slang-shaders/crt/shaders/crt-lottes-multipass/bloompass.slang

343 lines
8.8 KiB
Plaintext

#version 450
layout(push_constant) uniform Push
{
float hardScan;
float hardPix;
float warpX;
float warpY;
float maskDark;
float maskLight;
float scaleInLinearGamma;
float shadowMask;
float brightBoost;
float hardBloomScan;
float hardBloomPix;
float bloomAmount;
float shape;
} param;
#pragma parameter hardScan "hardScan" -8.0 -20.0 0.0 1.0
#pragma parameter hardPix "hardPix" -3.0 -20.0 0.0 1.0
#pragma parameter warpX "warpX" 0.031 0.0 0.125 0.01
#pragma parameter warpY "warpY" 0.041 0.0 0.125 0.01
#pragma parameter maskDark "maskDark" 0.5 0.0 2.0 0.1
#pragma parameter maskLight "maskLight" 1.5 0.0 2.0 0.1
#pragma parameter scaleInLinearGamma "scaleInLinearGamma" 1.0 0.0 1.0 1.0
#pragma parameter shadowMask "shadowMask" 3.0 0.0 4.0 1.0
#pragma parameter brightBoost "brightness boost" 1.0 0.0 2.0 0.05
#pragma parameter hardBloomPix "bloom-x soft" -1.5 -2.0 -0.5 0.1
#pragma parameter hardBloomScan "bloom-y soft" -2.0 -4.0 -1.0 0.1
#pragma parameter bloomAmount "bloom amount" 0.4 0.0 1.0 0.05
#pragma parameter shape "filter kernel shape" 2.0 0.0 10.0 0.05
layout(std140, set = 0, binding = 0) uniform UBO
{
mat4 MVP;
vec4 OutputSize;
vec4 OriginalSize;
vec4 SourceSize;
} global;
#pragma stage vertex
layout(location = 0) in vec4 Position;
layout(location = 1) in vec2 TexCoord;
layout(location = 0) out vec2 vTexCoord;
void main()
{
gl_Position = global.MVP * Position;
vTexCoord = TexCoord;
}
// PUBLIC DOMAIN CRT STYLED SCAN-LINE SHADER
//
// by Timothy Lottes
//
// This is more along the style of a really good CGA arcade monitor.
// With RGB inputs instead of NTSC.
// The shadow mask example has the mask rotated 90 degrees for less chromatic aberration.
//
// Left it unoptimized to show the theory behind the algorithm.
//
// It is an example what I personally would want as a display option for pixel art games.
// Please take and use, change, or whatever.
#pragma stage fragment
layout(location = 0) in vec2 vTexCoord;
layout(location = 1) in vec2 FragCoord;
layout(location = 0) out vec4 FragColor;
layout(set = 0, binding = 2) uniform sampler2D Source;
//Uncomment to reduce instructions with simpler linearization
//(fixes HD3000 Sandy Bridge IGP)
//#define SIMPLE_LINEAR_GAMMA
#define DO_BLOOM 1
// ------------- //
// sRGB to Linear.
// Assuming using sRGB typed textures this should not be needed.
#ifdef SIMPLE_LINEAR_GAMMA
float ToLinear1(float c)
{
return c;
}
vec3 ToLinear(vec3 c)
{
return c;
}
vec3 ToSrgb(vec3 c)
{
return pow(c, vec3(1.0 / 2.2));
}
#else
float ToLinear1(float c)
{
if (param.scaleInLinearGamma == 0)
return c;
return(c<=0.04045) ? c/12.92 : pow((c + 0.055)/1.055, 2.4);
}
vec3 ToLinear(vec3 c)
{
if (param.scaleInLinearGamma==0)
return c;
return vec3(ToLinear1(c.r), ToLinear1(c.g), ToLinear1(c.b));
}
// Linear to sRGB.
// Assuming using sRGB typed textures this should not be needed.
float ToSrgb1(float c)
{
if (param.scaleInLinearGamma == 0)
return c;
return(c<0.0031308 ? c*12.92 : 1.055*pow(c, 0.41666) - 0.055);
}
vec3 ToSrgb(vec3 c)
{
if (param.scaleInLinearGamma == 0)
return c;
return vec3(ToSrgb1(c.r), ToSrgb1(c.g), ToSrgb1(c.b));
}
#endif
// Nearest emulated sample given floating point position and texel offset.
// Also zero's off screen.
vec3 Fetch(vec2 pos,vec2 off){
pos=(floor(pos*global.SourceSize.xy+off)+vec2(0.5,0.5))/global.SourceSize.xy;
#ifdef SIMPLE_LINEAR_GAMMA
return ToLinear(pow(texture(Source,pos.xy).rgb, vec3(2.2)));
#else
return ToLinear(texture(Source,pos.xy).rgb);
#endif
}
// Distance in emulated pixels to nearest texel.
vec2 Dist(vec2 pos)
{
pos = pos*global.SourceSize.xy;
return -((pos - floor(pos)) - vec2(0.5));
}
// 1D Gaussian.
float Gaus(float pos, float scale)
{
return exp2(scale*pow(abs(pos), param.shape));
}
// 3-tap Gaussian filter along horz line.
vec3 Horz3(vec2 pos, float off)
{
vec3 b = Fetch(pos, vec2(-1.0, off));
vec3 c = Fetch(pos, vec2( 0.0, off));
vec3 d = Fetch(pos, vec2( 1.0, off));
float dst = Dist(pos).x;
// Convert distance to weight.
float scale = param.hardPix;
float wb = Gaus(dst-1.0,scale);
float wc = Gaus(dst+0.0,scale);
float wd = Gaus(dst+1.0,scale);
// Return filtered sample.
