mirror of
https://github.com/italicsjenga/slang-shaders.git
synced 2024-12-02 04:11:30 +11:00
6f97a8e547
- Bugfixes and code optimizations
967 lines
35 KiB
Plaintext
967 lines
35 KiB
Plaintext
#version 450
|
|
|
|
/*
|
|
Grade - CRT emulation and color manipulation shader
|
|
|
|
Copyright (C) 2020-2023 Dogway (Jose Linares)
|
|
|
|
This program is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU General Public License
|
|
as published by the Free Software Foundation; either version 2
|
|
of the License, or (at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
|
|
|
*/
|
|
|
|
|
|
layout(push_constant) uniform Push
|
|
{
|
|
float g_signal_type;
|
|
float g_crtgamut;
|
|
float g_space_out;
|
|
float g_hue_degrees;
|
|
float g_U_SHIFT;
|
|
float g_V_SHIFT;
|
|
float g_U_MUL;
|
|
float g_V_MUL;
|
|
float g_CRT_b;
|
|
float g_CRT_c;
|
|
float g_CRT_l;
|
|
float g_lum_fix;
|
|
float g_vstr;
|
|
float g_vpower;
|
|
float g_sat;
|
|
float g_vibr;
|
|
float g_lum;
|
|
float g_cntrst;
|
|
float g_mid;
|
|
float g_lift;
|
|
float blr;
|
|
float blg;
|
|
float blb;
|
|
float wlr;
|
|
float wlg;
|
|
float wlb;
|
|
float rg;
|
|
float rb;
|
|
float gr;
|
|
float gb;
|
|
float br;
|
|
float bg;
|
|
} params;
|
|
|
|
layout(std140, set = 0, binding = 0) uniform UBO
|
|
{
|
|
mat4 MVP;
|
|
vec4 SourceSize;
|
|
vec4 OriginalSize;
|
|
vec4 OutputSize;
|
|
uint FrameCount;
|
|
float g_vignette;
|
|
float g_Dark_to_Dim;
|
|
float g_GCompress;
|
|
float wp_temperature;
|
|
float g_CRT_br;
|
|
float g_CRT_bg;
|
|
float g_CRT_bb;
|
|
float g_CRT_rf;
|
|
float g_CRT_sl;
|
|
float g_satr;
|
|
float g_satg;
|
|
float g_satb;
|
|
float g_digital;
|
|
float g_analog;
|
|
float LUT_Size1;
|
|
float LUT1_toggle;
|
|
float LUT_Size2;
|
|
float LUT2_toggle;
|
|
} global;
|
|
|
|
/*
|
|
Grade (03-06-2023)
|
|
> See settings decriptions at: https://forums.libretro.com/t/dogways-grading-shader-slang/27148/442
|
|
|
|
> Ubershader grouping some monolithic color related shaders:
|
|
::color-mangler (hunterk), ntsc color tuning knobs (Doriphor), white_point (hunterk, Dogway), RA Reshade LUT.
|
|
> and the addition of:
|
|
::analogue color emulation, phosphor gamut, color space + TRC support, vibrance, HUE vs SAT, vignette (shared by Syh), black level, rolled gain and sigmoidal contrast.
|
|
|
|
**Thanks to those that helped me out keep motivated by continuous feedback and bug reports:
|
|
**Syh, Nesguy, hunterk, and the libretro forum members.
|
|
|
|
|
|
######################################...PRESETS...#######################################
|
|
##########################################################################################
|
|
### ###
|
|
### PAL ###
|
|
### Phosphor: 470BG (#3) ###
|
|
### WP: D65 (6504K) (in practice more like 7000K-7500K range) ###
|
|
### Saturation: -0.02 ###
|
|
### ###
|
|
### NTSC-U ###
|
|
### Phosphor: P22/SMPTE-C (#1 #-3)(or a SMPTE-C based CRT phosphor gamut) ###
|
|
### WP: D65 (6504K) (in practice more like 7000K-7500K range) ###
|
|
### ###
|
|
### NTSC-J (Default) ###
|
|
### Phosphor: NTSC-J (#2) (or a NTSC-J based CRT phosphor gamut) ###
|
|
### WP: 9300K+27MPCD (8945K) (CCT from x:0.281 y:0.311)(in practice ~8500K)###
|
|
### ###
|
|
### ###
|
|
##########################################################################################
|
|
##########################################################################################
|
|
*/
|
|
|
|
|
|
#pragma parameter g_signal_type "Signal Type (0:RGB 1:Composite)" 1.0 0.0 1.0 1.0
|
|
#pragma parameter g_crtgamut "Phosphor (-2:CRT-95s -1:P22-80s 1:P22-90s 2:NTSC-J 3:PAL)" 2.0 -3.0 3.0 1.0
|
|
