slang-shaders/bezel/koko-aio/shaders/includes/functions.include.slang
2023-04-13 17:16:48 +02:00

682 lines
23 KiB
Plaintext

// mix_step returns a or b, depending on the mix value.
// mix is supposed to have just 2 values, 1.0 or 0.0;
vec2 mix_step(vec2 a, vec2 b, float mix){
return (a * (1 - mix)) +
(b * mix) ;
}
vec3 mix_step(vec3 a, vec3 b, float mix){
return (a * (1 - mix)) +
(b * mix) ;
}
vec4 mix_step(vec4 a, vec4 b, float mix){
return (a * (1 - mix)) +
(b * mix) ;
}
float mix_step(float a, float b, float mix){
return (a * (1 - mix)) +
(b * mix) ;
}
//REFLECTION RELATED START
float circle_smooth(vec2 coords, vec2 middle, float f_radius, float FALLOFF) {
//Draw a circle with smoothed borders:
float fdistance=distance(middle, vec2(coords.x, coords.y));
float circle = (1-smoothstep(f_radius-FALLOFF, f_radius+FALLOFF, fdistance));
return circle;
}
float square_smooth(vec2 co, vec2 corner, float size, float smoothshade) {
//Draws a square with smooth borders:
vec4 rect = vec4(corner.x, corner.y, corner.x+size, corner.y+size);
vec2 hv = smoothstep(rect.xy - smoothshade, rect.xy, co) * smoothstep(co - smoothshade, co, rect.zw);
return hv.x * hv.y;
}
float corners_shade(vec2 co, float size_multiplier){
//Draws 4 smooth squares or circles in the corners.
//They are intended to modulate the blur radius and the strength of the reflection.
/*
vec4 circles;
float circle_radius = size; //0.13?
float circle_falloff = smoothsize; //0.05?
float circle_power =2.0;
circles.x = circle_smooth(co, vec2(0.0,0.0), circle_radius, circle_falloff) * circle_power;
circles.y = circle_smooth(co, vec2(0.0,1.0), circle_radius, circle_falloff) * circle_power;
circles.z = circle_smooth(co, vec2(1.0,0.0), circle_radius, circle_falloff) * circle_power;
circles.w = circle_smooth(co, vec2(1.0,1.0), circle_radius, circle_falloff) * circle_power;
float circle = max(max(max(circles.x, circles.y), circles.z), circles.w);
circle = min(circle, 1.0);
circle = 1-circle;
return circle;
*/
vec4 squares;
float squaresize = BEZEL_REFL_CORNER_BLANK_SIZE * size_multiplier;
float squarefade = BEZEL_REFL_CORNER_BLANK_SHADE * size_multiplier;
//(vec2 co, vec2 corner, float size, float smoothshade) {
squares.x = square_smooth(co, vec2(0.0,0.0), squaresize, squarefade);
squares.y = square_smooth(co, vec2(1.0 - squaresize, 0.0), squaresize, squarefade);
squares.z = square_smooth(co, vec2(0.0, 1-squaresize), squaresize, squarefade);
squares.w = square_smooth(co, vec2(1-squaresize, 1-squaresize), squaresize, squarefade);
return max(max(max(squares.x, squares.y), squares.z), squares.w);
}
//REFLECTION RELATED ENDS
vec3 pixel_push_luminance(vec3 c, float strength) {
//if (strength == 0.0) return c; //lighter without the check.
float whiteness = max(max(c.r, c.g), c.b);
whiteness = clamp(whiteness, 0.0, 1.0);
return c * (1+vec3((1-whiteness) * strength));
}
vec3 apply_fuzzy_main_pass(vec3 color) {
if (DO_IN_GLOW == 1.0)
color = pow(color,vec3(IN_GLOW_GAMMA))*IN_GLOW_POWER;
if (DO_VMASK_AND_DARKLINES == 1.0)
color *= mix ( (1.0 - ((RGB_MASK_STRENGTH*0.5)+(DARKLINES_STRENGTH*0.2))), 1.0, MASK_COMPENSATION) ;
if (DO_HALO == 1.0)
color += pow(color,vec3(HALO_GAMMA))*HALO_POWER;
if (DO_SCANLINES == 1.0)
color *= 0.5 + (SCANLINE_DARK*0.5);
if (DO_CCORRECTION == 1.0)
color = pow(color, vec3(GAMMA_OUT));
if (DO_VIGNETTE == 1.0)
color *= 0.8 * (V_POWER);
return color;
}
vec2 offsets_from_float(float in_param, int range){
return vec2(
(int(in_param) % range) - range*0.5,
floor(in_param / range) - range*0.5
);
}
/*vec2 circles(float param, float c_radius, float aspect, float directions) {
//given a 1d input param return full circles increasing radius.