return (b*wb+c*wc+d*wd)/(wb+wc+wd);
}
// 5-tap Gaussian filter along horz line.
vec3 Horz5(vec2 pos,float off){
vec3 a = Fetch(pos,vec2(-2.0, off));
vec3 b = Fetch(pos,vec2(-1.0, off));
vec3 c = Fetch(pos,vec2( 0.0, off));
vec3 d = Fetch(pos,vec2( 1.0, off));
vec3 e = Fetch(pos,vec2( 2.0, off));
float dst = Dist(pos).x;
// Convert distance to weight.
float scale = param.hardPix;
float wa = Gaus(dst - 2.0, scale);
float wb = Gaus(dst - 1.0, scale);
float wc = Gaus(dst + 0.0, scale);
float wd = Gaus(dst + 1.0, scale);
float we = Gaus(dst + 2.0, scale);
// Return filtered sample.
return (a*wa+b*wb+c*wc+d*wd+e*we)/(wa+wb+wc+wd+we);
}
// 7-tap Gaussian filter along horz line.
vec3 Horz7(vec2 pos,float off)
{
vec3 a = Fetch(pos, vec2(-3.0, off));
vec3 b = Fetch(pos, vec2(-2.0, off));
vec3 c = Fetch(pos, vec2(-1.0, off));
vec3 d = Fetch(pos, vec2( 0.0, off));
vec3 e = Fetch(pos, vec2( 1.0, off));
vec3 f = Fetch(pos, vec2( 2.0, off));
vec3 g = Fetch(pos, vec2( 3.0, off));
float dst = Dist(pos).x;
// Convert distance to weight.
float scale = param.hardBloomPix;
float wa = Gaus(dst - 3.0, scale);
float wb = Gaus(dst - 2.0, scale);
float wc = Gaus(dst - 1.0, scale);
float wd = Gaus(dst + 0.0, scale);
float we = Gaus(dst + 1.0, scale);
float wf = Gaus(dst + 2.0, scale);
float wg = Gaus(dst + 3.0, scale);
// Return filtered sample.
return (a*wa+b*wb+c*wc+d*wd+e*we+f*wf+g*wg)/(wa+wb+wc+wd+we+wf+wg);
}
// Return scanline weight.
float Scan(vec2 pos, float off)
{
float dst = Dist(pos).y;
return Gaus(dst + off, param.hardScan);
}
// Return scanline weight for bloom.
float BloomScan(vec2 pos, float off)
{
float dst = Dist(pos).y;
return Gaus(dst + off, param.hardBloomScan);
}
// Allow nearest three lines to effect pixel.
vec3 Tri(vec2 pos)
{
vec3 a = Horz3(pos,-1.0);
vec3 b = Horz5(pos, 0.0);
vec3 c = Horz3(pos, 1.0);
float wa = Scan(pos,-1.0);
float wb = Scan(pos, 0.0);
float wc = Scan(pos, 1.0);
return a*wa + b*wb + c*wc;
}
// Small bloom.
vec3 Bloom(vec2 pos)
{
vec3 a = Horz5(pos,-2.0);
vec3 b = Horz7(pos,-1.0);
vec3 c = Horz7(pos, 0.0);
vec3 d = Horz7(pos, 1.0);
vec3 e = Horz5(pos, 2.0);
float wa = BloomScan(pos,-2.0);
float wb = BloomScan(pos,-1.0);
float wc = BloomScan(pos, 0.0);
float wd = BloomScan(pos, 1.0);
float we = BloomScan(pos, 2.0);
return a*wa+b*wb+c*wc+d*wd+e*we;
}
// Distortion of scanlines, and end of screen alpha.
vec2 Warp(vec2 pos)
{
pos = pos*2.0-1.0;
pos *= vec2(1.0 + (pos.y*pos.y)*param.warpX, 1.0 + (pos.x*pos.x)*param.warpY);
return pos*0.5 + 0.5;
}
// Shadow mask.
vec3 Mask(vec2 pos)
{
vec3 mask = vec3(param.maskDark, param.maskDark, param.maskDark);
// Very compressed TV style shadow mask.
if (param.shadowMask == 1.0)
{
float line = param.maskLight;
float odd = 0.0;
if (fract(pos.x*0.166666666) < 0.5) odd = 1.0;
if (fract((pos.y + odd) * 0.5) < 0.5) line = param.maskDark;
pos.x = fract(pos.x*0.333333333);
if (pos.x < 0.333) mask.r = param.maskLight;
else if (pos.x < 0.666) mask.g = param.maskLight;
else mask.b = param.maskLight;
mask*=line;
}
// Aperture-grille.
else if (param.shadowMask == 2.0)
{
pos.x = fract(pos.x*0.333333333);
if (pos.x < 0.333) mask.r = param.maskLight;
else if (pos.x < 0.666) mask.g = param.maskLight;
else mask.b = param.maskLight;
}
// Stretched VGA style shadow mask (same as prior shaders).
else if (param.shadowMask == 3.0)
{
pos.x += pos.y*3.0;
pos.x = fract(pos.x*0.166666666);
if (pos.x < 0.333) mask.r = param.maskLight;
else if (pos.x < 0.666) mask.g = param.maskLight;
else mask.b = param.maskLight;
}
// VGA style shadow mask.
else if (param.shadowMask == 4.0)
{
pos.xy = floor(pos.xy*vec2(1.0, 0.5));
pos.x += pos.y*3.0;
pos.x = fract(pos.x*0.166666666);
if (pos.x < 0.333) mask.r = param.maskLight;
else if (pos.x < 0.666) mask.g = param.maskLight;
else mask.b = param.maskLight;
}
return mask;
}
void main()
{
vec2 pos = vTexCoord;
FragColor = vec4(Bloom(pos)*param.bloomAmount, 1.0);
}