mirror of
https://github.com/italicsjenga/slang-shaders.git
synced 2024-11-26 01:11:32 +11:00
469 lines
18 KiB
Plaintext
469 lines
18 KiB
Plaintext
#version 450
|
|
|
|
layout(push_constant) uniform Push
|
|
{
|
|
vec4 SourceSize;
|
|
vec4 OriginalSize;
|
|
vec4 OutputSize;
|
|
uint FrameCount;
|
|
} params;
|
|
|
|
layout(std140, set = 0, binding = 0) uniform UBO
|
|
{
|
|
mat4 MVP;
|
|
} global;
|
|
|
|
#include "smaa-common.h"
|
|
|
|
#pragma stage vertex
|
|
layout(location = 0) in vec4 Position;
|
|
layout(location = 1) in vec2 TexCoord;
|
|
layout(location = 0) out vec2 texcoord;
|
|
layout(location = 1) out vec2 pixcoord;
|
|
layout(location = 2) out vec4 offset[3];
|
|
|
|
void main()
|
|
{
|
|
gl_Position = global.MVP * Position;
|
|
texcoord = TexCoord;
|
|
|
|
pixcoord = texcoord * SMAA_RT_METRICS.zw;
|
|
|
|
// We will use these offsets for the searches later on (see @PSEUDO_GATHER4):
|
|
offset[0] = fma(SMAA_RT_METRICS.xyxy, vec4(-0.25, -0.125, 1.25, -0.125), texcoord.xyxy);
|
|
offset[1] = fma(SMAA_RT_METRICS.xyxy, vec4(-0.125, -0.25, -0.125, 1.25), texcoord.xyxy);
|
|
|
|
// And these for the searches, they indicate the ends of the loops:
|
|
offset[2] = fma(SMAA_RT_METRICS.xxyy,
|
|
vec4(-2.0, 2.0, -2.0, 2.0) * float(SMAA_MAX_SEARCH_STEPS),
|
|
vec4(offset[0].xz, offset[1].yw));
|
|
}
|
|
|
|
#pragma stage fragment
|
|
layout(location = 0) in vec2 texcoord;
|
|
layout(location = 1) in vec2 pixcoord;
|
|
layout(location = 2) in vec4 offset[3];
|
|
layout(location = 0) out vec4 FragColor;
|
|
layout(set = 0, binding = 2) uniform sampler2D Source;
|
|
layout(set = 0, binding = 3) uniform sampler2D areaTex;
|
|
layout(set = 0, binding = 4) uniform sampler2D searchTex;
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Blending Weight Calculation Pixel Shader (Second Pass)
|
|
|
|
/**
|
|
* Allows to decode two binary values from a bilinear-filtered access.
|
|
*/
|
|
vec2 SMAADecodeDiagBilinearAccess(vec2 e) {
|
|
// Bilinear access for fetching 'e' have a 0.25 offset, and we are
|
|
// interested in the R and G edges:
|
|
//
|
|
// +---G---+-------+
|
|
// | x o R x |
|
|
// +-------+-------+
|
|
//
|
|
// Then, if one of these edge is enabled:
|
|
// Red: (0.75 * X + 0.25 * 1) => 0.25 or 1.0
|
|
// Green: (0.75 * 1 + 0.25 * X) => 0.75 or 1.0
|
|
//
|
|
// This function will unpack the values (mad + mul + round):
|
|
// wolframalpha.com: round(x * abs(5 * x - 5 * 0.75)) plot 0 to 1
|
|
e.r = e.r * abs(5.0 * e.r - 5.0 * 0.75);
|
|
return round(e);
|
|
}
|
|
|
|
vec4 SMAADecodeDiagBilinearAccess(vec4 e) {
|
|
e.rb = e.rb * abs(5.0 * e.rb - 5.0 * 0.75);
|
|
return round(e);
|
|
}
|
|
|
|
/**
|
|
* These functions allows to perform diagonal pattern searches.
