#version 450 // This is a port of the NTSC encode/decode shader pair in MAME and MESS, modified to use only // one pass rather than an encode pass and a decode pass. It accurately emulates the sort of // signal decimation one would see when viewing a composite signal, though it could benefit from a // pre-pass to re-size the input content to more accurately reflect the actual size that would // be incoming from a composite signal source. // // To encode the composite signal, I convert the RGB value to YIQ, then subsequently evaluate // the standard NTSC composite equation. Four composite samples per RGB pixel are generated from // the incoming linearly-interpolated texels. // // The decode pass implements a Fixed Impulse Response (FIR) filter designed by MAME/MESS contributor // "austere" in matlab (if memory serves correctly) to mimic the behavior of a standard television set // as closely as possible. The filter window is 83 composite samples wide, and there is an additional // notch filter pass on the luminance (Y) values in order to strip the color signal from the luminance // signal prior to processing. // // - UltraMoogleMan [8/2/2013] layout(push_constant) uniform Push { vec4 SourceSize; vec4 OriginalSize; vec4 OutputSize; uint FrameCount; } params; layout(std140, set = 0, binding = 0) uniform UBO { mat4 MVP; } global; #define float2 vec2 #define float3 vec3 #define float4 vec4 //----------------------------------------------------------------------------- // NTSC Pixel Shader //----------------------------------------------------------------------------- const float AValue = 0.5f; const float BValue = 0.5f; const float CCValue = 3.5795454f; const float OValue = 0.0f; const float PValue = 1.0f; const float ScanTime = 52.6f; const float NotchHalfWidth = 1.0f; const float YFreqResponse = 6.0f; const float IFreqResponse = 1.2f; const float QFreqResponse = 0.6f; const float SignalOffset = 0.0f; //----------------------------------------------------------------------------- // Constants //----------------------------------------------------------------------------- const float PI = 3.1415927f; const float PI2 = 6.2830854f; const float4 YDot = float4(0.299f, 0.587f, 0.114f, 0.0f); const float4 IDot = float4(0.595716f, -0.274453f, -0.321263f, 0.0f); const float4 QDot = float4(0.211456f, -0.522591f, 0.311135f, 0.0f); const float3 RDot = float3(1.0f, 0.956f, 0.621f); const float3 GDot = float3(1.0f, -0.272f, -0.647f); const float3 BDot = float3(1.0f, -1.106f, 1.703f); const float4 OffsetX = float4(0.0f, 0.25f, 0.50f, 0.75f); const float4 NotchOffset = float4(0.0f, 1.0f, 2.0f, 3.0f); const int SampleCount = 64; const int HalfSampleCount = 32; #pragma stage vertex layout(location = 0) in vec4 Position; layout(location = 1) in vec2 TexCoord; layout(location = 0) out vec2 vTexCoord; void main() { gl_Position = global.MVP * Position; vTexCoord = TexCoord; } #pragma stage fragment layout(location = 0) in vec2 vTexCoord; layout(location = 0) out vec4 FragColor; layout(set = 0, binding = 2) uniform sampler2D Source; layout(set = 0, binding = 3) uniform sampler2D Original; void main() { float4 BaseTexel = texture(Original, vTexCoord); vec2 size = params.SourceSize.xy;//(params.SourceSize.y > 400.0) ? params.SourceSize.xy : params.SourceSize.xy * vec2(1.0, 0.5); float TimePerSample = ScanTime / (size.x * 4.0f); float Fc_y1 = (CCValue - NotchHalfWidth) * TimePerSample; float Fc_y2 = (CCValue + NotchHalfWidth) * TimePerSample; float Fc_y3 = YFreqResponse * TimePerSample; float Fc_i = IFreqResponse * TimePerSample; float Fc_q = QFreqResponse * TimePerSample; float Fc_i_2 = Fc_i * 2.0f; float Fc_q_2 = Fc_q * 2.0f; float Fc_y1_2 = Fc_y1 * 2.0f; float Fc_y2_2 = Fc_y2 * 2.0f; float Fc_y3_2 = Fc_y3 * 2.0f; float Fc_i_pi2 = Fc_i * PI2; float Fc_q_pi2 = Fc_q * PI2; float Fc_y1_pi2 = Fc_y1 * PI2; float Fc_y2_pi2 = Fc_y2 * PI2; float Fc_y3_pi2 = Fc_y3 * PI2; float PI2Length = PI2 / SampleCount; float W = PI2 * CCValue * ScanTime; float WoPI = W / PI; float HOffset = (BValue + SignalOffset) / WoPI; float VScale = (AValue * size.y) / WoPI; float4 YAccum = vec4(0.0); float4 IAccum = vec4(0.0); float4 QAccum = vec4(0.0); float4 Cy = vec4(vTexCoord.y); float4 VPosition = Cy; for (float i = 0; i < SampleCount; i += 4.0f) { float n = i - HalfSampleCount; float4 n4 = n + NotchOffset; float4 Cx = vTexCoord.x + (n4 * 0.25f) / size.x; float4 HPosition = Cx; float4 C = texture(Source, float2(Cx.r, Cy.r)); float4 T = HPosition + HOffset + VPosition * VScale; float4 WT = W * T + OValue; float4 SincKernel = 0.54f + 0.46f * cos(PI2Length * n4); float4 SincYIn1 = Fc_y1_pi2 * n4; float4 SincYIn2 = Fc_y2_pi2 * n4; float4 SincYIn3 = Fc_y3_pi2 * n4; float4 SincIIn = Fc_i_pi2 * n4; float4 SincQIn = Fc_q_pi2 * n4; float4 SincY1 = (notEqual(SincYIn1 , vec4(0.0)) == bvec4(true)) ? sin(SincYIn1) / SincYIn1 : vec4(0.5); float4 SincY2 = (notEqual(SincYIn2 , vec4(0.0)) == bvec4(true)) ? sin(SincYIn2) / SincYIn2 : vec4(0.5); float4 SincY3 = (notEqual(SincYIn3 , vec4(0.0)) == bvec4(true)) ? sin(SincYIn3) / SincYIn3 : vec4(0.5); float4 IdealY = (Fc_y1_2 * SincY1 - Fc_y2_2 * SincY2) + Fc_y3_2 * SincY3; float4 IdealI = Fc_i_2 * ((notEqual(SincIIn , vec4(0.0)) == bvec4(true)) ? sin(SincIIn) / SincIIn : vec4(0.5)); float4 IdealQ = Fc_q_2 * ((notEqual(SincQIn , vec4(0.0)) == bvec4(true)) ? sin(SincQIn) / SincQIn : vec4(0.5)); float4 FilterY = SincKernel * IdealY; float4 FilterI = SincKernel * IdealI; float4 FilterQ = SincKernel * IdealQ; YAccum = YAccum + C * FilterY; IAccum = IAccum + C * cos(WT) * FilterI; QAccum = QAccum + C * sin(WT) * FilterQ; } float3 YIQ = float3( (YAccum.r + YAccum.g + YAccum.b + YAccum.a), (IAccum.r + IAccum.g + IAccum.b + IAccum.a) * 2.0f, (QAccum.r + QAccum.g + QAccum.b + QAccum.a) * 2.0f); float3 RGB = float3( dot(YIQ, RDot), dot(YIQ, GDot), dot(YIQ, BDot)); FragColor = vec4(RGB, BaseTexel.a); }