#pragma parameter g_space_out "Diplay Color Space (-1:709 0:sRGB 1:P3-D65 2:2020 3:Adobe)" 0.0 -1.0 3.0 1.0
|
|
#pragma parameter g_Dark_to_Dim "Dark to Dim adaptation" 1.0 0.0 1.0 1.0
|
|
#pragma parameter g_GCompress "Gamut Compression" 1.0 0.0 1.0 1.0
|
|
|
|
// Analogue controls
|
|
#pragma parameter g_analog "// ANALOG CONTROLS //" 0.0 0.0 1.0 1.0
|
|
#pragma parameter wp_temperature "White Point" 8504.0 5004.0 12004.0 100.0
|
|
#pragma parameter g_hue_degrees "CRT Hue" 0.0 -180.0 180.0 1.0
|
|
#pragma parameter g_U_SHIFT "CRT U Shift" 0.0 -0.2 0.2 0.01
|
|
#pragma parameter g_V_SHIFT "CRT V Shift" 0.0 -0.2 0.2 0.01
|
|
#pragma parameter g_U_MUL "CRT U Multiplier" 1.0 0.0 2.0 0.01
|
|
#pragma parameter g_V_MUL "CRT V Multiplier" 1.0 0.0 2.0 0.01
|
|
#pragma parameter g_CRT_l "CRT Gamma" 2.50 2.30 2.60 0.01
|
|
#pragma parameter g_CRT_b "CRT Brightness" 50.0 0.0 100.0 1.0
|
|
#pragma parameter g_CRT_c "CRT Contrast" 50.0 0.0 100.0 1.0
|
|
#pragma parameter g_CRT_br "CRT Beam Red" 1.0 0.0 1.2 0.01
|
|
#pragma parameter g_CRT_bg "CRT Beam Green" 1.0 0.0 1.2 0.01
|
|
#pragma parameter g_CRT_bb "CRT Beam Blue" 1.0 0.0 1.2 0.01
|
|
#pragma parameter g_CRT_rf "CRT Lambert Refl. in %" 5.0 2.0 5.0 0.1
|
|
#pragma parameter g_CRT_sl "Surround Luminance -nits-" 34.0 0.0 100.0 1.0
|
|
#pragma parameter g_vignette "Vignette Toggle" 1.0 0.0 1.0 1.0
|
|
#pragma parameter g_vstr "Vignette Strength" 50.0 0.0 50.0 1.0
|
|
#pragma parameter g_vpower "Vignette Power" 0.50 0.0 0.5 0.01
|
|
|
|
// Digital controls
|
|
#pragma parameter g_digital "// DIGITAL CONTROLS //" 0.0 0.0 1.0 1.0
|
|
#pragma parameter g_lum_fix "Sega Luma Fix" 0.0 0.0 1.0 1.0
|
|
#pragma parameter g_lum "Brightness" 0.0 -0.5 1.0 0.01
|
|
#pragma parameter g_cntrst "Contrast" 0.0 -1.0 1.0 0.05
|
|
#pragma parameter g_mid "Contrast Pivot" 0.5 0.0 1.0 0.01
|
|
#pragma parameter g_sat "Saturation" 0.0 -1.0 1.0 0.01
|
|
#pragma parameter g_vibr "Dullness/Vibrance" 0.0 -1.0 1.0 0.05
|
|
#pragma parameter g_satr "Hue vs Sat Red" 0.0 -1.0 1.0 0.01
|
|
#pragma parameter g_satg "Hue vs Sat Green" 0.0 -1.0 1.0 0.01
|
|
#pragma parameter g_satb "Hue vs Sat Blue" 0.0 -1.0 1.0 0.01
|
|
#pragma parameter g_lift "Black Level" 0.0 -0.5 0.5 0.01
|
|
#pragma parameter blr "Black-Red Tint" 0.0 0.0 1.0 0.01
|
|
#pragma parameter blg "Black-Green Tint" 0.0 0.0 1.0 0.01
|
|
#pragma parameter blb "Black-Blue Tint" 0.0 0.0 1.0 0.01
|
|
#pragma parameter wlr "White-Red Tint" 1.0 0.0 2.0 0.01
|
|
#pragma parameter wlg "White-Green Tint" 1.0 0.0 2.0 0.01
|
|
#pragma parameter wlb "White-Blue Tint" 1.0 0.0 2.0 0.01
|
|
#pragma parameter rg "Red-Green Tint" 0.0 -1.0 1.0 0.005
|
|
#pragma parameter rb "Red-Blue Tint" 0.0 -1.0 1.0 0.005
|
|
#pragma parameter gr "Green-Red Tint" 0.0 -1.0 1.0 0.005
|
|
#pragma parameter gb "Green-Blue Tint" 0.0 -1.0 1.0 0.005
|
|
#pragma parameter br "Blue-Red Tint" 0.0 -1.0 1.0 0.005
|
|
#pragma parameter bg "Blue-Green Tint" 0.0 -1.0 1.0 0.005
|
|
#pragma parameter LUT_Size1 "LUT Size 1" 32.0 8.0 64.0 16.0
|
|
#pragma parameter LUT1_toggle "LUT 1 Toggle" 0.0 0.0 1.0 1.0
|
|
#pragma parameter LUT_Size2 "LUT Size 2" 64.0 0.0 64.0 16.0
|
|
#pragma parameter LUT2_toggle "LUT 2 Toggle" 0.0 0.0 1.0 1.0
|
|
|
|
#define M_PI 3.1415926535897932384626433832795/180.0
|
|
#define RW vec3(0.950457397565471, 1.0, 1.089436035930324)
|
|
#define signal params.g_signal_type
|
|
#define crtgamut params.g_crtgamut
|
|
#define SPC params.g_space_out
|
|
#define hue_degrees params.g_hue_degrees
|
|
#define U_SHIFT params.g_U_SHIFT
|
|
#define V_SHIFT params.g_V_SHIFT
|
|
#define U_MUL params.g_U_MUL
|
|
#define V_MUL params.g_V_MUL
|
|
#define g_CRT_l -(100000.*log((72981.-500000./(3.*max(2.3,params.g_CRT_l)))/9058.))/945461.
