#ifndef CURV #define CURV #pragma parameter Radius "cgwg Curvature Radius" 2.0 0.1 10.0 0.1 #pragma parameter Distance "cgwg Viewing Distance" 1.5 0.1 3.0 0.1 #pragma parameter x_tilt "Horizontal Tilt" 0.0 -0.5 0.5 0.05 #pragma parameter y_tilt "Vertical Tilt" 0.0 -0.5 0.5 0.05 // cgwg's geom // license: GPLv2 vec2 sinangle = sin(vec2(x_tilt, y_tilt)); vec2 cosangle = cos(vec2(x_tilt, y_tilt)); const vec2 aspect = vec2(1.0, 0.75); #define FIX(c) max(abs(c), 1e-5); float intersect(vec2 xy) { float A = dot(xy,xy) + Distance*Distance; float B = 2.0*(Radius*(dot(xy,sinangle) - Distance*cosangle.x*cosangle.y) - Distance*Distance); float C = Distance*Distance + 2.0*Radius*Distance*cosangle.x*cosangle.y; return (-B-sqrt(B*B - 4.0*A*C))/(2.0*A); } vec2 fwtrans(vec2 uv) { float r = FIX(sqrt(dot(uv,uv))); uv *= sin(r/Radius)/r; float x = 1.0-cos(r/Radius); float D = Distance/Radius + x*cosangle.x*cosangle.y+dot(uv,sinangle); return Distance*(uv*cosangle-x*sinangle)/D; } vec2 bkwtrans(vec2 xy) { float c = intersect(xy); vec2 point = (vec2(c, c)*xy - vec2(-Radius, -Radius)*sinangle) / vec2(Radius, Radius); vec2 poc = point/cosangle; vec2 tang = sinangle/cosangle; float A = dot(tang, tang) + 1.0; float B = -2.0*dot(poc, tang); float C = dot(poc, poc) - 1.0; float a = (-B + sqrt(B*B - 4.0*A*C)) / (2.0*A); vec2 uv = (point - a*sinangle) / cosangle; float r = Radius*acos(a); r = FIX(r); return uv*r/sin(r/Radius); } vec3 maxscale() { vec2 c = bkwtrans(-Radius * sinangle / (1.0 + Radius/Distance*cosangle.x*cosangle.y)); vec2 a = vec2(0.5,0.5)*aspect; vec2 lo = vec2(fwtrans(vec2(-a.x, c.y)).x, fwtrans(vec2( c.x, -a.y)).y)/aspect; vec2 hi = vec2(fwtrans(vec2(+a.x, c.y)).x, fwtrans(vec2( c.x, +a.y)).y)/aspect; return vec3((hi+lo)*aspect*0.5,max(hi.x-lo.x,hi.y-lo.y)); } vec2 warp(vec2 coord) { vec3 stretch = maxscale(); coord = (coord - vec2(0.5, 0.5))*aspect*stretch.z + stretch.xy; return (bkwtrans(coord) / vec2(1.0, 1.0)/aspect + vec2(0.5, 0.5)); } #endif