|
|
*/
|
|
vec2 SMAASearchDiag1(sampler2D edgesTex, vec2 texcoord, vec2 dir, out vec2 e) {
|
|
vec4 coord = vec4(texcoord, -1.0, 1.0);
|
|
vec3 t = vec3(SMAA_RT_METRICS.xy, 1.0);
|
|
while (coord.z < float(SMAA_MAX_SEARCH_STEPS_DIAG - 1) &&
|
|
coord.w > 0.9) {
|
|
coord.xyz = fma(t, vec3(dir, 1.0), coord.xyz);
|
|
e = textureLod(edgesTex, coord.xy, 0.0).rg;
|
|
coord.w = dot(e, vec2(0.5, 0.5));
|
|
}
|
|
return coord.zw;
|
|
}
|
|
|
|
vec2 SMAASearchDiag2(sampler2D edgesTex, vec2 texcoord, vec2 dir, out vec2 e) {
|
|
vec4 coord = vec4(texcoord, -1.0, 1.0);
|
|
coord.x += 0.25 * SMAA_RT_METRICS.x; // See @SearchDiag2Optimization
|
|
vec3 t = vec3(SMAA_RT_METRICS.xy, 1.0);
|
|
while (coord.z < float(SMAA_MAX_SEARCH_STEPS_DIAG - 1) &&
|
|
coord.w > 0.9) {
|
|
coord.xyz = fma(t, vec3(dir, 1.0), coord.xyz);
|
|
|
|
// @SearchDiag2Optimization
|
|
// Fetch both edges at once using bilinear filtering:
|
|
e = textureLod(edgesTex, coord.xy, 0.0).rg;
|
|
e = SMAADecodeDiagBilinearAccess(e);
|
|
|
|
// Non-optimized version:
|
|
// e.g = textureLod(edgesTex, coord.xy, 0.0).g;
|
|
// e.r = textureLod(edgesTex, coord.xy, ivec2(1, 0)).r;
|
|
|
|
coord.w = dot(e, vec2(0.5, 0.5));
|
|
}
|
|
return coord.zw;
|
|
}
|
|
|
|
/**
|
|
* Similar to SMAAArea, this calculates the area corresponding to a certain
|
|
* diagonal distance and crossing edges 'e'.
|
|
*/
|
|
vec2 SMAAAreaDiag(sampler2D areaTex, vec2 dist, vec2 e, float offset) {
|
|
vec2 texcoord = fma(vec2(SMAA_AREATEX_MAX_DISTANCE_DIAG, SMAA_AREATEX_MAX_DISTANCE_DIAG), e, dist);
|
|
|
|
// We do a scale and bias for mapping to texel space:
|
|
texcoord = fma(SMAA_AREATEX_PIXEL_SIZE, texcoord, 0.5 * SMAA_AREATEX_PIXEL_SIZE);
|
|
|
|
// Diagonal areas are on the second half of the texture:
|
|
texcoord.x += 0.5;
|
|
|
|
// Move to proper place, according to the subpixel offset:
|
|
texcoord.y += SMAA_AREATEX_SUBTEX_SIZE * offset;
|
|
|
|
// Do it!
|
|
return SMAA_AREATEX_SELECT(textureLod(areaTex, texcoord, 0.0));
|
|
}
|
|
|
|
/**
|
|
* This searches for diagonal patterns and returns the corresponding weights.
|
|
*/
|
|
vec2 SMAACalculateDiagWeights(sampler2D edgesTex, sampler2D areaTex, vec2 texcoord, vec2 e, vec4 subsampleIndices) {
|
|
vec2 weights = vec2(0.0, 0.0);
|
|
|
|
// Search for the line ends:
|
|
vec4 d;
|
|
vec2 end;
|
|
if (e.r > 0.0) {
|
|
d.xz = SMAASearchDiag1(edgesTex, texcoord, vec2(-1.0, 1.0), end);
|
|
d.x += float(end.y > 0.9);
|
|
} else
|
|
d.xz = vec2(0.0, 0.0);
|
|
d.yw = SMAASearchDiag1(edgesTex, texcoord, vec2(1.0, -1.0), end);
|
|
|
|
// SMAA_BRANCH
|
|
if (d.x + d.y > 2.0) { // d.x + d.y + 1 > 3
|
|
// Fetch the crossing edges:
|
|
vec4 coords = fma(vec4(-d.x + 0.25, d.x, d.y, -d.y - 0.25), SMAA_RT_METRICS.xyxy, texcoord.xyxy);
|
|
vec4 c;
|
|
c.xy = textureLodOffset(edgesTex, coords.xy, 0.0, ivec2(-1, 0)).rg;
|
|
c.zw = textureLodOffset(edgesTex, coords.zw, 0.0, ivec2( 1, 0)).rg;
|
|
c.yxwz = SMAADecodeDiagBilinearAccess(c.xyzw);
|
|
|
|
// Non-optimized version:
|
|