|
|
#define lum_fix params.g_lum_fix
|
|
#define vignette global.g_vignette
|
|
#define GCompress global.g_GCompress
|
|
#define vstr params.g_vstr
|
|
#define vpower params.g_vpower
|
|
#define g_sat params.g_sat
|
|
#define vibr params.g_vibr
|
|
#define beamr global.g_CRT_br
|
|
#define beamg global.g_CRT_bg
|
|
#define beamb global.g_CRT_bb
|
|
#define satr global.g_satr
|
|
#define satg global.g_satg
|
|
#define satb global.g_satb
|
|
#define lum params.g_lum
|
|
#define cntrst params.g_cntrst
|
|
#define mid params.g_mid
|
|
#define lift params.g_lift
|
|
#define blr params.blr
|
|
#define blg params.blg
|
|
#define blb params.blb
|
|
#define wlr params.wlr
|
|
#define wlg params.wlg
|
|
#define wlb params.wlb
|
|
#define rg params.rg
|
|
#define rb params.rb
|
|
#define gr params.gr
|
|
#define gb params.gb
|
|
#define br params.br
|
|
#define bg params.bg
|
|
|
|
#pragma stage vertex
|
|
layout(location = 0) in vec4 Position;
|
|
layout(location = 1) in vec2 TexCoord;
|
|
layout(location = 0) out vec2 vTexCoord;
|
|
|
|
void main()
|
|
{
|
|
gl_Position = global.MVP * Position;
|
|
vTexCoord = TexCoord;
|
|
}
|
|
|
|
#pragma stage fragment
|
|
layout(location = 0) in vec2 vTexCoord;
|
|
layout(location = 0) out vec4 FragColor;
|
|
layout(set = 0, binding = 2) uniform sampler2D Source;
|
|
layout(set = 0, binding = 3) uniform sampler2D SamplerLUT1;
|
|
layout(set = 0, binding = 4) uniform sampler2D SamplerLUT2;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
///////////////////////// Color Space Transformations //////////////////////////
|
|
|
|
// 'D65' based
|
|
mat3 RGB_to_XYZ_mat(mat3 primaries) {
|
|
|
|
vec3 T = RW * inverse(primaries);
|
|
|
|
mat3 TB = mat3(
|
|
T.x, 0.0, 0.0,
|
|
0.0, T.y, 0.0,
|
|
0.0, 0.0, T.z);
|
|
|
|
return TB * primaries;
|
|
}
|
|
|
|
|
|
vec3 RGB_to_XYZ(vec3 RGB, mat3 primaries) {
|
|
|
|
return RGB * RGB_to_XYZ_mat(primaries);
|
|
}
|
|
|
|
vec3 XYZ_to_RGB(vec3 XYZ, mat3 primaries) {
|
|
|
|
return XYZ * inverse(RGB_to_XYZ_mat(primaries));
|
|
}
|
|
|
|
|
|
|
|
vec3 XYZtoYxy(vec3 XYZ) {
|
|
|
|
float XYZrgb = XYZ.r+XYZ.g+XYZ.b;
|
|
float Yxyg = (XYZrgb <= 0.0) ? 0.3805 : XYZ.r / XYZrgb;
|
|
float Yxyb = (XYZrgb <= 0.0) ? 0.3769 : XYZ.g / XYZrgb;
|
|
return vec3(XYZ.g, Yxyg, Yxyb);
|
|
}
|
|
|
|
vec3 YxytoXYZ(vec3 Yxy) {
|
|
|
|
float Xs = Yxy.r * (Yxy.g/Yxy.b);
|
|
float Xsz = (Yxy.r <= 0.0) ? 0.0 : 1.0;
|
|
vec3 XYZ = vec3(Xsz,Xsz,Xsz) * vec3(Xs, Yxy.r, (Xs/Yxy.g)-Xs-Yxy.r);
|
|
return XYZ;
|
|
}
|
|
|
|
|
|
///////////////////////// White Point Mapping /////////////////////////
|
|
//
|
|
//
|
|
// PAL: D65 NTSC-U: D65 NTSC-J: CCT NTSC-J
|
|
// PAL: 6503.512K NTSC-U: 6503.512K NTSC-J: ~8945.436K
|
|
// [x:0.31266142 y:0.3289589] [x:0.281 y:0.311]
|
|
|
|
// For NTSC-J there's not a common agreed value, measured consumer units span from 8229.87K to 8945.623K with accounts for 8800K as well.
|
|
// Recently it's been standardized to 9300K which is closer to what master monitors (and not consumer units) were (x=0.2838 y=0.2984) (~9177.98K)
|
|
|
|
// "RGB to XYZ -> Temperature -> XYZ to RGB" joint matrix
|
|
vec3 wp_adjust(vec3 RGB, float temperature, mat3 primaries, mat3 display) {
|
|
|
|
float temp3 = 1000. / temperature;
|
|
float temp6 = 1000000. / pow(temperature, 2.);
|
|
float temp9 = 1000000000. / pow(temperature, 3.);
|
|
|
|
vec3 wp = vec3(1.);
|
|
|
|
wp.x = (temperature < 5500.) ? 0.244058 + 0.0989971 * temp3 + 2.96545 * temp6 - 4.59673 * temp9 : \
|
|
(temperature < 8000.) ? 0.200033 + 0.9545630 * temp3 - 2.53169 * temp6 + 7.08578 * temp9 : \
|
|
0.237045 + 0.2437440 * temp3 + 1.94062 * temp6 - 2.11004 * temp9 ;
|
|
|
|
wp.y = -0.275275 + 2.87396 * wp.x - 3.02034 * pow(wp.x,2) + 0.0297408 * pow(wp.x,3);
|
|
wp.z = 1. - wp.x - wp.y;
|
|
|
|
const mat3 CAT16 = mat3(
|
|
0.401288,-0.250268, -0.002079,
|
|
0.650173, 1.204414, 0.048952,
|
|
-0.051461, 0.045854, 0.953127);
|
|
|
|
vec3 VKV = (vec3(wp.x/wp.y,1.,wp.z/wp.y) * CAT16) / (RW * CAT16);
|
|
|
|
mat3 VK = mat3(
|
|
VKV.x, 0.0, 0.0,
|
|
0.0, VKV.y, 0.0,
|
|
0.0, 0.0, VKV.z);
|
|
|
|
mat3 CAM = CAT16 * (VK * inverse(CAT16));
|
|
|
|
mat3 mata = RGB_to_XYZ_mat(primaries);
|
|
mat3 matb = RGB_to_XYZ_mat(display);
|
|
|
|
return RGB.rgb * ((mata * CAM) * inverse(matb));
|
|
}
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
// CRT EOTF Function
|
|
//----------------------------------------------------------------------
|
|
|
|
float EOTF_1886a(float color, float bl, float brightness, float contrast) {