param = param*(pi/directions);
float m = (c_radius * floor(param/pi)) * 100;
return vec2(m * sin(param) * aspect, m * cos(param)) * vec2(aspect,1.0);
}
vec2 spiral(float param,float spr_radius,vec2 spr_offset, vec2 spr_scale) {
//given a 1d input param returns a spiral
float m = spr_radius * param;
return vec2(m * sin(param), m * cos(param)) * spr_scale + spr_offset;
}
*/
bool similar(float a, float b, float threshold) {
return abs(a-b) < threshold;
}
bool vec2_similar(vec2 a, vec2 b, float threshold) {
return abs(a.x-b.x) < threshold && abs(a.y-b.y) < threshold;
}
vec2 zoom(vec2 in_coords, float zoom_factor) {
float off = 1.0/(zoom_factor*2.0) - 0.5;
return (in_coords/zoom_factor)-off;
}
float zoom1D(float in_coord, float zoom_factor) {
float off = 1.0/(zoom_factor*2.0) - 0.5;
return (in_coord/zoom_factor)-off;
}
vec2 zoomxy(vec2 in_coords, vec2 zoom_factor) {
vec2 off = 1.0/(zoom_factor*2.0) - 0.5;
return (in_coords/zoom_factor)-off;
}
vec2 zoomout_coords(vec2 in_coords, float zoom_out, float aspect) {
// to convert to standard zoom:
// zoomout_coords(x) = zoom( 1/(x+1) );
vec2 zoom = vec2( 1 + zoom_out,
1 + (zoom_out * aspect)
);
vec2 offset = vec2( (zoom.x-1.0) / 2.0,
(zoom.y-1.0) / 2.0
);
return (in_coords * zoom) - offset;
}
bool scanline_have_to_flicker(bool is_interlaced) {
return ((SCANLINE_FLICKERING == 1.0) || ((SCANLINE_FLICKERING==2.0) && is_interlaced ));
}
bool is_interlaced() {
return (params.OriginalSize.y > MIN_LINES_INTERLACED);
}
float scale_to_range(float x, float dmin, float dmax) {
//Scales 0..1 range to a..b range
return ( (dmax-dmin) * x ) + dmin;
}
vec3 scale_to_range_vec3(vec3 x, float dmin, float dmax) {
//Scales 0..1 range to a..b range
return ( (dmax-dmin) * x ) + dmin;
}
vec2 scale_to_range_vec2(vec2 x, float dmin, float dmax) {
//Scales 0..1 range to a..b range
return ( (dmax-dmin) * x ) + dmin;
}
float map_range(float value, float min_in, float max_in, float min_out, float max_out) {
//Scales value in [min_in - max_in] to [min_out - max_out]
return min_out + (value - min_in) * (max_out - min_out) / (max_in - min_in);
}
vec3 apply_contrast_brightness(vec3 c, float contrast, float brightness) {
return scale_to_range_vec3(c, -contrast, 1+contrast) + brightness;
}
float apply_contrast_brightness(float c, float contrast, float brightness) {
return scale_to_range(c, -contrast, 1+contrast) + brightness;
}
float round_step(float f, float p) {
return floor(f*p)/p;
}
#define VEC2_RND_A_B vec2(12.9898, 78.233)
#define RND_C 43758.5453
float random(float power, vec2 seed) {
//From pal-singlepass.slang
//https://github.com/svofski/CRT
//Copyright (c) 2016, Viacheslav Slavinsky
//All rights reserved.
float dt = dot(seed.xy, VEC2_RND_A_B);
float sn = mod(dt,3.14);
float noise_out = fract(sin(sn) * RND_C);
noise_out = scale_to_range(noise_out, -power, power);
return noise_out;
}
//The following produces weird results when with dynamic seed like framecount.
