slang-shaders/crt/shaders/crt-royale/src/crt-royale-scanlines-vertical-interlacing.slang

244 lines
11 KiB
Plaintext
Executable file

#version 450
///////////////////////////// GPL LICENSE NOTICE /////////////////////////////
// crt-royale: A full-featured CRT shader, with cheese.
// Copyright (C) 2014 TroggleMonkey <trogglemonkey@gmx.com>
//
// This program is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by the Free
// Software Foundation; either version 2 of the License, or any later version.
//
// This program is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
// more details.
//
// You should have received a copy of the GNU General Public License along with
// this program; if not, write to the Free Software Foundation, Inc., 59 Temple
// Place, Suite 330, Boston, MA 02111-1307 USA
layout(push_constant) uniform Push
{
vec4 SourceSize;
vec4 OriginalSize;
vec4 OutputSize;
uint FrameCount;
} params;
////////////////////////////////// INCLUDES //////////////////////////////////
#include "../../../../include/compat_macros.inc"
#include "../user-settings.h"
#include "derived-settings-and-constants.h"
#include "bind-shader-params.h"
#include "scanline-functions.h"
#include "../../../../include/gamma-management.h"
#pragma stage vertex
layout(location = 0) in vec4 Position;
layout(location = 1) in vec2 TexCoord;
layout(location = 0) out vec2 tex_uv;
layout(location = 1) out vec2 uv_step; // uv size of a texel (x) and scanline (y)
layout(location = 2) out vec2 il_step_multiple; // (1, 1) = progressive, (1, 2) = interlaced
layout(location = 3) out float pixel_height_in_scanlines; // Height of an output pixel in scanlines
void main()
{
gl_Position = global.MVP * Position;
tex_uv = TexCoord * 1.00001;
// Detect interlacing: il_step_multiple indicates the step multiple between
// lines: 1 is for progressive sources, and 2 is for interlaced sources.
float2 video_size_ = IN.video_size.xy;
const float y_step = 1.0 + float(is_interlaced(video_size_.y));
il_step_multiple = float2(1.0, y_step);
// Get the uv tex coords step between one texel (x) and scanline (y):
uv_step = il_step_multiple / IN.texture_size;
// If shader parameters are used, {min, max}_{sigma, shape} are runtime
// values. Compute {sigma, shape}_range outside of scanline_contrib() so
// they aren't computed once per scanline (6 times per fragment and up to
// 18 times per vertex):
// TODO/FIXME: if these aren't used, why are they calculated? commenting for now
// const floatsigma_range = max(beam_max_sigma, beam_min_sigma) -
// beam_min_sigma;
// const float shape_range = max(beam_max_shape, beam_min_shape) -
// beam_min_shape;
// We need the pixel height in scanlines for antialiased/integral sampling:
const float ph = (video_size_.y / IN.output_size.y) /
il_step_multiple.y;
pixel_height_in_scanlines = ph;
}
#pragma stage fragment
#pragma format R8G8B8A8_SRGB
layout(location = 0) in vec2 tex_uv;
layout(location = 1) in vec2 uv_step; // uv size of a texel (x) and scanline (y)
layout(location = 2) in vec2 il_step_multiple; // (1, 1) = progressive, (1, 2) = interlaced
layout(location = 3) in float pixel_height_in_scanlines; // Height of an output pixel in scanlines
layout(location = 0) out vec4 FragColor;
layout(set = 0, binding = 2) uniform sampler2D Source;
#define input_texture Source
void main()
{
// This pass: Sample multiple (misconverged?) scanlines to the final
// vertical resolution. Temporarily auto-dim the output to avoid clipping.
// Read some attributes into local variables:
float2 texture_size_ = IN.texture_size;
float2 texture_size_inv = 1.0/texture_size_;
//const float2 uv_step = uv_step;
//const float2 il_step_multiple = il_step_multiple;
float frame_count = float(IN.frame_count);
const float ph = pixel_height_in_scanlines;
// Get the uv coords of the previous scanline (in this field), and the
// scanline's distance from this sample, in scanlines.
float dist;
const float2 scanline_uv = get_last_scanline_uv(tex_uv, texture_size_,
texture_size_inv, il_step_multiple, frame_count, dist);
// Consider 2, 3, 4, or 6 scanlines numbered 0-5: The previous and next
// scanlines are numbered 2 and 3. Get scanline colors colors (ignore
// horizontal sampling, since since IN.output_size.x = video_size.x).
// NOTE: Anisotropic filtering creates interlacing artifacts, which is why
// ORIG_LINEARIZED bobbed any interlaced input before this pass.