|
|
|
|
// Defaults:
|
|
// Black Level = 0.1
|
|
// Brightness = 0
|
|
// Contrast = 100
|
|
|
|
const float wl = 100.0;
|
|
float b = pow(bl, 1/2.4);
|
|
float a = pow(wl, 1/2.4)-b;
|
|
b = (brightness-50) / 250. + b/a; // -0.20 to +0.20
|
|
a = contrast!=50 ? pow(2,(contrast-50)/50.) : 1.; // 0.50 to +2.00
|
|
|
|
const float Vc = 0.35; // Offset
|
|
float Lw = wl/100. * a; // White level
|
|
float Lb = min( b * a,Vc); // Black level
|
|
const float a1 = 2.6; // Shoulder gamma
|
|
const float a2 = 3.0; // Knee gamma
|
|
float k = Lw /pow(1 + Lb, a1);
|
|
float sl = k * pow(Vc + Lb, a1-a2); // Slope for knee gamma
|
|
|
|
color = color >= Vc ? k * pow(color + Lb, a1 ) : sl * pow(color + Lb, a2 );
|
|
return color;
|
|
}
|
|
|
|
vec3 EOTF_1886a_f3( vec3 color, float BlackLevel, float brightness, float contrast) {
|
|
|
|
color.r = EOTF_1886a( color.r, BlackLevel, brightness, contrast);
|
|
color.g = EOTF_1886a( color.g, BlackLevel, brightness, contrast);
|
|
color.b = EOTF_1886a( color.b, BlackLevel, brightness, contrast);
|
|
return color.rgb;
|
|
}
|
|
|
|
|
|
|
|
// Monitor Curve Functions: https://github.com/ampas/aces-dev
|
|
//----------------------------------------------------------------------
|
|
|
|
|
|
float moncurve_f( float color, float gamma, float offs)
|
|
{
|
|
// Forward monitor curve
|
|
color = clamp(color, 0.0, 1.0);
|
|
float fs = (( gamma - 1.0) / offs) * pow( offs * gamma / ( ( gamma - 1.0) * ( 1.0 + offs)), gamma);
|
|
float xb = offs / ( gamma - 1.0);
|
|
|
|
color = ( color > xb) ? pow( ( color + offs) / ( 1.0 + offs), gamma) : color * fs;
|
|
return color;
|
|
}
|
|
|
|
|
|
vec3 moncurve_f_f3( vec3 color, float gamma, float offs)
|
|
{
|
|
color.r = moncurve_f( color.r, gamma, offs);
|
|
color.g = moncurve_f( color.g, gamma, offs);
|
|
color.b = moncurve_f( color.b, gamma, offs);
|
|
return color.rgb;
|
|
}
|
|
|
|
|
|
float moncurve_r( float color, float gamma, float offs)
|
|
{
|
|
// Reverse monitor curve
|
|
color = clamp(color, 0.0, 1.0);
|
|
float yb = pow( offs * gamma / ( ( gamma - 1.0) * ( 1.0 + offs)), gamma);
|
|
float rs = pow( ( gamma - 1.0) / offs, gamma - 1.0) * pow( ( 1.0 + offs) / gamma, gamma);
|
|
|
|
color = ( color > yb) ? ( 1.0 + offs) * pow( color, 1.0 / gamma) - offs : color * rs;
|
|
return color;
|
|
}
|
|
|
|
|
|
vec3 moncurve_r_f3( vec3 color, float gamma, float offs)
|
|
{
|
|
color.r = moncurve_r( color.r, gamma, offs);
|
|
color.g = moncurve_r( color.g, gamma, offs);
|
|
color.b = moncurve_r( color.b, gamma, offs);
|
|
return color.rgb;
|
|
}
|
|
|
|
|
|
//-------------------------- Luma Functions ----------------------------
|
|
|
|
|
|
// Performs better in gamma encoded space
|
|
float contrast_sigmoid(float color, float cont, float pivot){
|
|
|
|
cont = pow(cont + 1., 3.);
|
|
|
|
float knee = 1. / (1. + exp(cont * pivot));
|
|
float shldr = 1. / (1. + exp(cont * (pivot - 1.)));
|
|
|
|
color =(1. / (1. + exp(cont * (pivot - color))) - knee) / (shldr - knee);
|
|
|
|
return color;
|
|
}
|
|
|
|
|
|
// Performs better in gamma encoded space
|
|
float contrast_sigmoid_inv(float color, float cont, float pivot){
|
|
|
|
cont = pow(cont - 1., 3.);
|
|
|
|
float knee = 1. / (1. + exp (cont * pivot));
|
|
float shldr = 1. / (1. + exp (cont * (pivot - 1.)));
|
|
|
|
color = pivot - log(1. / (color * (shldr - knee) + knee) - 1.) / cont;
|
|
|
|
return color;
|
|
}
|
|
|
|
|
|
float rolled_gain(float color, float gain){
|
|
|
|
float gx = abs(gain) + 0.001;
|
|
float anch = (gain > 0.0) ? 0.5 / (gx / 2.0) : 0.5 / gx;
|
|
color = (gain > 0.0) ? color * ((color - anch) / (1 - anch)) : color * ((1 - anch) / (color - anch)) * (1 - gain);
|
|
|
|
return color;
|
|
}
|
|
|
|
|
|
vec3 rolled_gain_v3(vec3 color, float gain){
|
|
|
|
color.r = rolled_gain(color.r, gain);
|
|
color.g = rolled_gain(color.g, gain);
|
|
color.b = rolled_gain(color.b, gain);
|
|
|
|
return color.rgb;
|
|
}
|
|
|
|
|
|
float SatMask(float color_r, float color_g, float color_b)
|
|
{
|
|
float max_rgb = max(color_r, max(color_g, color_b));
|
|
float min_rgb = min(color_r, min(color_g, color_b));
|
|
float msk = clamp((max_rgb - min_rgb) / (max_rgb + min_rgb), 0.0, 1.0);
|
|
return msk;
|
|
}
|
|
|
|
|
|
// This shouldn't be necessary but it seems some undefined values can
|
|
// creep in and each GPU vendor handles that differently. This keeps
|
|
// all values within a safe range
|
|
vec3 mixfix(vec3 a, vec3 b, float c)