// vec4 coords = fma(vec4(-d.x, d.x, d.y, -d.y), SMAA_RT_METRICS.xyxy, texcoord.xyxy);
|
|
// vec4 c;
|
|
// c.x = textureLodOffset(edgesTex, coords.xy, 0.0, ivec2(-1, 0)).g;
|
|
// c.y = textureLodOffset(edgesTex, coords.xy, 0.0, ivec2( 0, 0)).r;
|
|
// c.z = textureLodOffset(edgesTex, coords.zw, 0.0, ivec2( 1, 0)).g;
|
|
// c.w = textureLodOffset(edgesTex, coords.zw, 0.0, ivec2( 1, -1)).r;
|
|
|
|
// Merge crossing edges at each side into a single value:
|
|
vec2 cc = fma(vec2(2.0, 2.0), c.xz, c.yw);
|
|
|
|
// Remove the crossing edge if we didn't found the end of the line:
|
|
SMAAMovc(bvec2(step(0.9, d.zw)), cc, vec2(0.0, 0.0));
|
|
|
|
// Fetch the areas for this line:
|
|
weights += SMAAAreaDiag(areaTex, d.xy, cc, subsampleIndices.z);
|
|
}
|
|
|
|
// Search for the line ends:
|
|
d.xz = SMAASearchDiag2(edgesTex, texcoord, vec2(-1.0, -1.0), end);
|
|
if (textureLodOffset(edgesTex, texcoord, 0.0, ivec2(1, 0)).r > 0.0) {
|
|
d.yw = SMAASearchDiag2(edgesTex, texcoord, vec2(1.0, 1.0), end);
|
|
d.y += float(end.y > 0.9);
|
|
} else
|
|
d.yw = vec2(0.0, 0.0);
|
|
|
|
// SMAA_BRANCH
|
|
if (d.x + d.y > 2.0) { // d.x + d.y + 1 > 3
|
|
// Fetch the crossing edges:
|
|
vec4 coords = fma(vec4(-d.x, -d.x, d.y, d.y), SMAA_RT_METRICS.xyxy, texcoord.xyxy);
|
|
vec4 c;
|
|
c.x = textureLodOffset(edgesTex, coords.xy, 0.0, ivec2(-1, 0)).g;
|
|
c.y = textureLodOffset(edgesTex, coords.xy, 0.0, ivec2( 0, -1)).r;
|
|
c.zw = textureLodOffset(edgesTex, coords.zw, 0.0, ivec2( 1, 0)).gr;
|
|
vec2 cc = fma(vec2(2.0, 2.0), c.xz, c.yw);
|
|
|
|
// Remove the crossing edge if we didn't found the end of the line:
|
|
SMAAMovc(bvec2(step(0.9, d.zw)), cc, vec2(0.0, 0.0));
|
|
|
|
// Fetch the areas for this line:
|
|
weights += SMAAAreaDiag(areaTex, d.xy, cc, subsampleIndices.w).gr;
|
|
}
|
|
|
|
return weights;
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Horizontal/Vertical Search Functions
|
|
|
|
/**
|
|
* This allows to determine how much length should we add in the last step
|
|
* of the searches. It takes the bilinearly interpolated edge (see
|
|
* @PSEUDO_GATHER4), and adds 0, 1 or 2, depending on which edges and
|
|
* crossing edges are active.
|
|
*/
|
|
float SMAASearchLength(sampler2D searchTex, vec2 e, float offset) {
|
|
// The texture is flipped vertically, with left and right cases taking half
|
|
// of the space horizontally:
|
|
vec2 scale = SMAA_SEARCHTEX_SIZE * vec2(0.5, -1.0);
|
|
vec2 bias = SMAA_SEARCHTEX_SIZE * vec2(offset, 1.0);
|
|
|
|
// Scale and bias to access texel centers:
|
|
scale += vec2(-1.0, 1.0);
|
|
bias += vec2( 0.5, -0.5);
|
|
|
|
// Convert from pixel coordinates to texcoords:
|
|
// (We use SMAA_SEARCHTEX_PACKED_SIZE because the texture is cropped)
|
|
scale *= 1.0 / SMAA_SEARCHTEX_PACKED_SIZE;
|
|
bias *= 1.0 / SMAA_SEARCHTEX_PACKED_SIZE;
|
|
|
|
// Lookup the search texture:
|
|
return SMAA_SEARCHTEX_SELECT(textureLod(searchTex, fma(scale, e, bias), 0.0));
|
|
}
|
|
|
|
/**
|
|
* Horizontal/vertical search functions for the 2nd pass.
