#version 450 /* CRT shader * * Copyright (C) 2010-2016 cgwg, Themaister and DOLLS * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the Free * Software Foundation; either version 2 of the License, or (at your option) * any later version. */ #include "geom-deluxe-params.inc" #define u_tex_size0 global.SourceSize #define u_tex_size1 global.internal1Size #define u_quad_dims global.OutputSize // Comment the next line to disable interpolation in linear gamma (and gain speed). //#define LINEAR_PROCESSING // Enable 3x oversampling of the beam profile #define OVERSAMPLE // Use the older, purely gaussian beam profile #define USEGAUSSIAN // Macros. #define FIX(c) max(abs(c), 1e-5) #define PI 3.141592653589 #pragma stage vertex layout(location = 0) in vec4 Position; layout(location = 1) in vec2 TexCoord; layout(location = 0) out vec2 v_texCoord; layout(location = 1) out vec2 v_sinangle; layout(location = 2) out vec2 v_cosangle; layout(location = 3) out vec3 v_stretch; layout(location = 4) out vec2 v_one; float intersect(vec2 xy , vec2 sinangle, vec2 cosangle) { float A = dot(xy,xy)+d.x*d.x; float B = 2.0*(params.R.x*(dot(xy,sinangle)-d.x*cosangle.x*cosangle.y)-d.x*d.x); float C = d.x*d.x + 2.0*params.R.x*d.x*cosangle.x*cosangle.y; return (-B-sqrt(B*B-4.0*A*C))/(2.0*A); } vec2 bkwtrans(vec2 xy, vec2 sinangle, vec2 cosangle) { float c = intersect(xy, sinangle, cosangle); vec2 pt = vec2(c)*xy; pt -= vec2(-params.R.x)*sinangle; pt /= vec2(params.R.x); vec2 tang = sinangle/cosangle; vec2 poc = pt/cosangle; float A = dot(tang,tang)+1.0; float B = -2.0*dot(poc,tang); float C = dot(poc,poc)-1.0; float a = (-B+sqrt(B*B-4.0*A*C))/(2.0*A); vec2 uv = (pt-a*sinangle)/cosangle; float r = FIX(params.R.x*acos(a)); return uv*r/sin(r/params.R.x); } vec2 fwtrans(vec2 uv, vec2 sinangle, vec2 cosangle) { float r = FIX(sqrt(dot(uv,uv))); uv *= sin(r/params.R.x)/r; float x = 1.0-cos(r/params.R.x); float D = d.x/params.R.x + x*cosangle.x*cosangle.y+dot(uv,sinangle); return d.x*(uv*cosangle-x*sinangle)/D; } vec3 maxscale(vec2 sinangle, vec2 cosangle) { vec2 c = bkwtrans(-params.R.x * sinangle / (1.0 + params.R.x/d.x*cosangle.x*cosangle.y), sinangle, cosangle); vec2 a = vec2(0.5,0.5)*aspect.xy; vec2 lo = vec2(fwtrans(vec2(-a.x,c.y), sinangle, cosangle).x, fwtrans(vec2(c.x,-a.y), sinangle, cosangle).y)/aspect.xy; vec2 hi = vec2(fwtrans(vec2(+a.x,c.y), sinangle, cosangle).x, fwtrans(vec2(c.x,+a.y), sinangle, cosangle).y)/aspect.xy; return vec3((hi+lo)*aspect.xy*0.5,max(hi.x-lo.x,hi.y-lo.y)); } void main() { gl_Position = global.MVP * Position; v_texCoord = TexCoord; // Precalculate a bunch of useful values we'll need in the fragment // shader. vec2 ang; // if (u_rotation_type.x < 0.5) // ang = vec2(0.0,angle.x); // else if (u_rotation_type.x < 1.5) // ang = vec2(angle.x,0.0); // else if (u_rotation_type.x < 2.5) // ang = vec2(0.0,-angle.x); // else // ang = vec2(-angle.x,0.0); ang = angle.xy; v_sinangle = sin(ang); v_cosangle = cos(ang); v_stretch = maxscale(v_sinangle, v_cosangle); // The size of one texel, in texture-coordinates. v_one = 1.0 / u_tex_size0.xy; } #pragma stage fragment layout(location = 0) in vec2 v_texCoord; layout(location = 1) in vec2 v_sinangle; layout(location = 2) in vec2 v_cosangle; layout(location = 3) in vec3 v_stretch; layout(location = 4) in vec2 v_one; layout(location = 0) out vec4 FragColor; layout(set = 0, binding = 2) uniform sampler2D blur; layout(set = 