#version 450 layout(push_constant) uniform Push { vec4 OutputSize; vec4 OriginalSize; vec4 SourceSize; uint FrameCount; float interlace_bff; float force_noninterlaced; float interlace_1080; } registers; layout(std140, set = 0, binding = 0) uniform UBO { mat4 MVP; } global; #pragma parameter interlace_bff "Interlacing BFF" 0.0 0.0 1.0 1.0 #pragma parameter force_noninterlaced "Force Non-interlaced" 0.0 0.0 1.0 1.0 #pragma parameter interlace_1080 "1080 is Interlaced" 0.0 0.0 1.0 1.0 /* Deinterlacing Author: Trogglemonkey, isolated from crt-royale by hunterk License: GPLv2 */ bool is_interlaced(float num_lines) { // Detect interlacing based on the number of lines in the source. // NTSC: 525 lines, 262.5/field; 486 active (2 half-lines), 243/field // NTSC Emulators: Typically 224 or 240 lines // PAL: 625 lines, 312.5/field; 576 active (typical), 288/field // PAL Emulators: ? // ATSC: 720p, 1080i, 1080p // Where do we place our cutoffs? Assumptions: // 1.) We only need to care about active lines. // 2.) Anything > 288 and <= 576 lines is probably interlaced. // 3.) Anything > 576 lines is probably not interlaced... // 4.) ...except 1080 lines, which is a crapshoot (user decision). // 5.) Just in case the main program uses calculated video sizes, // we should nudge the float thresholds a bit. bool sd_interlace = ((num_lines > 288.5) && (num_lines < 576.5) && (registers.force_noninterlaced < 0.5)); bool hd_interlace = (registers.interlace_1080 > 0.5); return (sd_interlace || hd_interlace); } vec3 tex2D_linearize(sampler2D tex, vec2 uv){ return pow(texture(tex, uv).rgb, vec3(2.2)); } #pragma stage vertex layout(location = 0) in vec4 Position; layout(location = 1) in vec2 TexCoord; layout(location = 0) out vec2 vTexCoord; layout(location = 1) out float interlaced; void main() { gl_Position = global.MVP * Position; vTexCoord = TexCoord; interlaced = is_interlaced(registers.SourceSize.y) ? 1.0 : 0.0; } #pragma stage fragment layout(location = 0) in vec2 vTexCoord; layout(location = 1) in float interlaced; layout(location = 0) out vec4 FragColor; layout(set = 0, binding = 2) uniform sampler2D Source; void main() { const vec2 v_step = vec2(0.0, registers.SourceSize.w); const vec3 curr_line = tex2D_linearize( Source, vTexCoord).rgb; const vec3 last_line = tex2D_linearize( Source, vTexCoord - v_step).rgb; const vec3 next_line = tex2D_linearize( Source, vTexCoord + v_step).rgb; const vec3 interpolated_line = 0.5 * (last_line + next_line); // If we're interlacing, determine which field curr_line is in: const float modulus = interlaced + 1.0; const float field_offset = mod(registers.FrameCount + registers.interlace_bff, modulus); const float curr_line_texel = vTexCoord.y * registers.SourceSize.y; // Use under_half to fix a rounding bug around exact texel locations. const float line_num_last = floor(curr_line_texel - 0.4995); const float wrong_field = mod(line_num_last + field_offset, modulus); // Select the correct color, and output the result: const vec3 color = mix(curr_line, interpolated_line, wrong_field); FragColor = vec4(pow(color, vec3(1.0 / 2.2)), 1.0); }