|
|
{
|
|
return (a.z < 1.0) ? mix(a, b, c) : a;
|
|
}
|
|
|
|
|
|
vec4 mixfix_v4(vec4 a, vec4 b, float c)
|
|
{
|
|
return (a.z < 1.0) ? mix(a, b, c) : a;
|
|
}
|
|
|
|
|
|
|
|
//---------------------- Gamut Compression -------------------
|
|
|
|
|
|
// RGB 'Desaturate' Gamut Compression (by Jed Smith: https://github.com/jedypod/gamut-compress)
|
|
vec3 GamutCompression (vec3 rgb, float grey) {
|
|
|
|
// Limit/Thres order is Cyan, Magenta, Yellow
|
|
vec3 beam = max(vec3(0.0),vec3(beamg,(beamb+beamr)/2,(beamr+beamg)/2));
|
|
vec3 sat = max(vec3(0.0),vec3(satg, (satb +satr) /2,(satr +satg) /2)+1); // center at 1
|
|
float temp = max(0,abs(global.wp_temperature-7000)-1000)/825.0+1; // center at 1
|
|
vec3 WPD = global.wp_temperature < 7000 ? vec3(1,temp,(temp-1)/2+1) : vec3((temp-1)/2+1,temp,1);
|
|
sat = max(0.0,g_sat+1)*(sat*beam) * WPD;
|
|
|
|
mat2x3 LimThres = \
|
|
mat2x3( 0.100000,0.100000,0.100000,
|
|
0.125000,0.125000,0.125000);
|
|
if (SPC < 1.0) {
|
|
|
|
LimThres = \
|
|
crtgamut == 3.0 ? mat2x3( 0.000000,0.044065,0.000000,
|
|
0.000000,0.095638,0.000000) : \
|
|
crtgamut == 2.0 ? mat2x3( 0.006910,0.092133,0.000000,
|
|
0.039836,0.121390,0.000000) : \
|
|
crtgamut == 1.0 ? mat2x3( 0.018083,0.059489,0.017911,
|
|
0.066570,0.105996,0.066276) : \
|
|
crtgamut ==-1.0 ? mat2x3( 0.014947,0.098571,0.017911,
|
|
0.060803,0.123793,0.066276) : \
|
|
crtgamut ==-2.0 ? mat2x3( 0.004073,0.030307,0.012697,
|
|
0.028222,0.083075,0.056029) : \
|
|
crtgamut ==-3.0 ? mat2x3( 0.018424,0.053469,0.016841,
|
|
0.067146,0.102294,0.064393) : LimThres;
|
|
} else if (SPC==1.0) {
|
|
|
|
LimThres = \
|
|
crtgamut == 3.0 ? mat2x3( 0.000000,0.234229,0.007680,
|
|
0.000000,0.154983,0.042446) : \
|
|
crtgamut == 2.0 ? mat2x3( 0.078526,0.108432,0.006143,
|
|
0.115731,0.127194,0.037039) : \
|
|
crtgamut == 1.0 ? mat2x3( 0.021531,0.237184,0.013466,
|
|
0.072018,0.155438,0.057731) : \
|
|
crtgamut ==-1.0 ? mat2x3( 0.051640,0.103332,0.013550,
|
|
0.101092,0.125474,0.057912) : \
|
|
crtgamut ==-2.0 ? mat2x3( 0.032717,0.525361,0.023928,
|
|
0.085609,0.184491,0.075381) : \
|
|
crtgamut ==-3.0 ? mat2x3( 0.000000,0.377522,0.043076,
|
|
0.000000,0.172390,0.094873) : LimThres;
|
|
}
|
|
|
|
// Amount of outer gamut to affect
|
|
vec3 th = 1.0-vec3(LimThres[1])*(0.4*sat+0.3);
|
|
|
|
// Distance limit: How far beyond the gamut boundary to compress
|
|
vec3 dl = 1.0+vec3(LimThres[0])*sat;
|
|
|
|
// Calculate scale so compression function passes through distance limit: (x=dl, y=1)
|
|
vec3 s = (vec3(1)-th)/sqrt(max(vec3(1.001), dl)-1.0);
|
|
|
|
// Achromatic axis
|
|
float ac = max(rgb.x, max(rgb.y, rgb.z));
|
|
|
|
// Inverse RGB Ratios: distance from achromatic axis
|
|
vec3 d = ac==0.0?vec3(0.0):(ac-rgb)/abs(ac);
|
|
|
|
// Compressed distance. Parabolic compression function: https://www.desmos.com/calculator/nvhp63hmtj
|
|
vec3 cd;
|
|
vec3 sf = s*sqrt(d-th+s*s/4.0)-s*sqrt(s*s/4.0)+th;
|
|
cd.x = (d.x < th.x) ? d.x : sf.x;
|
|
cd.y = (d.y < th.y) ? d.y : sf.y;
|
|
cd.z = (d.z < th.z) ? d.z : sf.z;
|
|
|
|
// Inverse RGB Ratios to RGB
|
|
// and Mask with "luma"
|
|
return mix(rgb, ac-cd.xyz*abs(ac), pow(grey,1/2.4));
|
|
}
|
|
|
|
|
|
|
|
//*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/
|
|
|
|
|
|
|
|
// Matrices in OpenGL column-major
|
|
|
|
|
|
//----------------------- Y'UV color model -----------------------
|
|
|
|
|
|
// 0-235 YUV PAL
|
|
// 0-235 YUV NTSC-J
|
|
// 16-235 YUV NTSC
|
|
|
|
|
|
// Bymax 0.885515
|
|
// Rymax 0.701088
|
|
// R'G'B' full range to Decorrelated Intermediate (Y,B-Y,R-Y)
|
|
// Rows should sum to 0, except first one which sums 1
|
|
const mat3 YByRy =
|
|
mat3(
|
|
0.298912, 0.586603, 0.114485,
|
|
-0.298912,-0.586603, 0.885515,
|
|
0.701088,-0.586603,-0.114485);
|
|
|
|
|
|
// Umax 0.435812284313725
|
|
// Vmax 0.615857694117647
|
|
// R'G'B' full to Y'UV limited
|
|
// YUV is defined with headroom and footroom (TV range),
|
|
// UV excursion is limited to Umax and Vmax
|
|
// Y excursion is limited to 16-235 for NTSC-U and 0-235 for PAL and NTSC-J
|
|
vec3 r601_YUV(vec3 RGB, float NTSC_U) {
|
|
|
|
const float sclU = ((0.5*(235-16)+16)/255.); // This yields Luma grey at around 0.49216 or 125.5 in 8-bit
|
|
const float sclV = (240-16) /255. ; // This yields Chroma range at around 0.87843 or 224 in 8-bit
|
|
|
|
mat3 conv_mat = mat3(
|
|
vec3(YByRy[0]),
|
|
vec3(sclU) * vec3(YByRy[1]),
|
|
vec3(sclV) * vec3(YByRy[2]));
|
|
|
|
// -0.147111592156863 -0.288700692156863 0.435812284313725
