mirror of
https://github.com/italicsjenga/slang-shaders.git
synced 2024-11-23 16:11:31 +11:00
178 lines
5.5 KiB
Plaintext
178 lines
5.5 KiB
Plaintext
#version 450
|
|
#include "config.inc"
|
|
|
|
#pragma stage vertex
|
|
layout(location = 0) in vec4 Position;
|
|
layout(location = 1) in vec2 TexCoord;
|
|
layout(location = 0) out vec2 vTexCoord;
|
|
layout(location = 4) out vec3 temperature_rgb;
|
|
|
|
#include "includes/functions.include.slang"
|
|
|
|
|
|
vec3 kelvin2rgb(float k) {
|
|
//Convert kelvin temperature to rgb factors
|
|
k = clamp(k,1000,40000);
|
|
k=k/100.0;
|
|
float tmpCalc;
|
|
vec3 pixel_out;
|
|
if (k<=66) {
|
|
pixel_out.r = 255;
|
|
pixel_out.g = 99.47080258612 * log(k) - 161.11956816610;
|
|
} else {
|
|
pixel_out.r = 329.6987274461 * pow(k - 60 ,-0.13320475922);
|
|
pixel_out.g = 288.12216952833 * pow(k-60, -0.07551484921);
|
|
}
|
|
|
|
if (k >= 66)
|
|
pixel_out.b = 255;
|
|
else if (k<=19)
|
|
pixel_out.b = 0;
|
|
else
|
|
pixel_out.b = 138.51773122311 * log(k - 10) - 305.04479273072;
|
|
|
|
return pixel_out/255.0;
|
|
}
|
|
|
|
|
|
void main() {
|
|
gl_Position = global.MVP * Position;
|
|
vTexCoord = TexCoord;
|
|
if (TEMPERATURE != 6500)
|
|
temperature_rgb = kelvin2rgb(TEMPERATURE);
|
|
}
|
|
|
|
#pragma stage fragment
|
|
layout(location = 0) in vec2 vTexCoord;
|
|
layout(location = 4) in vec3 temperature_rgb;
|
|
layout(location = 0) out vec4 FragColor;
|
|
|
|
layout(set = 0, binding = 2) uniform sampler2D Source;
|
|
|
|
#include "includes/functions.include.slang"
|
|
|
|
vec3 color_tools(vec3 pixel_out) {
|
|
//Apply color corrections to input signal.
|
|
|
|
//Push luminance without clipping
|
|
pixel_out = pixel_push_luminance(pixel_out,LUMINANCE);
|
|
|
|
//Modify saturation
|
|
if (!(SATURATION == 1.0)) {
|
|
const vec3 W = vec3(0.2125, 0.7154, 0.0721);
|
|
vec3 intensity = vec3(dot(pixel_out.rgb, W));
|
|
pixel_out.rgb = mix(intensity, pixel_out.rgb, SATURATION);
|
|
}
|
|
|
|
//Modify contrast and brightness
|
|
if (CONTRAST != 0.0 || BRIGHTNESS != 0.0)
|
|
pixel_out.rgb = scale_to_range_vec3(pixel_out.rgb, -CONTRAST, 1+CONTRAST) + BRIGHTNESS;
|
|
|
|
//Modify color temperature
|
|
if (TEMPERATURE != 6500.0) pixel_out.rgb = pixel_out.rgb * temperature_rgb;
|
|
return pixel_out;
|
|
}
|
|
|
|
|
|
vec3 pixel_no_flicker(vec2 coord){
|
|
vec3 pixel_out = texture(Source,coord).rgb;
|
|
if (DO_CCORRECTION == 1.0)
|
|
pixel_out = color_tools(pixel_out);
|
|
return pixel_out.rgb;
|
|
}
|
|
|
|
vec3 pixel_flickering() {
|
|
/* Simulates the flickering effect of the interlaced screens.
|
|
* As I remember, it was visible when a line and the next had high
|
|
* luminosity differences.
|
|
* So we need sample the current line and the previous one
|
|
* (eventually applying color corrections to both).
|
|
*
|
|
* Repeating the following:
|
|
* On frame 0, return the "clean" pixel
|
|
* On frame 1, mix the upper pixel with the current one
|
|
* On frame 2, mix the lower pixel with the current one
|
|
*
|
|
* The effect of the mix is the flickering itself, and we modulate
|
|
* the mix according to the luminance difference between the current
|
|
* pixel and the mixed one.
