(-2, 0)).g; factor.y -= rounding.y * textureLodOffset(edgesTex, texcoord.zw, 0.0, ivec2(-2, 1)).g; weights *= clamp(factor, 0.0, 1.0); #endif } vec4 SMAABlendingWeightCalculationPS(vec2 texcoord, vec2 pixcoord, vec4 offset[3], sampler2D edgesTex, sampler2D areaTex, sampler2D searchTex, vec4 subsampleIndices) { // Just pass zero for SMAA 1x, see @SUBSAMPLE_INDICES. vec4 weights = vec4(0.0, 0.0, 0.0, 0.0); vec2 e = texture(edgesTex, texcoord).rg; // SMAA_BRANCH if (e.g > 0.0) { // Edge at north #if !defined(SMAA_DISABLE_DIAG_DETECTION) // Diagonals have both north and west edges, so searching for them in // one of the boundaries is enough. weights.rg = SMAACalculateDiagWeights(edgesTex, areaTex, texcoord, e, subsampleIndices); // We give priority to diagonals, so if we find a diagonal we skip // horizontal/vertical processing. // SMAA_BRANCH if (weights.r == -weights.g) { // weights.r + weights.g == 0.0 #endif vec2 d; // Find the distance to the left: vec3 coords; coords.x = SMAASearchXLeft(edgesTex, searchTex, offset[0].xy, offset[2].x); coords.y = offset[1].y; // offset[1].y = texcoord.y - 0.25 * SMAA_RT_METRICS.y (@CROSSING_OFFSET) d.x = coords.x; // Now fetch the left crossing edges, two at a time using bilinear // filtering. Sampling at -0.25 (see @CROSSING_OFFSET) enables to // discern what value each edge has: float e1 = textureLod(edgesTex, coords.xy, 0.0).r; // Find the distance to the right: coords.z = SMAASearchXRight(edgesTex, searchTex, offset[0].zw, offset[2].y); d.y = coords.z; // We want the distances to be in pixel units (doing this here allow to // better interleave arithmetic and memory accesses): d = abs(round(fma(SMAA_RT_METRICS.zz, d, -pixcoord.xx))); // SMAAArea below needs a sqrt, as the areas texture is compressed // quadratically: vec2 sqrt_d = sqrt(d); // Fetch the right crossing edges: float e2 = textureLodOffset(edgesTex, coords.zy, 0.0, ivec2(1, 0)).r; // Ok, we know how this pattern looks like, now it is time for getting // the actual area: weights.rg = SMAAArea(areaTex, sqrt_d, e1, e2, subsampleIndices.y); // Fix corners: coords.y = texcoord.y; SMAADetectHorizontalCornerPattern(edgesTex, weights.rg, coords.xyzy, d); #if !defined(SMAA_DISABLE_DIAG_DETECTION) } else e.r = 0.0; // Skip vertical processing. #endif } // SMAA_BRANCH if (e.r > 0.0) { // Edge at west vec2 d; // Find the distance to the top: vec3 coords; coords.y = SMAASearchYUp(edgesTex, searchTex, offset[1].xy, offset[2].z); coords.x = offset[0].x; // offset[1].x = texcoord.x - 0.25 * SMAA_RT_METRICS.x; d.x = coords.y; // Fetch the top crossing edges: float e1 = textureLod(edgesTex, coords.xy, 0.0).g; // Find the distance to the bottom: coords.z = SMAASearchYDown(edgesTex, searchTex, offset[1].zw, offset[2].w); d.y = coords.z; // We want the distances to be in pixel units: d = abs(round(fma(SMAA_RT_METRICS.ww, d, -pixcoord.yy))); // SMAAArea below needs a sqrt, as the areas texture is compressed // quadratically: vec2 sqrt_d = sqrt(d); // Fetch the bottom crossing edges: float e2 = textureLodOffset(edgesTex, coords.xz, 0.0, ivec2(0, 1)).g; // Get the area for this direction: weights.ba = SMAAArea(areaTex, sqrt_d, e1, e2, subsampleIndices.x); // Fix corners: coords.x = texcoord.x; SMAADetectVerticalCornerPattern(edgesTex, weights.ba, coords.xyxz, d); } return weights; } void main() { FragColor = SMAABlendingWeightCalculationPS(texcoord, pixcoord, offset, Source, areaTex, searchTex, vec4(0.0)); }