float random_fast(float power, vec2 seed) {
float noise_out = fract(sin(dot(seed.xy, VEC2_RND_A_B)) * RND_C);
noise_out = scale_to_range(noise_out, -power, power);
return noise_out;
}
//CURVATURE
#define corner_aspect vec2(1.0, 0.75)
float fn_border(vec2 coord) {
coord = (coord - vec2(0.5)) + vec2(0.5, 0.5);
coord = min(coord, vec2(1.0) - coord) * corner_aspect;
vec2 cdist = vec2(GEOM_CORNER_SIZE);
coord = (cdist - min(coord, cdist));
float dist = sqrt(dot(coord, coord));
return clamp((cdist.x - dist)*GEOM_CORNER_SMOOTH, 0.0, 1.0);
}
float border(vec2 coord) {
coord = (coord - vec2(0.5)) + vec2(0.5, 0.5);
coord = min(coord, vec2(1.0) - coord) * corner_aspect;
vec2 cdist = vec2(GEOM_CORNER_SIZE);
coord = (cdist - min(coord, cdist));
float dist = sqrt(dot(coord, coord));
return clamp((cdist.x - dist)*GEOM_CORNER_SMOOTH, 0.0, 1.0);
}
vec2 Warp_06(vec2 uv) {
//Pre-calc version for curvature = 0.6,0.6
uv = uv * 2.0 - 1.0;
float curvedCoordsDistance = length(uv);
uv /= curvedCoordsDistance;
uv *= 1.0-pow(vec2(1.0-(curvedCoordsDistance/1.4142)), vec2(0.8928) );
uv /= 0.6659;
uv = uv* 0.5 + 0.5;
return uv;
}
//warp full new
vec2 Warp(vec2 uv,float wx, float wy){
// Transform coordinates to range [-1, 1]
uv = uv * 2.0 - 1.0;
vec2 pow_exp = 1.0/(1.0+vec2(wx, wy) * 0.2 ) ;
//float curvedCoordsDistance = length(uv);
float curvedCoordsDistance = sqrt(uv.x*uv.x+uv.y*uv.y);
curvedCoordsDistance = clamp(curvedCoordsDistance, 0.0, 1.4142);
vec2 pow_base = vec2(1.0-(curvedCoordsDistance/1.4142135623730950488016887242097));
pow_base = abs(pow_base); // <-- this way intel and nvidia (probably amd) acts the same.
uv /= curvedCoordsDistance;
uv *= (1.0-pow(pow_base, pow_exp ));
uv /= (1.0-pow(vec2(0.29289321881345247559915563789515), pow_exp ));
// Transform coordinates back to [0, 1]
return uv* 0.5 + 0.5;
}
vec2 Warp_try(vec2 pos, float warpX, float warpY) {
/* float dist = length(pos-vec2(0.5))*10;
float c = 1 - clamp(dist, 0.0,1.0);
pos=zoom(pos, c);
return pos;
pos=zoom(pos, 1.006);
*/
float k=0.5; //0.1
warpX*=k;
warpY*=k;
//pos.x=zoom1D(pos.x, 1+warpX*0.16);
float powexp = 1.8;
pos = pos*2.0-1.0;
pos *= vec2(1.0 + pow(pos.y, powexp)*warpX, 1.0 + pow(pos.x, powexp)*warpY);
return pos*0.5 + 0.5;
}
vec2 Warp_fast(vec2 uv, vec2 v_exp, vec2 arg2, float cut_ears) {
/*This version is exact and faster than the other implementation,
* Just because it needs precalculed arguments that can live in
* vertex shader
*/
// Transform coordinates to range [-1, 1]
uv = uv * 2.0 - 1.0;
//float curvedCoordsDistance = length(uv);
float curvedCoordsDistance = sqrt(uv.x*uv.x+uv.y*uv.y);
curvedCoordsDistance = min(curvedCoordsDistance, cut_ears);
vec2 pow_base = vec2(1.0-(curvedCoordsDistance/1.4142));
pow_base = abs(pow_base); // <-- this way intel and nvidia (probably amd) acts the same.