|
|
// 0.615857694117647 -0.515290478431373 -0.100567215686275
|
|
|
|
vec3 YUV = RGB.rgb * conv_mat;
|
|
YUV.x = NTSC_U==1.0 ? YUV.x * 219.0 + 16.0 : YUV.x * 235.0;
|
|
return vec3(YUV.x/255.0,YUV.yz);
|
|
}
|
|
|
|
|
|
// Y'UV limited to R'G'B' full
|
|
vec3 YUV_r601(vec3 YUV, float NTSC_U) {
|
|
|
|
const mat3 conv_mat = mat3(
|
|
1.0000000, -0.000000029378826483, 1.1383928060531616,
|
|
1.0000000, -0.396552562713623050, -0.5800843834877014,
|
|
1.0000000, 2.031872510910034000, 0.0000000000000000);
|
|
|
|
YUV.x = (YUV.x - (NTSC_U == 1.0 ? 16.0/255.0 : 0.0 )) * (255.0/(NTSC_U == 1.0 ? 219.0 : 235.0));
|
|
return YUV.xyz * conv_mat;
|
|
}
|
|
|
|
|
|
// FP32 to 8-bit mid-tread uniform quantization
|
|
float Quantize8(float col) {
|
|
col = min(255.0,floor(col * 255.0 + 0.5));
|
|
return col;
|
|
}
|
|
|
|
vec3 Quantize8_f3(vec3 col) {
|
|
col.r = Quantize8(col.r);
|
|
col.g = Quantize8(col.g);
|
|
col.b = Quantize8(col.b);
|
|
return col.rgb;
|
|
}
|
|
|
|
|
|
|
|
//------------------------- LMS --------------------------
|
|
|
|
|
|
// Hunt-Pointer-Estevez D65 cone response
|
|
// modification for IPT model
|
|
const mat3 LMS =
|
|
mat3(
|
|
0.4002, 0.7075, -0.0807,
|
|
-0.2280, 1.1500, 0.0612,
|
|
0.0000, 0.0000, 0.9184);
|
|
|
|
const mat3 IPT =
|
|
mat3(
|
|
0.4000, 0.4000, 0.2000,
|
|
4.4550, -4.8510, 0.3960,
|
|
0.8056, 0.3572, -1.1628);
|
|
|
|
|
|
//*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/
|
|
|
|
|
|
//----------------------- Phosphor Gamuts -----------------------
|
|
|
|
////// STANDARDS ///////
|
|
// SMPTE RP 145-1994 (SMPTE-C), 170M-1999
|
|
// SMPTE-C - Standard Phosphor (Rec.601 NTSC)
|
|
// ILLUMINANT: D65->[0.31266142,0.3289589]
|
|
const mat3 SMPTE170M_ph =
|
|
mat3(
|
|
0.630, 0.310, 0.155,
|
|
0.340, 0.595, 0.070,
|
|
0.030, 0.095, 0.775);
|
|
|
|
// ITU-R BT.470/601 (B/G)
|
|
// EBU Tech.3213 PAL - Standard Phosphor for Studio Monitors
|
|
// ILLUMINANT: D65->[0.31266142,0.3289589]
|
|
const mat3 SMPTE470BG_ph =
|
|
mat3(
|
|
0.640, 0.290, 0.150,
|
|
0.330, 0.600, 0.060,
|
|
0.030, 0.110, 0.790);
|
|
|
|
// NTSC-J P22
|
|
// Mix between averaging KV-20M20, KDS VS19, Dell D93, 4-TR-B09v1_0.pdf and Phosphor Handbook 'P22'
|
|
// ILLUMINANT: D93->[0.281000,0.311000] (CCT of 8945.436K)
|
|
// ILLUMINANT: D97->[0.285000,0.285000] (CCT of 9696K) for Nanao MS-2930s series (in practice prolly more like ~9177.98K)
|
|
const mat3 P22_J_ph =
|
|
mat3(
|
|
0.625, 0.280, 0.152,
|
|
0.350, 0.605, 0.062,
|
|
0.025, 0.115, 0.786);
|
|
|
|
|
|
|
|
////// P22 ///////
|
|
// You can run any of these P22 primaries either through D65 or D93 indistinctly but typically these were D65 based.
|
|
// P22_80 is roughly the same as the old P22 gamut in Grade 2020. P22 1979-1994 meta measurement.
|
|
// ILLUMINANT: D65->[0.31266142,0.3289589]
|
|
const mat3 P22_80s_ph =
|
|
mat3(
|
|
0.6470, 0.2820, 0.1472,
|
|
0.3430, 0.6200, 0.0642,
|
|
0.0100, 0.0980, 0.7886);
|
|
|
|
// P22 improved with tinted phosphors (Use this for NTSC-U 16-bits, and above for 8-bits)
|
|
const mat3 P22_90s_ph =
|
|
mat3(
|
|
0.6661, 0.3134, 0.1472,
|
|
0.3329, 0.6310, 0.0642,
|
|
0.0010, 0.0556, 0.7886);
|
|
|
|
// CRT for Projection Tubes for NTSC-U late 90s, early 00s
|
|
const mat3 CRT_95s_ph =
|
|
mat3(
|
|
0.640, 0.341, 0.150,
|
|
0.335, 0.586, 0.070,
|
|
0.025, 0.073, 0.780);
|
|
|
|
|
|
//*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/
|
|
|
|
|
|
//----------------------- Display Primaries -----------------------
|
|
|
|
// sRGB (IEC 61966-2-1) and ITU-R BT.709-6 (originally CCIR Rec.709)
|
|
const mat3 sRGB_prims =
|
|
mat3(
|
|
0.640, 0.300, 0.150,
|
|
0.330, 0.600, 0.060,
|
|
0.030, 0.100, 0.790);
|
|
|
|
// Adobe RGB (1998)
|
|
const mat3 Adobe_prims =
|
|
mat3(
|
|
0.640, 0.210, 0.150,
|
|
0.330, 0.710, 0.060,
|
|
0.030, 0.080, 0.790);
|
|
|
|
// BT-2020/BT-2100 (from 630nm, 532nm and 467nm)
|
|
const mat3 rec2020_prims =
|
|
mat3(
|
|
0.707917792, 0.170237195, 0.131370635,
|
|
0.292027109, 0.796518542, 0.045875976,
|
|
0.000055099, 0.033244263, 0.822753389);
|
|
|
|
// SMPTE RP 432-2 (DCI-P3)
|
|
const mat3 DCIP3_prims =
|
|
mat3(
|
|
0.680, 0.265, 0.150,
|
|
0.320, 0.690, 0.060,
|
|
0.000, 0.045, 0.790);
|
|
|
|
|
|
|
|
|
|
//*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/
|
|
|
|
|
|
|
|
|
|
void main()
|
|
{
|
|
|
|
// Retro Sega Systems: Genesis, 32x, CD and Saturn 2D had color palettes designed in TV levels to save on transformations.