|
|
*/
|
|
float SMAASearchXLeft(sampler2D edgesTex, sampler2D searchTex, vec2 texcoord, float end) {
|
|
/**
|
|
* @PSEUDO_GATHER4
|
|
* This texcoord has been offset by (-0.25, -0.125) in the vertex shader to
|
|
* sample between edge, thus fetching four edges in a row.
|
|
* Sampling with different offsets in each direction allows to disambiguate
|
|
* which edges are active from the four fetched ones.
|
|
*/
|
|
vec2 e = vec2(0.0, 1.0);
|
|
while (texcoord.x > end &&
|
|
e.g > 0.8281 && // Is there some edge not activated?
|
|
e.r == 0.0) { // Or is there a crossing edge that breaks the line?
|
|
e = textureLod(edgesTex, texcoord, 0.0).rg;
|
|
texcoord = fma(-vec2(2.0, 0.0), SMAA_RT_METRICS.xy, texcoord);
|
|
}
|
|
|
|
float offset = fma(-(255.0 / 127.0), SMAASearchLength(searchTex, e, 0.0), 3.25);
|
|
return fma(SMAA_RT_METRICS.x, offset, texcoord.x);
|
|
|
|
// Non-optimized version:
|
|
// We correct the previous (-0.25, -0.125) offset we applied:
|
|
// texcoord.x += 0.25 * SMAA_RT_METRICS.x;
|
|
|
|
// The searches are bias by 1, so adjust the coords accordingly:
|
|
// texcoord.x += SMAA_RT_METRICS.x;
|
|
|
|
// Disambiguate the length added by the last step:
|
|
// texcoord.x += 2.0 * SMAA_RT_METRICS.x; // Undo last step
|
|
// texcoord.x -= SMAA_RT_METRICS.x * (255.0 / 127.0) * SMAASearchLength(searchTex, e, 0.0);
|
|
// return fma(SMAA_RT_METRICS.x, offset, texcoord.x);
|
|
}
|
|
|
|
float SMAASearchXRight(sampler2D edgesTex, sampler2D searchTex, vec2 texcoord, float end) {
|
|
vec2 e = vec2(0.0, 1.0);
|
|
while (texcoord.x < end &&
|
|
e.g > 0.8281 && // Is there some edge not activated?
|
|
e.r == 0.0) { // Or is there a crossing edge that breaks the line?
|
|
e = textureLod(edgesTex, texcoord, 0.0).rg;
|
|
texcoord = fma(vec2(2.0, 0.0), SMAA_RT_METRICS.xy, texcoord);
|
|
}
|
|
float offset = fma(-(255.0 / 127.0), SMAASearchLength(searchTex, e, 0.5), 3.25);
|
|
return fma(-SMAA_RT_METRICS.x, offset, texcoord.x);
|
|
}
|
|
|
|
float SMAASearchYUp(sampler2D edgesTex, sampler2D searchTex, vec2 texcoord, float end) {
|
|
vec2 e = vec2(1.0, 0.0);
|
|
while (texcoord.y > end &&
|
|
e.r > 0.8281 && // Is there some edge not activated?
|
|
e.g == 0.0) { // Or is there a crossing edge that breaks the line?
|
|
e = textureLod(edgesTex, texcoord, 0.0).rg;
|
|
texcoord = fma(-vec2(0.0, 2.0), SMAA_RT_METRICS.xy, texcoord);
|
|
}
|
|
float offset = fma(-(255.0 / 127.0), SMAASearchLength(searchTex, e.gr, 0.0), 3.25);
|
|
return fma(SMAA_RT_METRICS.y, offset, texcoord.y);
|
|
}
|
|
|
|
float SMAASearchYDown(sampler2D edgesTex, sampler2D searchTex, vec2 texcoord, float end) {
|
|
vec2 e = vec2(1.0, 0.0);
|
|
while (texcoord.y < end &&
|
|
e.r > 0.8281 && // Is there some edge not activated?
|
|
e.g == 0.0) { // Or is there a crossing edge that breaks the line?
|
|
e = textureLod(edgesTex, texcoord, 0.0).rg;
|
|
texcoord = fma(vec2(0.0, 2.0), SMAA_RT_METRICS.xy, texcoord);
|
|
}
|
|
float offset = fma(-(255.0 / 127.0), SMAASearchLength(searchTex, e.gr, 0.5), 3.25);
|
|
return fma(-SMAA_RT_METRICS.y, offset, texcoord.y);
|
|
}
|
|
|
|
/**
|
|
* Ok, we have the distance and both crossing edges. So, what are the areas
|
|
* at each side of current edge?
