mirror of
https://github.com/italicsjenga/slang-shaders.git
synced 2024-11-24 00:21:31 +11:00
170 lines
6.9 KiB
Plaintext
Executable file
170 lines
6.9 KiB
Plaintext
Executable file
#version 450
|
|
|
|
///////////////////////////// GPL LICENSE NOTICE /////////////////////////////
|
|
|
|
// crt-royale: A full-featured CRT shader, with cheese.
|
|
// Copyright (C) 2014 TroggleMonkey <trogglemonkey@gmx.com>
|
|
//
|
|
// This program is free software; you can redistribute it and/or modify it
|
|
// under the terms of the GNU General Public License as published by the Free
|
|
// Software Foundation; either version 2 of the License, or any later version.
|
|
//
|
|
// This program is distributed in the hope that it will be useful, but WITHOUT
|
|
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
// more details.
|
|
//
|
|
// You should have received a copy of the GNU General Public License along with
|
|
// this program; if not, write to the Free Software Foundation, Inc., 59 Temple
|
|
// Place, Suite 330, Boston, MA 02111-1307 USA
|
|
|
|
layout(push_constant) uniform Push
|
|
{
|
|
vec4 SourceSize;
|
|
vec4 OriginalSize;
|
|
vec4 OutputSize;
|
|
uint FrameCount;
|
|
} params;
|
|
|
|
///////////////////////////// SETTINGS MANAGEMENT ////////////////////////////
|
|
|
|
#include "../../../../include/compat_macros.inc"
|
|
#include "../user-settings.h"
|
|
#include "derived-settings-and-constants.h"
|
|
#include "bind-shader-params.h"
|
|
|
|
////////////////////////////////// INCLUDES //////////////////////////////////
|
|
|
|
#include "phosphor-mask-resizing.h"
|
|
|
|
#pragma stage vertex
|
|
layout(location = 0) in vec4 Position;
|
|
layout(location = 1) in vec2 TexCoord;
|
|
layout(location = 0) out vec2 src_tex_uv_wrap;
|
|
layout(location = 1) out vec2 resize_magnification_scale;
|
|
|
|
void main()
|
|
{
|
|
gl_Position = global.MVP * Position;
|
|
float2 tex_uv = TexCoord;
|
|
// First estimate the viewport size (the user will get the wrong number of
|
|
// triads if it's wrong and mask_specify_num_triads is 1.0/true).
|
|
const float viewport_y = IN.output_size.y / mask_resize_viewport_scale.y;
|
|
const float aspect_ratio = geom_aspect_ratio_x / geom_aspect_ratio_y;
|
|
const float2 estimated_viewport_size =
|
|
float2(viewport_y * aspect_ratio, viewport_y);
|
|
// Estimate the output size of MASK_RESIZE (the next pass). The estimated
|
|
// x component shouldn't matter, because we're not using the x result, and
|
|
// we're not swearing it's correct (if we did, the x result would influence
|
|
// the y result to maintain the tile aspect ratio).
|
|
const float2 estimated_mask_resize_output_size =
|
|
float2(IN.output_size.y * aspect_ratio, IN.output_size.y);
|
|
// Find the final intended [y] size of our resized phosphor mask tiles,
|
|
// then the tile size for the current pass (resize y only):
|
|
float2 mask_resize_tile_size = get_resized_mask_tile_size(
|
|
estimated_viewport_size, estimated_mask_resize_output_size, false);
|
|
float2 pass_output_tile_size = float2(min(
|
|
mask_resize_src_lut_size.x, IN.output_size.x), mask_resize_tile_size.y);
|
|
|
|
// We'll render resized tiles until filling the output FBO or meeting a
|
|
// limit, so compute [wrapped] tile uv coords based on the output uv coords
|
|
// and the number of tiles that will fit in the FBO.
