#version 450 /* DariusG presents 'crt-Cyclon' Why? Because it's speedy! A super-fast shader based on the magnificent crt-Geom, optimized for full speed on a Xiaomi Note 3 Pro cellphone (around 170(?) gflops gpu or so) This shader uses parts from: crt-Geom (scanlines) Quillez (main filter) Grade (some primaries) Dogway's inverse Gamma Masks-slot-color handling, tricks etc are mine. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. */ layout(push_constant) uniform Push { float SCANLINE,INTERLACE,M_TYPE,MSIZE,SLOT,SLOTW,BGR,Maskl,Maskh,C_STR,CONV_R,CONV_G,CONV_B, WARPX,WARPY,CORNER,B_SMOOTH,PAL_NTSC,BR_DEP,c_space,EXT_GAMMA; } params; // Parameter lines go here: #pragma parameter SCANLINE "Scanline Weight" 0.25 0.15 0.6 0.05 #pragma parameter INTERLACE "Interlacing On/Off" 1.0 0.0 1.0 1.0 #pragma parameter bogus_msk " [ MASK SETTINGS ] " 0.0 0.0 0.0 0.0 #pragma parameter M_TYPE "Mask Type: -1:None, 0:CGWG, 1:RGB" 0.0 -1.0 1.0 1.0 #pragma parameter MSIZE "Mask Size" 1.0 1.0 2.0 1.0 #pragma parameter SLOT "Slot Mask On/Off" 0.0 0.0 1.0 1.0 #pragma parameter SLOTW "Slot Mask Width" 2.0 2.0 3.0 1.0 #pragma parameter BGR "Subpixels BGR/RGB" 0.0 0.0 1.0 1.0 #pragma parameter Maskl "Mask Brightness Dark" 0.3 0.0 1.0 0.05 #pragma parameter Maskh "Mask Brightness Bright" 0.75 0.0 1.0 0.05 #pragma parameter bogus_con " [ CONVERGENCE SETTINGS ] " 0.0 0.0 0.0 0.0 #pragma parameter C_STR "Convergence Overall Strength" 0.0 0.0 1.0 0.05 #pragma parameter CONV_R "Convergence Red X-Axis" 0.0 -1.0 1.0 0.05 #pragma parameter CONV_G "Convergence Green Y-axis" 0.0 -1.0 1.0 0.05 #pragma parameter CONV_B "Convergence Blue X-Axis" 0.0 -1.0 1.0 0.05 #pragma parameter bogus_geom " [ GEOMETRY SETTINGS ] " 0.0 0.0 0.0 0.0 #pragma parameter WARPX "Curvature Horizontal" 0.032 0.00 0.25 0.01 #pragma parameter WARPY "Curvature Vertical" 0.042 0.00 0.25 0.01 #pragma parameter CORNER "Corner Round" 0.02 0.0 0.25 0.01 #pragma parameter B_SMOOTH "Border Smoothness" 300.0 100.0 1000.0 25.0 #pragma parameter PAL_NTSC "PAL-NTSC Aspect: Amiga,MD-SNES" 0.0 0.0 2.0 1.0 #pragma parameter bogus_col " [ COLOR SETTINGS ] " 0.0 0.0 0.0 0.0 #pragma parameter BR_DEP "Scan/Mask Brightness Dependence" 0.266 0.0 0.333 0.01 #pragma parameter c_space "Color Space: sRGB,PAL,NTSC-U,NTSC-J" 0.0 0.0 3.0 1.0 #pragma parameter EXT_GAMMA "External Gamma In (Glow etc)" 0.0 0.0 1.0 1.0 #pragma parameter SATURATION "Saturation" 1.0 0.0 2.0 0.01 #pragma parameter BRIGHTNESS "Brightness, Sega fix:1.06" 1.0 0.0 2.0 0.01 #pragma parameter BLACK "Black Level" 0.0 -0.20 0.20 0.01 #pragma parameter RG "Green <-to-> Red Hue" 0.0 -0.25 0.25 0.01 #pragma parameter RB "Blue <-to-> Red Hue" 0.0 -0.25 0.25 0.01 #pragma parameter GB "Blue <-to-> Green Hue" 0.0 -0.25 0.25 0.01 #pragma parameter POTATO "Potato Boost(Simple Gamma, adjust Mask)" 0.0 0.0 1.0 1.0 #define M_TYPE params.M_TYPE #define BGR params.BGR #define MSIZE params.MSIZE #define Maskl params.Maskl #define Maskh params.Maskh #define C_STR params.C_STR #define CONV_R params.CONV_R #define CONV_G params.CONV_G #define CONV_B params.CONV_B #define SCANLINE params.SCANLINE #define INTERLACE params.INTERLACE #define WARPX params.WARPX #define WARPY params.WARPY #define SLOT params.SLOT #define SLOTW params.SLOTW #define c_space params.c_space #define CORNER params.CORNER #define B_SMOOTH params.B_SMOOTH #define BR_DEP params.BR_DEP #define EXT_GAMMA params.EXT_GAMMA #define PAL_NTSC params.PAL_NTSC #define pi 3.1415926535897932384626433 layout(std140, set = 0, binding = 0) uniform UBO { mat4 MVP; float BLACK, RG, RB, GB, POTATO,SATURATION,BRIGHTNESS; vec4 SourceSize; vec4 OriginalSize; vec4 OutputSize; uint FrameCount; } global; #define RG global.RG #define RB global.RB #define GB global.GB #define BLACK global.BLACK #define POTATO global.POTATO #define SATURATION global.SATURATION #define BRIGHTNESS global.BRIGHTNESS #define SourceSize global.SourceSize #define OriginalSize global.OriginalSize #define OutputSize global.OutputSize #define FrameCount global.FrameCount #pragma stage vertex layout(location = 0) in vec4 Position; layout(location = 1) in vec2 TexCoord; layout(location = 0) out vec2 vTexCoord; layout(location = 1) out vec2 scale; void main() { gl_Position = global.MVP * Position; vTexCoord = TexCoord * 1.0001; scale = SourceSize.xy/OriginalSize.xy; } #pragma stage fragment layout(location = 0) in vec2 vTexCoord; layout(location = 0) out vec4 FragColor; layout(location = 1) in vec2 scale; layout(set = 0, binding = 1) uniform sampler2D Source; /////////////////////////////////////////////////////////////////////////////////////////////// vec3 Mask(vec2 pos, float CGWG) { vec3 mask = vec3(CGWG); if (M_TYPE == 0.0){ if (POTATO == 1.0) return vec3( (1.0-CGWG)*sin(pos.x*pi)+CGWG) ; else{ float m = fract(pos.x*0.5); if (m<0.5) mask.rb = vec2(1.0); else mask.g = 1.0; return mask;} } if (M_TYPE == 1.0){ if (POTATO == 1.0) return vec3( (1.0-CGWG)*sin(pos.x*pi*0.6667)+CGWG) ; else{ float m = fract(pos.x*0.3333); if (m<0.3333) BGR == 0.0 ? mask.b = 1.0 : mask.r = 1.0; else if (m<0.6666) mask.g = 1.0; else BGR == 0.0 ? mask.r = 1.0 : mask.b = 1.0; return mask; } } else return vec3(1.0); } vec3 scanlineWeights(float distance, vec3 color) { // "wid" controls the width of the scanline beam, for each RGB // channel The "weights" lines basically specify the formula // that gives you the profile of the beam, i.e. the intensity as // a function of distance from the vertical center of the // scanline. In this case, it is gaussian if width=2, and // becomes nongaussian for larger widths. Ideally this should // be normalized so that the integral across the beam is // independent of its width. That is, for a narrower beam // "weights" should have a higher peak at the center of the // scanline than for a wider beam. vec3 wid = SCANLINE + 0.15 * pow(color, vec3(3.0)); vec3 weights = vec3(distance / wid); return 0.4 * exp(-weights * weights ) / wid; } #define pwr vec3(1.0/((-0.8*SCANLINE+1.0)*(-0.8*(1.0-CGWG)+1.0))-1.2) // Returns gamma corrected output, compensated