const float2 v_step = float2(0.0, uv_step.y);
const float3 scanline2_color = tex2D_linearize(input_texture, scanline_uv).rgb;
const float3 scanline3_color =
tex2D_linearize(input_texture, scanline_uv + v_step).rgb;
float3 scanline0_color, scanline1_color, scanline4_color, scanline5_color,
scanline_outside_color;
float dist_round;
// Use scanlines 0, 1, 4, and 5 for a total of 6 scanlines:
if(beam_num_scanlines > 5.5)
{
scanline1_color =
tex2D_linearize(input_texture, scanline_uv - v_step).rgb;
scanline4_color =
tex2D_linearize(input_texture, scanline_uv + 2.0 * v_step).rgb;
scanline0_color =
tex2D_linearize(input_texture, scanline_uv - 2.0 * v_step).rgb;
scanline5_color =
tex2D_linearize(input_texture, scanline_uv + 3.0 * v_step).rgb;
}
// Use scanlines 1, 4, and either 0 or 5 for a total of 5 scanlines:
else if(beam_num_scanlines > 4.5)
{
scanline1_color =
tex2D_linearize(input_texture, scanline_uv - v_step).rgb;
scanline4_color =
tex2D_linearize(input_texture, scanline_uv + 2.0 * v_step).rgb;
// dist is in [0, 1]
dist_round = round(dist);
const float2 sample_0_or_5_uv_off =
lerp(-2.0 * v_step, 3.0 * v_step, dist_round);
// Call this "scanline_outside_color" to cope with the conditional
// scanline number:
scanline_outside_color = tex2D_linearize(
input_texture, scanline_uv + sample_0_or_5_uv_off).rgb;
}
// Use scanlines 1 and 4 for a total of 4 scanlines:
else if(beam_num_scanlines > 3.5)
{
scanline1_color =
tex2D_linearize(input_texture, scanline_uv - v_step).rgb;
scanline4_color =
tex2D_linearize(input_texture, scanline_uv + 2.0 * v_step).rgb;
}
// Use scanline 1 or 4 for a total of 3 scanlines:
else if(beam_num_scanlines > 2.5)
{
// dist is in [0, 1]
dist_round = round(dist);
const float2 sample_1or4_uv_off =
lerp(-v_step, 2.0 * v_step, dist_round);
scanline_outside_color = tex2D_linearize(
input_texture, scanline_uv + sample_1or4_uv_off).rgb;
}
// Compute scanline contributions, accounting for vertical convergence.
// Vertical convergence offsets are in units of current-field scanlines.
// dist2 means "positive sample distance from scanline 2, in scanlines:"
float3 dist2 = float3(dist);
if(beam_misconvergence)
{
const float3 convergence_offsets_vert_rgb =
get_convergence_offsets_y_vector();
dist2 = float3(dist) - convergence_offsets_vert_rgb;
}
// Calculate {sigma, shape}_range outside of scanline_contrib so it's only
// done once per pixel (not 6 times) with runtime params. Don't reuse the
// vertex shader calculations, so static versions can be constant-folded.
const float sigma_range = max(beam_max_sigma, beam_min_sigma) -
beam_min_sigma;
const float shape_range = max(beam_max_shape, beam_min_shape) -
beam_min_shape;
// Calculate and sum final scanline contributions, starting with lines 2/3.
// There is no normalization step, because we're not interpolating a
// continuous signal. Instead, each scanline is an additive light source.
const float3 scanline2_contrib = scanline_contrib(dist2,
scanline2_color, ph, sigma_range, shape_range);
const float3 scanline3_contrib = scanline_contrib(abs(float3(1.0,1.0,1.0) - dist2),
scanline3_color, ph, sigma_range, shape_range);
float3 scanline_intensity = scanline2_contrib + scanline3_contrib;
if(beam_num_scanlines > 5.5)
{
const float3 scanline0_contrib =
scanline_contrib(dist2 + float3(2.0,2.0,2.0), scanline0_color,
ph, sigma_range, shape_range);
const float3 scanline1_contrib =
scanline_contrib(dist2 + float3(1.0,1.0,1.0), scanline1_color,
ph, sigma_range, shape_range);
const float3 scanline4_contrib =
scanline_contrib(abs(float3(2.0,2.0,2.0) - dist2), scanline4_color,
ph, sigma_range, shape_range);
const float3 scanline5_contrib =
scanline_contrib(abs(float3(3.0) - dist2), scanline5_color,
ph, sigma_range, shape_range);
scanline_intensity += scanline0_contrib + scanline1_contrib +
scanline4_contrib + scanline5_contrib;
}
else if(beam_num_scanlines > 4.5)
{
const float3 scanline1_contrib =
scanline_contrib(dist2 + float3(1.0,1.0,1.0), scanline1_color,
ph, sigma_range, shape_range);
const float3 scanline4_contrib =
scanline_contrib(abs(float3(2.0,2.0,2.0) - dist2), scanline4_color,
ph, sigma_range, shape_range);
const float3 dist0or5 = lerp(
dist2 + float3(2.0,2.0,2.0), float3(3.0,3.0,3.0) - dist2, dist_round);
const float3 scanline0or5_contrib = scanline_contrib(
dist0or5, scanline_outside_color, ph, sigma_range, shape_range);
scanline_intensity += scanline1_contrib + scanline4_contrib +
scanline0or5_contrib;
}
else if(beam_num_scanlines > 3.5)
{
const float3 scanline1_contrib =
scanline_contrib(dist2 + float3(1.0,1.0,1.0), scanline1_color,
ph, sigma_range, shape_range);
const float3 scanline4_contrib =
scanline_contrib(abs(float3(2.0,2.0,2.0) - dist2), scanline4_color,
ph, sigma_range, shape_range);
scanline_intensity += scanline1_contrib + scanline4_contrib;
}
else if(beam_num_scanlines > 2.5)
{
const float3 dist1or4 = lerp(
dist2 + float3(1.0,1.0,1.0), float3(2.0,2.0,2.0) - dist2, dist_round);
const float3 scanline1or4_contrib = scanline_contrib(
dist1or4, scanline_outside_color, ph, sigma_range, shape_range);
scanline_intensity += scanline1or4_contrib;
}
// Auto-dim the image to avoid clipping, encode if necessary, and output.
// My original idea was to compute a minimal auto-dim factor and put it in
// the alpha channel, but it wasn't working, at least not reliably. This
// is faster anyway, levels_autodim_temp = 0.5 isn't causing banding.
FragColor = encode_output(float4(scanline_intensity * levels_autodim_temp, 1.0));
}