|
|
float lum_exp = (lum_fix == 1.0) ? (255.0/239.0) : 1.0;
|
|
|
|
vec3 src = texture(Source, vTexCoord.xy).rgb * lum_exp;
|
|
|
|
// Clipping Logic / Gamut Limiting
|
|
bool NTSC_U = crtgamut < 2.0;
|
|
|
|
vec2 UVmax = vec2(Quantize8(0.435812284313725), Quantize8(0.615857694117647));
|
|
vec2 Ymax = NTSC_U ? vec2(16.0, 235.0) : vec2(0.0, 235.0);
|
|
|
|
|
|
// Assumes framebuffer in Rec.601 full range with baked gamma
|
|
// Quantize to 8-bit to replicate CRT's circuit board arithmetics
|
|
vec3 col = clamp(Quantize8_f3(r601_YUV(src, NTSC_U ? 1.0 : 0.0)), vec3(Ymax.x, -UVmax.x, -UVmax.y), \
|
|
vec3(Ymax.y, UVmax.x, UVmax.y))/255.0;
|
|
|
|
// YUV Analogue Color Controls (HUE + Color Shift + Color Burst)
|
|
float hue_radians = hue_degrees * M_PI;
|
|
float hue = atan(col.z, col.y) + hue_radians;
|
|
float chroma = sqrt(col.z * col.z + col.y * col.y); // Euclidean Distance
|
|
|
|
col.y = (mod((chroma * cos(hue) + 1.0) + U_SHIFT, 2.0) - 1.0) * U_MUL;
|
|
col.z = (mod((chroma * sin(hue) + 1.0) + V_SHIFT, 2.0) - 1.0) * V_MUL;
|
|
|
|
// Back to R'G'B' full
|
|
col = signal > 0.0 ? max(Quantize8_f3(YUV_r601(col.xyz, NTSC_U ? 1.0 : 0.0))/255.0, 0.0) : src;
|
|
|
|
// Look LUT - (in SPC space)
|
|
float red = (col.r * (global.LUT_Size1 - 1.0) + 0.4999) / (global.LUT_Size1 * global.LUT_Size1);
|
|
float green = (col.g * (global.LUT_Size1 - 1.0) + 0.4999) / global.LUT_Size1;
|
|
float blue1 = (floor(col.b * (global.LUT_Size1 - 1.0)) / global.LUT_Size1) + red;
|
|
float blue2 = (ceil(col.b * (global.LUT_Size1 - 1.0)) / global.LUT_Size1) + red;
|
|
float mixer = clamp(max((col.b - blue1) / (blue2 - blue1), 0.0), 0.0, 32.0);
|
|
vec3 color1 = texture(SamplerLUT1, vec2(blue1, green)).rgb;
|
|
vec3 color2 = texture(SamplerLUT1, vec2(blue2, green)).rgb;
|
|
vec3 vcolor = (global.LUT1_toggle == 0.0) ? col : mixfix(color1, color2, mixer);
|
|
|
|
|
|
// CRT EOTF. To Display Referred Linear: Undo developer baked CRT gamma (from 2.40 at default 0.1 CRT black level, to 2.60 at 0.0 CRT black level)
|
|
col = EOTF_1886a_f3(vcolor, g_CRT_l, params.g_CRT_b, params.g_CRT_c);
|
|
|
|
|
|
//_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
|
|
// \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \
|
|
|
|
|
|
|
|
// HUE vs HUE
|
|
vec4 screen = vec4(max(col, 0.0), 1.0);
|
|
|
|
// r g b alpha ; alpha does nothing for our purposes
|
|
mat4 color = mat4(wlr, rg, rb, 0.0, //red tint
|
|
gr, wlg, gb, 0.0, //green tint
|
|
br, bg, wlb, 0.0, //blue tint
|
|
blr/20., blg/20., blb/20., 0.0); //black tint
|
|
|
|
screen *= transpose(color);
|
|
|
|
|
|
// CRT Phosphor Gamut (0.0 is noop)
|
|
mat3 m_in;
|
|
|
|
if (crtgamut == -3.0) { m_in = SMPTE170M_ph; } else
|
|
if (crtgamut == -2.0) { m_in = CRT_95s_ph; } else
|
|
if (crtgamut == -1.0) { m_in = P22_80s_ph; } else
|
|
if (crtgamut == 0.0) { m_in = sRGB_prims; } else
|
|
if (crtgamut == 1.0) { m_in = P22_90s_ph; } else
|
|
if (crtgamut == 2.0) { m_in = P22_J_ph; } else
|
|
if (crtgamut == 3.0) { m_in = SMPTE470BG_ph; }
|
|
|
|
m_in = (global.LUT1_toggle == 0.0) ? m_in : sRGB_prims;
|
|
|
|
// Display color space
|
|
mat3 m_ou;
|
|
|
|
if (SPC == 1.0) { m_ou = DCIP3_prims; } else
|
|
if (SPC == 2.0) { m_ou = rec2020_prims; } else
|
|
if (SPC == 3.0) { m_ou = Adobe_prims; } else
|
|
{ m_ou = sRGB_prims; }
|
|
|
|
|
|
// White Point Mapping
|
|
col = wp_adjust(screen.rgb, global.wp_temperature, m_in, m_ou);
|
|
|
|
|
|
// SAT + HUE vs SAT (in IPT space)
|
|
vec3 coeff = RGB_to_XYZ_mat(m_in)[1];
|
|
|
|
vec3 src_h = RGB_to_XYZ(screen.rgb, m_in) * LMS;
|
|
src_h.x = src_h.x >= 0.0 ? pow(src_h.x, 0.43) : -pow(-src_h.x, 0.43);
|
|
src_h.y = src_h.y >= 0.0 ? pow(src_h.y, 0.43) : -pow(-src_h.y, 0.43);
|
|
src_h.z = src_h.z >= 0.0 ? pow(src_h.z, 0.43) : -pow(-src_h.z, 0.43);
|
|
|
|
src_h.xyz *= IPT;
|
|
|
|
float hue_at = atan(src_h.z, src_h.y);
|
|
chroma = sqrt(src_h.z * src_h.z + src_h.y * src_h.y);
|
|
|
|
// red 320º green 220º blue 100º
|
|
float hue_radians_r = 320.0 * M_PI;
|
|
float hue_r = cos(hue_at + hue_radians_r);
|
|
|
|
float hue_radians_g = 220.0 * M_PI;