|
|
const float2 output_tiles_this_pass = IN.output_size / pass_output_tile_size;
|
|
const float2 output_video_uv = tex_uv * IN.texture_size / IN.video_size;
|
|
const float2 tile_uv_wrap = output_video_uv * output_tiles_this_pass;
|
|
|
|
// The input LUT is just a single mask tile, so texture uv coords are the
|
|
// same as tile uv coords (save frac() for the fragment shader). The
|
|
// magnification scale is also straightforward:
|
|
src_tex_uv_wrap = tile_uv_wrap;
|
|
resize_magnification_scale =
|
|
pass_output_tile_size / mask_resize_src_lut_size;
|
|
}
|
|
|
|
#pragma stage fragment
|
|
layout(location = 0) in vec2 src_tex_uv_wrap;
|
|
layout(location = 1) in vec2 resize_magnification_scale;
|
|
layout(location = 0) out vec4 FragColor;
|
|
layout(set = 0, binding = 2) uniform sampler2D Source;
|
|
#ifdef PHOSPHOR_MASK_RESIZE_MIPMAPPED_LUT
|
|
layout(set = 0, binding = 3) uniform sampler2D mask_grille_texture_large;
|
|
layout(set = 0, binding = 4) uniform sampler2D mask_slot_texture_large;
|
|
layout(set = 0, binding = 5) uniform sampler2D mask_shadow_texture_large;
|
|
#else
|
|
layout(set = 0, binding = 3) uniform sampler2D mask_grille_texture_small;
|
|
layout(set = 0, binding = 4) uniform sampler2D mask_slot_texture_small;
|
|
layout(set = 0, binding = 5) uniform sampler2D mask_shadow_texture_small;
|
|
#endif
|
|
|
|
void main()
|
|
{
|
|
// Resize the input phosphor mask tile to the final vertical size it will
|
|
// appear on screen. Keep 1x horizontal size if possible (IN.output_size
|
|
// >= mask_resize_src_lut_size), and otherwise linearly sample horizontally
|
|
// to fit exactly one tile. Lanczos-resizing the phosphor mask achieves
|
|
// much sharper results than mipmapping, and vertically resizing first
|
|
// minimizes the total number of taps required. We output a number of
|
|
// resized tiles >= mask_resize_num_tiles for easier tiled sampling later.
|
|
//const float2 src_tex_uv_wrap = src_tex_uv_wrap;
|
|
#ifdef PHOSPHOR_MASK_MANUALLY_RESIZE
|
|
// Discard unneeded fragments in case our profile allows real branches.
|
|
const float2 tile_uv_wrap = src_tex_uv_wrap;
|
|
if(get_mask_sample_mode() < 0.5 &&
|
|
tile_uv_wrap.y <= mask_resize_num_tiles)
|
|
{
|
|
static const float src_dy = 1.0/mask_resize_src_lut_size.y;
|
|
const float2 src_tex_uv = frac(src_tex_uv_wrap);
|
|
float3 pixel_color;
|
|
// If mask_type is static, this branch will be resolved statically.
|
|
#ifdef PHOSPHOR_MASK_RESIZE_MIPMAPPED_LUT
|
|
if(mask_type < 0.5)
|
|
{
|
|
pixel_color = downsample_vertical_sinc_tiled(
|
|
mask_grille_texture_large, src_tex_uv, mask_resize_src_lut_size,
|
|
src_dy, resize_magnification_scale.y, 1.0);
|
|
}
|
|
else if(mask_type < 1.5)
|
|
{
|
|
pixel_color = downsample_vertical_sinc_tiled(
|
|
mask_slot_texture_large, src_tex_uv, mask_resize_src_lut_size,
|
|
src_dy, resize_magnification_scale.y, 1.0);
|
|
}
|
|
else
|
|
{
|
|
pixel_color = downsample_vertical_sinc_tiled(
|
|
mask_shadow_texture_large, src_tex_uv, mask_resize_src_lut_size,
|
|
src_dy, resize_magnification_scale.y, 1.0);
|
|
}
|
|
#else
|
|
if(mask_type < 0.5)
|
|
{
|
|
pixel_color = downsample_vertical_sinc_tiled(
|
|
mask_grille_texture_small, src_tex_uv, mask_resize_src_lut_size,
|
|
src_dy, resize_magnification_scale.y, 1.0);
|
|
}
|
|
else if(mask_type < 1.5)
|
|
{
|
|
pixel_color = downsample_vertical_sinc_tiled(
|
|
mask_slot_texture_small, src_tex_uv, mask_resize_src_lut_size,
|
|
src_dy, resize_magnification_scale.y, 1.0);
|
|
}
|
|
else
|
|
{
|
|
pixel_color = downsample_vertical_sinc_tiled(
|
|
mask_shadow_texture_small, src_tex_uv, mask_resize_src_lut_size,
|
|
src_dy, resize_magnification_scale.y, 1.0);
|
|
}
|
|
#endif
|
|
// The input LUT was linear RGB, and so is our output:
|
|
FragColor = float4(pixel_color, 1.0);
|
|
}
|
|
else
|
|
{
|
|
discard;
|
|
}
|
|
#else
|
|
discard;
|
|
FragColor = float4(1.0);
|
|
#endif
|
|
}
|