|
|
*
|
|
* We choose to alternate on a period of 3,
|
|
* (thus considering the upper pixel and the lower one)
|
|
* or else the high pixel persistance of lcd displays wont allow
|
|
* to see the effect (the lcd panel would just mix the pixels by itself (meh).
|
|
*/
|
|
|
|
vec3 pixel_cur = pixel_no_flicker(vTexCoord);
|
|
float mymod = params.FrameCount % 3;
|
|
|
|
if (mymod == 0.0) return pixel_cur;
|
|
float line_tick = (params.OriginalSize.y > MIN_LINES_INTERLACED ) ? 1 : 2 ;
|
|
|
|
vec3 flickline;
|
|
if (mymod == 1.0 )
|
|
flickline = pixel_no_flicker(vTexCoord + vec2(0.0,params.OriginalSize.w/line_tick));
|
|
else if (mymod == 2.0)
|
|
flickline = pixel_no_flicker(vTexCoord - vec2(0.0,params.OriginalSize.w/line_tick));
|
|
|
|
float lumdiff = (flickline.r+flickline.g+flickline.b)/3.0 -
|
|
(pixel_cur.r+pixel_cur.g+pixel_cur.b)/3.0;
|
|
|
|
if (lumdiff > 0.0) {
|
|
lumdiff = scale_to_range(lumdiff,0.0,SCANLINE_FLICKERING_POWER);
|
|
return mix(pixel_cur,flickline,lumdiff);
|
|
} else {
|
|
return pixel_cur;
|
|
}
|
|
}
|
|
|
|
|
|
void debug() {
|
|
//Just test patterns here
|
|
vec3 pixel_debug;
|
|
//Use one of the following to debug:
|
|
//pixel_debug=vec3(abs(sin(params.FrameCount/3.14/8.0))); //white fade
|
|
//pixel_debug=vec3(abs(sin(params.FrameCount/3.14/20)),0.0,0.0); //red fade
|
|
//pixel_debug=vec3(1.0);
|
|
//pixel_debug=vec3(0.0,1.0,0.0);
|
|
//pixel_debug=vec3(0.38,0.0,1.0)*vTexCoord.x;
|
|
pixel_debug=vec3(vTexCoord.x); //H bw gradient
|
|
//pixel_debug=vec3(floor(vTexCoord.x*16)/16); //H bw gradient 16gray
|
|
//pixel_debug=vec3(floor(vTexCoord.x*64)/64); //H bw gradient 64gray
|
|
//pixel_debug=vec3(floor(vTexCoord.x*128)/128); //H bw gradient 128gray
|
|
//pixel_debug=vec3(1,0,0,0)*floor(vTexCoord.x*64)/64; //H red gradient 64
|
|
//if (mod(params.FrameCount,100) < 50) pixel_debug=vec3(0.0) ; else pixel_debug=vec3(1.0);
|
|
//FragColor = vec4(color_tools(pixel_debug).rgb,1.0);
|
|
FragColor = vec4(pixel_debug,1.0);
|
|
}
|
|
|
|
|
|
void main() {
|
|
|
|
//debug(); return;
|
|
|
|
/* since flickering code needs
|
|
luminosity difference between 2 vertical lines
|
|
both have to be processed through color corrections and rgb pixel offsets.
|
|
before flickering code can operate. (pixel_no_flicker)
|
|
Therefore we call pixel_no_flicker inside it when we want flickering scanlines
|
|
and outside id when we dont.
|
|
*/
|
|
|
|
if (DO_SCANLINES == 0.0) {
|
|
FragColor= vec4(pixel_no_flicker(vTexCoord),1.0);
|
|
return;
|
|
}
|
|
|
|
//Implicit else: DO_SCANLINES == 1.0
|
|
if (scanline_have_to_flicker(is_interlaced())) {
|
|
FragColor = vec4(pixel_flickering(),1.0);
|
|
return;
|
|
}
|
|
|
|
//Implicit else: DO_SCANLINES == 1.0 but no flickering needed.
|
|
FragColor = vec4(pixel_no_flicker(vTexCoord),1.0);
|
|
}
|
|
|
|
|