uv /= curvedCoordsDistance;
uv *= 1.0-pow(pow_base, v_exp );
uv /= arg2;
// Transform coordinates back to [0, 1]
return uv * 0.5 + 0.5;
}
//VIGNETTE - SPOT
/* float gauss(float x, float x0, float sx, float size, float power){
float arg = x-x0;
arg = -(1/size)/2.*arg*arg/sx;
float a = 1./(pow(2.*3.1415*sx, 0.5));
return a*exp(arg) * power;
}
float gauss_xy(float pos_x, float pos_y, float size, float power, float gmin, float gmax) {
vec2 uv = vTexCoord.xy + vec2(pos_x,pos_y);
float scale_uv = params.SourceSize.x / params.SourceSize.y;
float gx = gauss(uv.x* scale_uv, 0.5*scale_uv, 0.1, size, power);
float gy = gauss(uv.y, 0.5, 0.1, size, power);
float light = gx*gy;
return clamp(light,gmin,gmax);
}
*/
//AMBILIGHT RELATED
bool border_needed() {
//returns if we need to draw on the border
#ifdef STATIC_SUPPORT_BACKDROP
return true;
#else
return (DO_AMBILIGHT + DO_BG_IMAGE + DO_BACKDROP > 0.0);
#endif
}
#define mark_useless(x) mark_outer_frame(x)
vec4 mark_outer_frame(vec3 pixel) {
return vec4(pixel.rgb,0.0) ;
//For my mental sanity, I use a specific alpha channel value to mark a frame as a border
return vec4(pixel.r,pixel.g,pixel.b,alpha_mark) ;
}
#define is_useless(x) is_outer_frame(x)
bool is_outer_frame(vec4 pixel) {
return pixel.a <= 0.004; // about 1/256
/*Check if a pixel is marked as border by comparing the value of its alpha channel
Tolerance is needed, because precision can be as low as 1/256; since I don't need
alpha channel, use an even large tolerance.
*/
return abs(pixel.a - alpha_mark) < 0.05; //<-- 0.05 allow about 20 alpha levels (1*0.05)
}
#define ar_tolerance 0.1 //To compensate when comparing different A/R
bool is_rotated() {
/*
For some reason, probably retroarch rotates the view only on final viewport stage, transparent to the shader passes,
The OutputSize of a pass that scales to viewport will have different aspect from the real final viewport.
We exploit this to understand when a game is rotated.
-->> This function only works if the calling pass scales to viewport.
This will fail for very particular cases, eg: when output window is extremely tall
*/
return (abs((params.OutputSize.x/params.OutputSize.y) - (global.FinalViewportSize.x/global.FinalViewportSize.y)) > ar_tolerance);
}
float get_in_aspect() {
if (ASPECT_X == 0) return 1.3333333333333; //all mame games, not rotated
if (ASPECT_X == -1) return 1.5; // ntsc
if (ASPECT_X == -2) return 1.25; // pal
if (ASPECT_X == -3) return 1.143; // 8/7 snes
if (ASPECT_X == -4) return 1.428; // 10/7 megadrive
if (ASPECT_X == -5) return params.OriginalSize.x/params.OriginalSize.y; //uncorrected
if (ASPECT_X == -6) return 0.75; // 3/4, pre-rotated (TATE) 1.33 games.