|
|
float hue_g = cos(hue_at + hue_radians_g);
|
|
|
|
float hue_radians_b = 100.0 * M_PI;
|
|
float hue_b = cos(hue_at + hue_radians_b);
|
|
|
|
float msk = dot(clamp(vec3(hue_r, hue_g, hue_b) * chroma * 2, 0.0, 1.0), -vec3(satr, satg, satb));
|
|
src_h = mix(col, vec3(dot(coeff, col)), msk);
|
|
|
|
float sat_msk = (vibr < 0.0) ? 1.0 - abs(SatMask(src_h.x, src_h.y, src_h.z) - 1.0) * abs(vibr) : \
|
|
1.0 - (SatMask(src_h.x, src_h.y, src_h.z) * vibr) ;
|
|
|
|
float sat = g_sat + 1.0;
|
|
float msat = 1.0 - sat;
|
|
float msatx = msat * coeff.x;
|
|
float msaty = msat * coeff.y;
|
|
float msatz = msat * coeff.z;
|
|
|
|
mat3 adjust = mat3(msatx + sat, msatx , msatx ,
|
|
msaty , msaty + sat, msaty ,
|
|
msatz , msatz , msatz + sat);
|
|
|
|
|
|
src_h = mix(src_h, adjust * src_h, clamp(sat_msk, 0.0, 1.0));
|
|
src_h *= vec3(beamr,beamg,beamb);
|
|
|
|
|
|
// RGB 'Desaturate' Gamut Compression (by Jed Smith: https://github.com/jedypod/gamut-compress)
|
|
coeff = RGB_to_XYZ_mat(m_ou)[1];
|
|
src_h = GCompress==1.0 ? clamp(GamutCompression(src_h, dot(coeff.xyz, src_h)), 0.0, 1.0) : clamp(src_h, 0.0, 1.0);
|
|
|
|
|
|
// Sigmoidal Luma Contrast under 'Yxy' decorrelated model (in gamma space)
|
|
vec3 Yxy = XYZtoYxy(RGB_to_XYZ(src_h, m_ou));
|
|
float toGamma = clamp(moncurve_r(Yxy.r, 2.40, 0.055), 0.0, 1.0);
|
|
toGamma = (Yxy.r > 0.5) ? contrast_sigmoid_inv(toGamma, 2.3, 0.5) : toGamma;
|
|
float sigmoid = (cntrst > 0.0) ? contrast_sigmoid(toGamma, cntrst, mid) : contrast_sigmoid_inv(toGamma, cntrst, mid);
|
|
vec3 contrast = vec3(moncurve_f(sigmoid, 2.40, 0.055), Yxy.g, Yxy.b);
|
|
vec3 XYZsrgb = XYZ_to_RGB(YxytoXYZ(contrast), m_ou);
|
|
contrast = (cntrst == 0.0) ? src_h : XYZsrgb;
|
|
|
|
|
|
// Lift + Gain -PP Digital Controls- (Could do in Yxy but performance reasons)
|
|
src_h = clamp(rolled_gain_v3(contrast, clamp(lum, -0.49, 0.99)), 0.0, 1.0);
|
|
src_h += (lift / 20.0) * (1.0 - contrast);
|
|
|
|
|
|
// Vignetting (in linear space, so after EOTF^-1 it's power shaped; 0.5 thres converts to ~0.75)
|
|
vec2 vpos = vTexCoord*(global.OriginalSize.xy/global.SourceSize.xy);
|
|
|
|
vpos *= 1.0 - vpos.xy;
|
|
float vig = vpos.x * vpos.y * vstr;
|
|
vig = min(pow(vig, vpower), 1.0);
|
|
vig = vig >= 0.5 ? smoothstep(0,1,vig) : vig;
|
|
|
|
src_h *= (vignette == 1.0) ? vig : 1.0;
|
|
|
|
|
|
// Dark to Dim adaptation OOTF; only for 709 and 2020
|
|
vec3 src_D = global.g_Dark_to_Dim > 0.0 ? pow(src_h,vec3(0.9811)) : src_h;
|
|
|
|
// EOTF^-1 - Inverted Electro-Optical Transfer Function
|
|
vec3 TRC = (SPC == 3.0) ? clamp(pow(src_h, vec3(1./(563./256.))), 0., 1.) : \
|
|
(SPC == 2.0) ? moncurve_r_f3(src_D, 2.20 + 0.022222, 0.0993) : \
|
|
(SPC == 1.0) ? clamp(pow(src_h, vec3(1./(2.20 + 0.40))), 0., 1.) : \
|
|
(SPC == 0.0) ? moncurve_r_f3(src_h, 2.20 + 0.20, 0.0550) : \
|
|
clamp(pow( src_D, vec3(1./(2.20 + 0.20))), 0., 1.) ;
|
|
|
|
|
|
// External Flare for Surround Illuminant 2700K (Soft White) at F0 (Lambertian reflectance); defines offset thus also black lift
|
|
vec3 Flare = 0.01 * (global.g_CRT_rf/5.0)*(0.049433*global.g_CRT_sl - 0.188367) * vec3(0.459993/0.410702,1.0,0.129305/0.410702);
|
|
TRC = global.g_CRT_sl > 0.0 ? min(TRC+Flare,1.0) : TRC;
|
|
|
|
|
|
// Technical LUT - (in SPC space)
|
|
float red_2 = (TRC.r * (global.LUT_Size2 - 1.0) + 0.4999) / (global.LUT_Size2 * global.LUT_Size2);
|
|
float green_2 = (TRC.g * (global.LUT_Size2 - 1.0) + 0.4999) / global.LUT_Size2;
|
|
float blue1_2 = (floor(TRC.b * (global.LUT_Size2 - 1.0)) / global.LUT_Size2) + red_2;
|
|
float blue2_2 = (ceil(TRC.b * (global.LUT_Size2 - 1.0)) / global.LUT_Size2) + red_2;
|
|
float mixer_2 = clamp(max((TRC.b - blue1_2) / (blue2_2 - blue1_2), 0.0), 0.0, 32.0);
|
|
vec3 color1_2 = texture(SamplerLUT2, vec2(blue1_2, green_2)).rgb;
|
|
vec3 color2_2 = texture(SamplerLUT2, vec2(blue2_2, green_2)).rgb;
|
|
vec3 LUT2_output = mixfix(color1_2, color2_2, mixer_2);
|
|
|
|
LUT2_output = (global.LUT2_toggle == 0.0) ? TRC : LUT2_output;
|
|
|
|
|
|
FragColor = vec4(LUT2_output, 1.0);
|
|
} |