|
|
*/
|
|
vec2 SMAAArea(sampler2D areaTex, vec2 dist, float e1, float e2, float offset) {
|
|
// Rounding prevents precision errors of bilinear filtering:
|
|
vec2 texcoord = fma(vec2(SMAA_AREATEX_MAX_DISTANCE, SMAA_AREATEX_MAX_DISTANCE), round(4.0 * vec2(e1, e2)), dist);
|
|
|
|
// We do a scale and bias for mapping to texel space:
|
|
texcoord = fma(SMAA_AREATEX_PIXEL_SIZE, texcoord, 0.5 * SMAA_AREATEX_PIXEL_SIZE);
|
|
|
|
// Move to proper place, according to the subpixel offset:
|
|
texcoord.y = fma(SMAA_AREATEX_SUBTEX_SIZE, offset, texcoord.y);
|
|
|
|
// Do it!
|
|
return SMAA_AREATEX_SELECT(textureLod(areaTex, texcoord, 0.0));
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Corner Detection Functions
|
|
|
|
void SMAADetectHorizontalCornerPattern(sampler2D edgesTex, inout vec2 weights, vec4 texcoord, vec2 d) {
|
|
#if !defined(SMAA_DISABLE_CORNER_DETECTION)
|
|
vec2 leftRight = step(d.xy, d.yx);
|
|
vec2 rounding = (1.0 - SMAA_CORNER_ROUNDING_NORM) * leftRight;
|
|
|
|
rounding /= leftRight.x + leftRight.y; // Reduce blending for pixels in the center of a line.
|
|
|
|
vec2 factor = vec2(1.0, 1.0);
|
|
factor.x -= rounding.x * textureLodOffset(edgesTex, texcoord.xy, 0.0, ivec2(0, 1)).r;
|
|
factor.x -= rounding.y * textureLodOffset(edgesTex, texcoord.zw, 0.0, ivec2(1, 1)).r;
|
|
factor.y -= rounding.x * textureLodOffset(edgesTex, texcoord.xy, 0.0, ivec2(0, -2)).r;
|
|
factor.y -= rounding.y * textureLodOffset(edgesTex, texcoord.zw, 0.0, ivec2(1, -2)).r;
|
|
|
|
weights *= clamp(factor, 0.0, 1.0);
|
|
#endif
|
|
}
|
|
|
|
void SMAADetectVerticalCornerPattern(sampler2D edgesTex, inout vec2 weights, vec4 texcoord, vec2 d) {
|
|
#if !defined(SMAA_DISABLE_CORNER_DETECTION)
|
|
vec2 leftRight = step(d.xy, d.yx);
|
|
vec2 rounding = (1.0 - SMAA_CORNER_ROUNDING_NORM) * leftRight;
|
|
|
|
rounding /= leftRight.x + leftRight.y;
|
|
|
|
vec2 factor = vec2(1.0, 1.0);
|
|
factor.x -= rounding.x * textureLodOffset(edgesTex, texcoord.xy, 0.0, ivec2( 1, 0)).g;
|
|
factor.x -= rounding.y * textureLodOffset(edgesTex, texcoord.zw, 0.0, ivec2( 1, 1)).g;
|
|
factor.y -= rounding.x * textureLodOffset(edgesTex, texcoord.xy, 0.0, ivec2(-2, 0)).g;
|
|
factor.y -= rounding.y * textureLodOffset(edgesTex, texcoord.zw, 0.0, ivec2(-2, 1)).g;
|
|
|
|
weights *= clamp(factor, 0.0, 1.0);
|
|
#endif
|
|
}
|
|
|
|
vec4 SMAABlendingWeightCalculationPS(vec2 texcoord,
|
|
vec2 pixcoord,
|
|
vec4 offset[3],
|
|
sampler2D edgesTex,
|
|
sampler2D areaTex,
|
|
sampler2D searchTex,
|
|
vec4 subsampleIndices) { // Just pass zero for SMAA 1x, see @SUBSAMPLE_INDICES.
|
|
vec4 weights = vec4(0.0, 0.0, 0.0, 0.0);
|
|
|
|
vec2 e = texture(edgesTex, texcoord).rg;
|
|
|
|
// SMAA_BRANCH
|
|
if (e.g > 0.0) { // Edge at north
|
|
#if !defined(SMAA_DISABLE_DIAG_DETECTION)
|
|
// Diagonals have both north and west edges, so searching for them in
|
|
// one of the boundaries is enough.