return ASPECT_X / ASPECT_Y ;
}
vec2 get_scaled_coords_aspect(vec2 pTexCoord, vec4 destsize, float in_aspect , bool is_rotated){
if (!border_needed()) return pTexCoord;
//else
float scale_x = 1.0;
float scale_y = 1.0;
float offset_x = 0.0 ;
float offset_y = 0.0 ;
if (is_rotated) {
scale_y = destsize.x/(destsize.y / in_aspect );
offset_y = (0.5 * scale_y ) - 0.5 ;
} else {
scale_x = destsize.x/(destsize.y * in_aspect);
offset_x = (0.5 * scale_x ) - 0.5 ;
}
vec2 scale_coord=vec2(pTexCoord.x*scale_x - offset_x , pTexCoord.y*scale_y - offset_y);
return scale_coord;
}
vec2 get_scaled_coords(vec2 pTexCoord, vec4 destsize, bool is_rotated){
if (!border_needed()) return pTexCoord;
//else
float scale_x = 1.0;
float scale_y = 1.0;
float offset_x = 0.0 ;
float offset_y = 0.0 ;
float in_aspect = get_in_aspect();
if (is_rotated) {
scale_y = destsize.x/(destsize.y / in_aspect );
offset_y = (0.5 * scale_y ) - 0.5 ;
} else {
scale_x = destsize.x/(destsize.y * in_aspect);
offset_x = (0.5 * scale_x ) - 0.5 ;
}
vec2 scale_coord=vec2(pTexCoord.x*scale_x - offset_x , pTexCoord.y*scale_y - offset_y);
return scale_coord;
}
vec2 integer_scale(vec2 in_coords, float target_aspect, bool is_rotated) {
vec2 izoom;
float raw_in_aspect = params.OriginalSize.x/params.OriginalSize.y;
float adapted_aspect = target_aspect /raw_in_aspect;
in_coords.x = zoom1D(in_coords.x, adapted_aspect);
if (!is_rotated) {
//This is 1X integer zoom:
izoom = params.OriginalSize.xy / global.FinalViewportSize.xy;
//Find the maximum zoom allowed
float int_zoom = floor(global.FinalViewportSize.y / params.OriginalSize.y );
int_zoom = clamp(int_zoom, 1.0, GAME_GEOM_INT_SCALE_MAX);
izoom *= int_zoom;
} else {
izoom = params.OriginalSize.xy / global.FinalViewportSize.yx;
float int_zoom = floor(global.FinalViewportSize.y / (params.OriginalSize.x*adapted_aspect) );
int_zoom = clamp(int_zoom, 1.0, GAME_GEOM_INT_SCALE_MAX);
izoom *= int_zoom;
}
return zoomxy(in_coords, izoom);
}
float get_BEZEL_INNER_ZOOM() {
/*if (GAME_GEOM_INT_SCALE == 1.0 && DO_GAME_GEOM_OVERRIDE == 1.0)
return 0.0;
else
return BEZEL_INNER_ZOOM;
*/
//unbranched versions:
return BEZEL_INNER_ZOOM * (1 - DO_GAME_GEOM_OVERRIDE * GAME_GEOM_INT_SCALE);
//117.2
//return BEZEL_INNER_ZOOM * float( GAME_GEOM_INT_SCALE != 1.0 || DO_GAME_GEOM_OVERRIDE != 1.0 );
}
bool do_integer_scale() {
return DO_GAME_GEOM_OVERRIDE == 1.0 && GAME_GEOM_INT_SCALE == 1.0;
}
vec2 content_geom_override(vec2 co, float aspect, float in_aspect, float vshift, float hshift, float out_zoom){
//Aspect
//float bUse_original_aspect = float(aspect < 0.01);
float bUse_custom_aspect = step(0.01, aspect);
float scale_y;
/*if (aspect > 0.01)
scale_y = aspect/in_aspect;
else
scale_y = 1.0;
*/
//Unbranched previous:
scale_y = mix_step(1.0, aspect/in_aspect, bUse_custom_aspect );
float offset_y = (0.5 * scale_y ) - 0.5 ;
co.y = co.y*scale_y - offset_y;
//shift
co.y -= vshift/10.0;
co.x -= hshift/10.0;
//zoom
return zoom(co, out_zoom);
}
//Blur/Glow
vec3 glow_dumb(sampler2D in_texture, float glow_power, float gamma, vec2 coords) {
return pow( texture(in_texture, coords).rgb, vec3(gamma) ) * glow_power;
}
vec3 blur9_x(sampler2D image, vec2 uv, vec2 sourcesize, float sharpness_x) {
vec2 resolution = sourcesize * sharpness_x;
vec3 color = vec3(0.0);
