#version 450 layout(std140, set = 0, binding = 0) uniform UBO { mat4 MVP; vec4 OutputSize; vec4 OriginalSize; vec4 SourceSize; } global; // AntiAliased Nearest Neighbor // by jimbo1qaz and wareya // Licensed MIT // set to true to interpolate in sRGB instead of a pseudo-perceptual colorspace #define NOGAMMA false // set to true to compensate for 8px overscan masking // Note: overscan compensation slightly alters (extremifies) the pixel aspect ratio of the game if said pixel aspect ratio is not exactly 1:1 #define MASKING false // Do bilinear filtering instead of anti-aliased nearest neighbor filtering (used for debugging color) #define BILINEAR false // http://i.imgur.com/kzwZkVf.png #define NOT(fl) (1-fl) #define YES(fl) fl #pragma stage vertex layout(location = 0) in vec4 Position; layout(location = 1) in vec2 TexCoord; layout(location = 0) out vec2 vTexCoord; void main() { gl_Position = global.MVP * Position; vTexCoord = TexCoord; } #pragma stage fragment layout(location = 0) in vec2 vTexCoord; layout(location = 0) out vec4 FragColor; layout(set = 0, binding = 2) uniform sampler2D Source; // http://entropymine.com/imageworsener/srgbformula/ vec3 srgb2linear(vec3 srgb) { return vec3( srgb.r > 0.0404482362771082 ? pow(srgb.r*0.947867298578199 + 0.052132701421801, 2.4) : srgb.r*0.0773993808049536, srgb.g > 0.0404482362771082 ? pow(srgb.g*0.947867298578199 + 0.052132701421801, 2.4) : srgb.g*0.0773993808049536, srgb.b > 0.0404482362771082 ? pow(srgb.b*0.947867298578199 + 0.052132701421801, 2.4) : srgb.b*0.0773993808049536 ); } vec3 linear2srgb(vec3 linear) { return vec3( linear.x > 0.00313066844250063 ? pow(linear.x, 0.416666666666667)*1.055 - 0.055 : linear.x*12.92, linear.y > 0.00313066844250063 ? pow(linear.y, 0.416666666666667)*1.055 - 0.055 : linear.y*12.92, linear.z > 0.00313066844250063 ? pow(linear.z, 0.416666666666667)*1.055 - 0.055 : linear.z*12.92 ); } // https://www.w3.org/Graphics/Color/srgb22 #define RS 0.2126 #define GS 0.7152 #define BS 0.0722 vec3 rgb2vry(vec3 rgb) { if (NOGAMMA) return rgb; // https://en.wikipedia.org/wiki/Opponent_process vec3 linear = srgb2linear(rgb); // https://en.wikipedia.org/wiki/Lightness#Relationship_between_lightness.2C_value.2C_and_relative_luminance // "scientists eventually converged on a roughly cube-root curve" // CIE does the same thing. vec3 vry = vec3( pow(linear.x*RS + linear.y*GS + linear.z*BS, 0.333333333333333), linear.x - linear.y, (linear.x + linear.y) * 0.5 - linear.z ); return vry; } vec3 vry2rgb(vec3 vry) { if (NOGAMMA) return vry; // Magic. float t = pow(vry.x, 3); vec3 rgb = vec3( t + vry.y*(GS + BS * 0.5) + vry.z*BS, t - vry.y*(RS + BS * 0.5) + vry.z*BS, t + vry.y*(GS * 0.5 - RS * 0.5) - vry.z*(RS+GS) ); return linear2srgb(rgb); } vec3 vry_interp(vec3 first, vec3 second, float frac) { if (NOGAMMA) return first*NOT(frac) + second*YES(frac); // Because the chroma values were generated on linear light, but the luma must be interpolated in perceptual gamma (3) // it can cause out-of-gamut oversaturated values, since the chroma field is not a fixed size as luma values change. // To compensate, we can "pull" the chroma interpolation path in the opposite way the luma path is curved. float new_luma = first.x*NOT(frac) + second.x*YES(frac); float linear_span = pow(second.x, 3) - pow(first.x, 3); if (linear_span == 0) linear_span = 1; float luma_fraction = (pow(new_luma, 3) - pow(first.x, 3)) / linear_span; return vec3(new_luma, first.y*NOT(luma_fraction) + second.y*YES(luma_fraction), first.z*NOT(luma_fraction) + second.z*YES(luma_fraction) ); } vec3 percent(float ssize, float tsize, float coord) { if (BILINEAR) tsize = ssize; float minfull = (coord*tsize - 0.5)/tsize*ssize; float maxfull = (coord*tsize + 0.5)/tsize*ssize; float realfull = floor(maxfull); if (minfull > realfull) { return vec3(1, (realfull + 0.5)/ssize, (realfull + 0.5)/ssize); } return vec3( (maxfull - realfull) / (maxfull - minfull), (realfull - 0.5) / ssize, (realfull + 0.5) / ssize ); } void main() { vec2 viewportSize = global.OutputSize.xy; vec2 gameCoord = vTexCoord; if (MASKING) { float hscale = viewportSize.x/global.SourceSize.x; float vscale = viewportSize.y/global.SourceSize.y; viewportSize.x += hscale*16; viewportSize.y += vscale*16; gameCoord.x = (8 + gameCoord.x*global.SourceSize.x)/(global.SourceSize.x + 16); gameCoord.y = (8 + gameCoord.y*global.SourceSize.y)/(global.SourceSize.y + 16); } vec3 xstuff = percent(global.SourceSize.x, viewportSize.x, gameCoord.x); vec3 ystuff = percent(global.SourceSize.y, viewportSize.y, gameCoord.y); float xkeep = xstuff[0]; float ykeep = ystuff[0]; // get points to interpoflate across in pseudo-perceptual colorspace vec3 a = rgb2vry(texture(Source, vec2(xstuff[1], ystuff[1])).rgb); vec3 b = rgb2vry(texture(Source, vec2(xstuff[2], ystuff[1])).rgb); vec3 c = rgb2vry(texture(Source, vec2(xstuff[1], ystuff[2])).rgb); vec3 d = rgb2vry(texture(Source, vec2(xstuff[2], ystuff[2])).rgb); // interpolate vec3 x1 = vry_interp(a, b, xkeep); vec3 x2 = vry_interp(c, d, xkeep); vec3 result = vry_interp(x1, x2, ykeep); // convert back to sRGB and return FragColor = vec4(vry2rgb(result), 1); }