|
|
weights.rg = SMAACalculateDiagWeights(edgesTex, areaTex, texcoord, e, subsampleIndices);
|
|
|
|
// We give priority to diagonals, so if we find a diagonal we skip
|
|
// horizontal/vertical processing.
|
|
// SMAA_BRANCH
|
|
if (weights.r == -weights.g) { // weights.r + weights.g == 0.0
|
|
#endif
|
|
|
|
vec2 d;
|
|
|
|
// Find the distance to the left:
|
|
vec3 coords;
|
|
coords.x = SMAASearchXLeft(edgesTex, searchTex, offset[0].xy, offset[2].x);
|
|
coords.y = offset[1].y; // offset[1].y = texcoord.y - 0.25 * SMAA_RT_METRICS.y (@CROSSING_OFFSET)
|
|
d.x = coords.x;
|
|
|
|
// Now fetch the left crossing edges, two at a time using bilinear
|
|
// filtering. Sampling at -0.25 (see @CROSSING_OFFSET) enables to
|
|
// discern what value each edge has:
|
|
float e1 = textureLod(edgesTex, coords.xy, 0.0).r;
|
|
|
|
// Find the distance to the right:
|
|
coords.z = SMAASearchXRight(edgesTex, searchTex, offset[0].zw, offset[2].y);
|
|
d.y = coords.z;
|
|
|
|
// We want the distances to be in pixel units (doing this here allow to
|
|
// better interleave arithmetic and memory accesses):
|
|
d = abs(round(fma(SMAA_RT_METRICS.zz, d, -pixcoord.xx)));
|
|
|
|
// SMAAArea below needs a sqrt, as the areas texture is compressed
|
|
// quadratically:
|
|
vec2 sqrt_d = sqrt(d);
|
|
|
|
// Fetch the right crossing edges:
|
|
float e2 = textureLodOffset(edgesTex, coords.zy, 0.0, ivec2(1, 0)).r;
|
|
|
|
// Ok, we know how this pattern looks like, now it is time for getting
|
|
// the actual area:
|
|
weights.rg = SMAAArea(areaTex, sqrt_d, e1, e2, subsampleIndices.y);
|
|
|
|
// Fix corners:
|
|
coords.y = texcoord.y;
|
|
SMAADetectHorizontalCornerPattern(edgesTex, weights.rg, coords.xyzy, d);
|
|
|
|
#if !defined(SMAA_DISABLE_DIAG_DETECTION)
|
|
} else
|
|
e.r = 0.0; // Skip vertical processing.
|
|
#endif
|
|
}
|
|
|
|
// SMAA_BRANCH
|
|
if (e.r > 0.0) { // Edge at west
|
|
vec2 d;
|
|
|
|
// Find the distance to the top:
|
|
vec3 coords;
|
|
coords.y = SMAASearchYUp(edgesTex, searchTex, offset[1].xy, offset[2].z);
|
|
coords.x = offset[0].x; // offset[1].x = texcoord.x - 0.25 * SMAA_RT_METRICS.x;
|
|
d.x = coords.y;
|
|
|
|
// Fetch the top crossing edges:
|
|
float e1 = textureLod(edgesTex, coords.xy, 0.0).g;
|
|
|
|
// Find the distance to the bottom:
|
|
coords.z = SMAASearchYDown(edgesTex, searchTex, offset[1].zw, offset[2].w);
|
|
d.y = coords.z;
|
|
|
|
// We want the distances to be in pixel units:
|
|
d = abs(round(fma(SMAA_RT_METRICS.ww, d, -pixcoord.yy)));
|
|
|
|
// SMAAArea below needs a sqrt, as the areas texture is compressed
|
|
// quadratically:
|
|
vec2 sqrt_d = sqrt(d);
|
|
|
|
// Fetch the bottom crossing edges:
|
|
float e2 = textureLodOffset(edgesTex, coords.xz, 0.0, ivec2(0, 1)).g;
|
|
|
|
// Get the area for this direction:
|
|
weights.ba = SMAAArea(areaTex, sqrt_d, e1, e2, subsampleIndices.x);
|
|
|
|
// Fix corners:
|
|
coords.x = texcoord.x;
|
|
SMAADetectVerticalCornerPattern(edgesTex, weights.ba, coords.xyxz, d);
|
|
}
|
|
|
|
return weights;
|
|
}
|
|
|
|
void main()
|
|
{
|
|
FragColor = SMAABlendingWeightCalculationPS(texcoord, pixcoord, offset, Source, areaTex, searchTex, vec4(0.0));
|
|
} |