vec2 off1 = vec2(1.3846153846, 0.0) ;
vec2 off2 = vec2(3.2307692308, 0.0) ;
color += texture(image, uv).rgb * 0.2270270270;
color += texture(image, uv + (off1 / resolution)).rgb * 0.3162162162;
color += texture(image, uv - (off1 / resolution)).rgb * 0.3162162162;
color += texture(image, uv + (off2 / resolution)).rgb * 0.0702702703;
color += texture(image, uv - (off2 / resolution)).rgb * 0.0702702703;
return color;
}
vec3 blur9_x_gamma(sampler2D image, vec2 uv, vec2 sourcesize, float sharpness_x, vec3 gamma) {
vec2 resolution = sourcesize * sharpness_x;
vec3 color = vec3(0.0);
vec2 off1 = vec2(1.3846153846, 0.0) ;
vec2 off2 = vec2(3.2307692308, 0.0) ;
vec3 lookup = texture(image, uv).rgb;
color += pow(lookup, gamma) * 0.2270270270;
lookup = texture(image, uv + (off1 / resolution)).rgb;
color += pow(lookup, gamma) * 0.3162162162;
lookup = texture(image, uv - (off1 / resolution)).rgb;
color += pow(lookup, gamma) * 0.3162162162;
lookup = texture(image, uv + (off2 / resolution)).rgb;
color += pow(lookup, gamma) * 0.0702702703;
lookup = texture(image, uv - (off2 / resolution)).rgb;
color += pow(lookup, gamma) * 0.0702702703;
return color;
}
vec3 blur9_y(sampler2D image, vec2 uv, vec2 sourcesize, float sharpness_y) {
vec2 resolution = sourcesize * sharpness_y;
vec3 color = vec3(0.0);
vec2 off1 = vec2(0.0, 1.3846153846) ;
vec2 off2 = vec2(0.0, 3.2307692308) ;
color += texture(image, uv).rgb * 0.2270270270;
color += texture(image, uv + (off1 / resolution)).rgb * 0.3162162162;
color += texture(image, uv - (off1 / resolution)).rgb * 0.3162162162;
color += texture(image, uv + (off2 / resolution)).rgb * 0.0702702703;
color += texture(image, uv - (off2 / resolution)).rgb * 0.0702702703;
return color;
}
/*float is_scanline(vec2 uv){
return float(int(mod(uv.y * params.OutputSize.y , 2.0 )) !=0.0) ;
}
vec3 blur9_y_e_scanline(sampler2D image, vec2 uv, vec2 sourcesize, float sharpness_y) {
float mymod = int(mod(uv.y * params.OutputSize.y , 2.0 )) ;
float scanline = float( (mymod != 0.0) ) ;
vec2 resolution = sourcesize * sharpness_y;
vec3 color = vec3(0.0);
vec2 off1 = vec2(0.0, 1.3846153846) ;
vec2 off2 = vec2(0.0, 3.2307692308) ;
scanline = is_scanline(uv);
color += texture(image, uv).rgb * scanline * 0.2270270270;
scanline = is_scanline(uv + (off1 / resolution));
color += texture(image, uv + (off1 / resolution)).rgb * scanline * 0.3162162162;
scanline = is_scanline(uv - (off1 / resolution) );
color += texture(image, uv - (off1 / resolution)).rgb * scanline * 0.3162162162;
scanline = is_scanline(uv + (off2 / resolution) );
color += texture(image, uv + (off2 / resolution)).rgb * scanline * 0.0702702703;
scanline = is_scanline(uv - (off2 / resolution) );
color += texture(image, uv - (off2 / resolution)).rgb * scanline * 0.0702702703;
return color;
}
vec3 blur9_y_alpha_aware(sampler2D image, vec2 uv, vec2 sourcesize, float sharpness_y) {
vec2 resolution = sourcesize * sharpness_y;
vec2 off1 = vec2(0.0, 1.3846153846) ;
vec2 off2 = vec2(0.0, 3.2307692308) ;
vec3 color = vec3(0.0);
vec4 lookup = texture(image, uv); color += lookup.a * lookup.rgb * 0.2270270270;
lookup = texture(image, uv + (off1 / resolution)); color += lookup.a * lookup.rgb * 0.3162162162;
lookup = texture(image, uv - (off1 / resolution)); color += lookup.a * lookup.rgb * 0.3162162162;