0, binding = 3) uniform sampler2D internal1; layout(set = 0, binding = 4) uniform sampler2D aperture; layout(set = 0, binding = 5) uniform sampler2D slot; layout(set = 0, binding = 6) uniform sampler2D delta; #define blur_texture blur #ifdef LINEAR_PROCESSING # define TEX2D(c) pow(texture(internal1, (c)), vec4(CRTgamma)) #else # define TEX2D(c) texture(internal1, (c)) #endif float intersect(vec2 xy , vec2 sinangle, vec2 cosangle) { float A = dot(xy,xy)+d.x*d.x; float B = 2.0*(params.R.x*(dot(xy,sinangle)-d.x*cosangle.x*cosangle.y)-d.x*d.x); float C = d.x*d.x + 2.0*params.R.x*d.x*cosangle.x*cosangle.y; return (-B-sqrt(B*B-4.0*A*C))/(2.0*A); } vec2 bkwtrans(vec2 xy, vec2 sinangle, vec2 cosangle) { float c = intersect(xy, sinangle, cosangle); vec2 pt = vec2(c)*xy; pt -= vec2(-params.R.x)*sinangle; pt /= vec2(params.R.x); vec2 tang = sinangle/cosangle; vec2 poc = pt/cosangle; float A = dot(tang,tang)+1.0; float B = -2.0*dot(poc,tang); float C = dot(poc,poc)-1.0; float a = (-B+sqrt(B*B-4.0*A*C))/(2.0*A); vec2 uv = (pt-a*sinangle)/cosangle; float r = FIX(params.R.x*acos(a)); return uv*r/sin(r/params.R.x); } vec2 transform(vec2 coord, vec3 stretch, vec2 sinangle, vec2 cosangle) { coord = (coord-vec2(0.5))*aspect.xy*stretch.z+stretch.xy; return (bkwtrans(coord, sinangle, cosangle)/overscan.xy/aspect.xy+vec2(0.5)); } float corner(vec2 coord) { coord = (coord - vec2(0.5)) * overscan.xy + vec2(0.5); coord = min(coord, vec2(1.0)-coord) * aspect.xy; vec2 cdist = vec2(cornersize.x); coord = (cdist - min(coord,cdist)); float dist = sqrt(dot(coord,coord)); return clamp((max(cdist.x,1e-3)-dist)*cornersmooth.x,0.0, 1.0); } // Calculate the influence of a scanline on the current pixel. // // 'distance' is the distance in texture coordinates from the current // pixel to the scanline in question. // 'color' is the colour of the scanline at the horizontal location of // the current pixel. vec4 scanlineWeights(float distance, vec4 color) { // "wid" controls the width of the scanline beam, for each RGB channel // The "weights" lines basically specify the formula that gives // you the profile of the beam, i.e. the intensity as // a function of distance from the vertical center of the // scanline. In this case, it is gaussian if width=2, and // becomes nongaussian for larger widths. Ideally this should // be normalized so that the integral across the beam is // independent of its width. That is, for a narrower beam // "weights" should have a higher peak at the center of the // scanline than for a wider beam. #ifdef USEGAUSSIAN vec4 wid = 0.3 + 0.1 * pow(color, vec4(3.0)); vec4 weights = vec4(distance / wid); return 0.4 * exp(-weights * weights) / wid; #else vec4 wid = 2.0 + 2.0 * pow(color, vec4(4.0)); vec4 weights = vec4(distance / 0.3); return 1.4 * exp(-pow(weights * inversesqrt(0.5 * wid), wid)) / (0.6 + 0.2 * wid); #endif } void main() { // Here's a helpful diagram to keep in mind while trying to // understand the code: // // | | | | | // ------------------------------- // | | | | | // | 01 | 11 | 21 | 31 | <-- current scanline // | | @ | | | // ------------------------------- // | | | | | // | 02 | 12 | 22 | 32 | <-- next scanline // | | | | | // ------------------------------- // | | | | | // // Each character-cell represents a pixel on the output // surface, "@" represents the current pixel (always somewhere // in the bottom half of the current scan-line, or the top-half // of