for scanline+mask embedded gamma vec3 inv_gamma(vec3 col, vec3 power) { vec3 cir = col-1.0; cir *= cir; col = mix(sqrt(col),sqrt(1.0-cir),power); return col; } // standard 6774k mat3 PAL = mat3( 1.1515, -0.1099, -0.0033, 0.0914, 0.9177, -0.0043, 0.0039, -0.0071, 1.0901 ); // standard 6774k mat3 NTSC = mat3( 0.8870, 0.0451, 0.0566, -0.0800, 1.0368, 0.0361, 0.0053, -0.1196, 1.2320 ); // standard 9300k mat3 NTSC_J = mat3( 0.8800, 0.0020, 0.1054, -0.0071, 0.9351, 0.0658, 0.0198, -0.0797, 1.3533 ); vec3 slot(vec2 pos) { float h = fract(pos.x/SLOTW); float v = fract(pos.y); float odd; if (v<0.5) odd = 0.0; else odd = 1.0; if (odd == 0.0) {if (h<0.5) return vec3(0.5); else return vec3(1.5);} else if (odd == 1.0) {if (h<0.5) return vec3(1.5); else return vec3(0.5);} } vec2 Warp(vec2 pos) { pos = pos*2.0-1.0; pos *= vec2(1.0+pos.y*pos.y*WARPX, 1.0+pos.x*pos.x*WARPY); pos = pos*0.5+0.5; return pos; } float corner(vec2 coord) { coord = min(coord, vec2(1.0)-coord) * vec2(1.0, 0.75); vec2 cdist = vec2(CORNER); coord = cdist - min(coord,cdist); float dist = sqrt(dot(coord,coord)); return clamp((cdist.x-dist)*B_SMOOTH,0.0, 1.0); } void main() { mat3 hue = mat3( 1.0, -RG, -RB, RG, 1.0, -GB, RB, GB, 1.0 ); vec2 pos = Warp(vTexCoord*scale); vec2 cpos=pos; pos /=scale; // blurry if (PAL_NTSC != 0.0){ if(PAL_NTSC == 1.0) pos.y /=1.2; // Amiga 256 to 200 pos.y += 0.005; // re-center if(PAL_NTSC == 2.0) pos.y /=1.0714; // MD-SNES 240 to 224 } vec2 bpos = pos; vec2 dx = vec2(SourceSize.z,0.0); vec2 dy = vec2(0.0,OutputSize.w); vec2 ogl2 = pos*SourceSize.xy; vec2 i = floor(pos*SourceSize.xy) + 0.5; float f = ogl2.y - i.y; pos.y = (i.y + 4.0*f*f*f)*SourceSize.w; // smooth pos.x = mix(pos.x, i.x*SourceSize.z, 0.2); vec3 res0 = texture(Source,pos).rgb; vec3 resr = texture(Source,pos + dx*CONV_R).rgb; vec3 resb = texture(Source,pos + dx*CONV_B).rgb; vec3 resg = texture(Source,pos + dy*CONV_G).rgb; vec3 res = vec3( res0.r*(1.0-C_STR) + resr.r*C_STR, res0.g*(1.0-C_STR) + resg.g*C_STR, res0.b*(1.0-C_STR) + resb.b*C_STR ); float l = dot(vec3(BR_DEP),res); if(EXT_GAMMA != 1.0) res *= res; if (c_space != 0.0) { if (c_space == 1.0) res *= PAL; if (c_space == 2.0) res *= NTSC; if (c_space == 3.0) res *= NTSC_J; res = clamp(res,0.0,1.0); } float s = fract(bpos.y*SourceSize.y-0.5); // handle interlacing if (OriginalSize.y > 400.0) { s = fract(bpos.y*SourceSize.y/2.0-0.5); if (INTERLACE == 1.0) s = mod(float(FrameCount),2.0) < 1.0 ? s: s+0.5; } vec3 weight = scanlineWeights(s, res); vec3 weight2 = scanlineWeights(1.0-s, res); res *= weight + weight2; vec2 xy = vTexCoord*OutputSize.xy*scale/MSIZE; float CGWG = mix(Maskl, Maskh, l); res *= Mask(xy, CGWG); if (SLOT == 1.0) res *= mix(slot(xy/2.0),vec3(1.0),CGWG); if (POTATO == 0.0) res = inv_gamma(res,pwr); else res = sqrt(res); float lum = dot(vec3(0.29,0.60,0.11),res); res = mix(vec3(lum),res,SATURATION); res *= BRIGHTNESS; res *= hue; res -= vec3(BLACK); res *= vec3(1.0)/vec3(1.0-BLACK); if (CORNER !=0.0) res *= corner(cpos); FragColor = vec4(res,1.0); }