lookup = texture(image, uv + (off2 / resolution)); color += lookup.a * lookup.rgb * 0.0702702703;
lookup = texture(image, uv - (off2 / resolution)); color += lookup.a * lookup.rgb * 0.0702702703;
return color;
}
*/
vec3 blur5_x(sampler2D image, vec2 uv, vec2 sourcesize, float sharpness_x, float lod) {
vec2 resolution = sourcesize * sharpness_x;
vec3 color = vec3(0.0);
vec2 off1 = vec2(1.333333333333, 0.0) ;
color += textureLod(image, uv, lod).rgb * 0.29411764705882354;
color += textureLod(image, uv + (off1 / resolution), lod).rgb * 0.35294117647058826;
color += textureLod(image, uv - (off1 / resolution), lod).rgb * 0.35294117647058826;
return color;
}
vec3 blur5_y(sampler2D image, vec2 uv, vec2 sourcesize, float sharpness_y, float lod) {
vec2 resolution = sourcesize * sharpness_y;
vec3 color = vec3(0.0);
vec2 off1 = vec2(0.0, 1.333333333333) ;
color += textureLod(image, uv, lod).rgb * 0.29411764705882354;
color += textureLod(image, uv + (off1 / resolution), lod).rgb * 0.35294117647058826;
color += textureLod(image, uv - (off1 / resolution), lod).rgb * 0.35294117647058826;
return color;
}
float rgb_to_gray(vec3 rgb) {
return dot(rgb, vec3(0.299, 0.587, 0.114));
}
//smoothly shade x and y < 0.0, currently unused
/*float blur_shade(vec2 co, float size) {
float co_1D;
(co.x < 0.0 || co.x > 1.0) ? co_1D = co.x : co_1D = co.y ;
float side_hi_switch = float(co_1D > 1.0);
float side_lo_switch = float(co_1D < 0.0);
float smooth_min = 1.0 * side_hi_switch;
float smooth_max = smooth_min + (
( size * side_hi_switch) +
(-size * side_lo_switch )
);
return smoothstep(smooth_min, smooth_max, co_1D);
}
*/
vec3 hsv2rgb(vec3 c){
vec4 K = vec4(1.0, 2.0 / 3.0, 1.0 / 3.0, 3.0);
vec3 p = abs(fract(c.xxx + K.xyz) * 6.0 - K.www);
return c.z * mix(K.xxx, clamp(p - K.xxx, 0.0, 1.0), c.y);
}
#define eps10 1.0e-10
vec3 rgb2hsv(vec3 c){
vec4 K = vec4(0.0, -1.0 / 3.0, 2.0 / 3.0, -1.0);
vec4 p = mix(vec4(c.bg, K.wz), vec4(c.gb, K.xy), step(c.b, c.g));
vec4 q = mix(vec4(p.xyw, c.r), vec4(c.r, p.yzx), step(p.x, c.r));
float d = q.x - min(q.w, q.y);
return vec3(abs(q.z + (q.w - q.y) / (6.0 * d + eps10)), d / (q.x + eps10), q.x);
}
float get_dyn_zoom(sampler2D tex) {
return 1.0 + (texture(tex, vec2(0.75,0.75) ).a/ DYNZOOM_FACTOR) ;
}
vec2 tilt(vec2 co, float is_rotated, vec2 tilt) {
vec2 r_tilt = vec2( mix_step(tilt.x, tilt.y, is_rotated),
mix_step(tilt.y, -tilt.x, is_rotated)
);
vec2 tilt_min = 1 - r_tilt;
vec2 tilt_max = 1 + r_tilt;
// X Tilt
float tilt_x_range = scale_to_range(co.y, tilt_min.x, tilt_max.x);
co = vec2( zoom1D(co.x, tilt_x_range),
zoom1D(co.y, tilt_x_range)
);
// Y Tilt
float tilt_y_range = scale_to_range(co.x, tilt_min.y, tilt_max.y);
co = vec2( zoom1D(co.x, tilt_y_range),
zoom1D(co.y, tilt_y_range)
);
// Aply FOV;
vec2 fov = mix(vec2(1.0), vec2(TILT_FOV), abs( tilt.xy ));
co = zoomxy(co, mix_step(fov.yx, fov.xy, is_rotated));
co.xy += mix_step(tilt.yx, -tilt.xy, is_rotated) * 0.4;
return co;
}
bool is_first_outside_rect(vec2 point, vec4 rect) {
return (point.x < rect.x || point.x > rect.z ||
point.y < rect.y || point.y > rect.w) ;
}
bool is_first_inside_rect(vec2 point, vec4 rect) {
return (point.x >= rect.x && point.x < rect.z &&
point.y >= rect.y && point.y < rect.w) ;
}