the next scanline). The grid of lines represents the // edges of the texels of the underlying texture. // Texture coordinates of the texel containing the active pixel. vec2 xy; if (curvature.x > 0.5) xy = transform(v_texCoord, v_stretch, v_sinangle, v_cosangle); else xy = (v_texCoord-vec2(0.5))/overscan.xy+vec2(0.5); vec2 xy0 = xy; float cval = corner(xy); // Of all the pixels that are mapped onto the texel we are // currently rendering, which pixel are we currently rendering? vec2 ratio_scale = xy * u_tex_size0.xy - vec2(0.5); #ifdef OVERSAMPLE float oversample_filter = fwidth(ratio_scale.y); #endif vec2 uv_ratio = fract(ratio_scale); // Snap to the center of the underlying texel. xy = (floor(ratio_scale) + vec2(0.5)) / u_tex_size0.xy; // Calculate Lanczos scaling coefficients describing the effect // of various neighbour texels in a scanline on the current // pixel. vec4 coeffs = PI * vec4(1.0 + uv_ratio.x, uv_ratio.x, 1.0 - uv_ratio.x, 2.0 - uv_ratio.x); // Prevent division by zero. coeffs = FIX(coeffs); // Lanczos2 kernel. coeffs = 2.0 * sin(coeffs) * sin(coeffs / 2.0) / (coeffs * coeffs); // Normalize. coeffs /= dot(coeffs, vec4(1.0)); // Calculate the effective colour of the current and next // scanlines at the horizontal location of the current pixel, // using the Lanczos coefficients above. vec4 col = clamp(TEX2D(xy + vec2(-v_one.x, 0.0))*coeffs.x + TEX2D(xy)*coeffs.y + TEX2D(xy +vec2(v_one.x, 0.0))*coeffs.z + TEX2D(xy + vec2(2.0 * v_one.x, 0.0))*coeffs.w , 0.0, 1.0); vec4 col2 = clamp(TEX2D(xy + vec2(-v_one.x, v_one.y))*coeffs.x + TEX2D(xy + vec2(0.0, v_one.y))*coeffs.y + TEX2D(xy + v_one)*coeffs.z + TEX2D(xy + vec2(2.0 * v_one.x, v_one.y))*coeffs.w , 0.0, 1.0); #ifndef LINEAR_PROCESSING col = pow(col , vec4(CRTgamma.x)); col2 = pow(col2, vec4(CRTgamma.x)); #endif // Calculate the influence of the current and next scanlines on // the current pixel. vec4 weights = scanlineWeights(uv_ratio.y, col); vec4 weights2 = scanlineWeights(1.0 - uv_ratio.y, col2); #ifdef OVERSAMPLE uv_ratio.y =uv_ratio.y+1.0/3.0*oversample_filter; weights = (weights+scanlineWeights(uv_ratio.y, col))/3.0; weights2=(weights2+scanlineWeights(abs(1.0-uv_ratio.y), col2))/3.0; uv_ratio.y =uv_ratio.y-2.0/3.0*oversample_filter; weights=weights+scanlineWeights(abs(uv_ratio.y), col)/3.0; weights2=weights2+scanlineWeights(abs(1.0-uv_ratio.y), col2)/3.0; #endif vec3 mul_res = (col * weights + col2 * weights2).rgb; // halation and corners vec3 blur = pow(texture(blur_texture,xy0).rgb, vec3(CRTgamma.x)); mul_res = mix(mul_res, blur, halation.x) * vec3(cval); // Convert the image gamma for display on our output device. mul_res = pow(mul_res, vec3(1.0 / monitorgamma.x)); // Shadow mask // original code; just makes a giant phosphor here // xy = v_texCoord.xy * u_quad_dims.xy / u_tex_size1.xy; // tiling; looks nasty at non-integer x and/or y // xy = fract(v_texCoord * global.SourceSize.xy * 1.9999); // gl_FragCoord; tied to physical pixel size xy = v_texCoord.xy * global.OutputSize.xy; //vec3 mask = texture(mask_texture, xy).rgb; vec3 mask = vec3(1.0); if(mask_picker == 0) // no mask { FragColor = vec4(mul_res, col.a); return; } else if(mask_picker == 1) mask = texture(aperture, xy * 0.3333).rgb; else if(mask_picker == 2) mask = texture(slot, xy * 0.25).rgb; else mask = texture(delta, xy * 0.49999).rgb; mask = mix(vec3(1.0), mask, aperture_strength.x); FragColor = vec4(mul_res*mask, col.a); }