slang-shaders/misc/shaders/grade-no-LUT.slang
2023-05-11 14:52:24 +01:00

828 lines
28 KiB
Plaintext

#version 450
/*
Grade - CRT emulated color manipulation shader
Copyright (C) 2020-2023 Dogway (Jose Linares)
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
layout(push_constant) uniform Push
{
float g_signal_type;
float g_crtgamut;
float g_space_out;
float g_hue_degrees;
float g_U_SHIFT;
float g_V_SHIFT;
float g_U_MUL;
float g_V_MUL;
float g_CRT_b;
float g_CRT_c;
float g_CRT_l;
float g_lum_fix;
float g_vstr;
float g_vpower;
float g_sat;
float g_vibr;
float g_lum;
float g_cntrst;
float g_mid;
float g_lift;
float blr;
float blg;
float blb;
float wlr;
float wlg;
float wlb;
float rg;
float rb;
float gr;
float gb;
float br;
float bg;
} params;
layout(std140, set = 0, binding = 0) uniform UBO
{
mat4 MVP;
vec4 SourceSize;
vec4 OriginalSize;
vec4 OutputSize;
uint FrameCount;
float g_vignette;
float g_Dark_to_Dim;
float wp_temperature;
float g_CRT_br;
float g_CRT_bg;
float g_CRT_bb;
float g_satr;
float g_satg;
float g_satb;
} global;
/*
Grade (11-05-2023)
> Ubershader grouping some monolithic color related shaders:
::color-mangler (hunterk), ntsc color tuning knobs (Doriphor), white_point (hunterk, Dogway), RA Reshade LUT.
> and the addition of:
::analogue color emulation, phosphor gamut, color space + TRC support, vibrance, HUE vs SAT, vignette (shared by Syh), black level, rolled gain and sigmoidal contrast.
**Thanks to those that helped me out keep motivated by continuous feedback and bug reports:
**Syh, Nesguy, hunterk, and the libretro forum members.
######################################...PRESETS...#######################################
##########################################################################################
### ###
### PAL ###
### Phosphor: 470BG (#3) ###
### WP: D65 (6504K) (in practice more like 7000K-7500K range) ###
### Saturation: -0.02 ###
### ###
### NTSC-U ###
### Phosphor: P22/SMPTE-C (#1 #-3)(or a SMPTE-C based CRT phosphor gamut) ###
### WP: D65 (6504K) (in practice more like 7000K-7500K range) ###
### ###
### NTSC-J (Default) ###
### Phosphor: NTSC-J (#2) (or a NTSC-J based CRT phosphor gamut) ###
### WP: 9300K+27MPCD (8945K) (CCT from x:0.281 y:0.311)(in practice ~8600K)###
### ###
### ###
##########################################################################################
##########################################################################################
*/
#pragma parameter g_signal_type "Signal Type (0:RGB 1:Composite)" 0.0 0.0 1.0 1.0
#pragma parameter g_crtgamut "Phosphor (-2:CRT-95s -1:P22-80s 1:P22-90s 2:NTSC-J 3:PAL)" 0.0 -3.0 3.0 1.0
#pragma parameter g_space_out "Diplay Color Space (-1:709 0:sRGB 1:DCI 2:2020 3:Adobe)" 0.0 -1.0 3.0 1.0
#pragma parameter g_Dark_to_Dim "Dark to Dim adaptation" 0.0 0.0 1.0 1.0
// Analogue controls
#pragma parameter g_hue_degrees "CRT Hue" 0.0 -360.0 360.0 1.0
#pragma parameter g_U_SHIFT "CRT U Shift" 0.0 -0.2 0.2 0.01
#pragma parameter g_V_SHIFT "CRT V Shift" 0.0 -0.2 0.2 0.01
#pragma parameter g_U_MUL "CRT U Multiplier" 1.0 0.0 2.0 0.01
#pragma parameter g_V_MUL "CRT V Multiplier" 1.0 0.0 2.0 0.01
#pragma parameter g_CRT_l "CRT Gamma" 2.50 2.30 2.60 0.01
#pragma parameter g_CRT_b "CRT Brightness" 0.0 0.0 100.0 1.0
#pragma parameter g_CRT_c "CRT Contrast" 100.0 50.0 150.0 1.0
#pragma parameter g_CRT_br "CRT Beam Red" 1.0 0.0 1.2 0.01
#pragma parameter g_CRT_bg "CRT Beam Green" 1.0 0.0 1.2 0.01
#pragma parameter g_CRT_bb "CRT Beam Blue" 1.0 0.0 1.2 0.01
#pragma parameter g_vignette "Vignette Toggle" 0.0 0.0 1.0 1.0
#pragma parameter g_vstr "Vignette Strength" 40.0 0.0 50.0 1.0
#pragma parameter g_vpower "Vignette Power" 0.20 0.0 0.5 0.01
// Digital controls
#pragma parameter g_lum_fix "Sega Luma Fix" 0.0 0.0 1.0 1.0
#pragma parameter g_lum "Brightness" 0.0 -0.5 1.0 0.01
#pragma parameter g_cntrst "Contrast" 0.0 -1.0 1.0 0.05
#pragma parameter g_mid "Contrast Pivot" 0.5 0.0 1.0 0.01
#pragma parameter wp_temperature "White Point" 6504.0 5004.0 12004.0 100.0
#pragma parameter g_sat "Saturation" 0.0 -1.0 1.0 0.01
#pragma parameter g_vibr "Dullness/Vibrance" 0.0 -1.0 1.0 0.05
#pragma parameter g_satr "Hue vs Sat Red" 0.0 -1.0 1.0 0.01
#pragma parameter g_satg "Hue vs Sat Green" 0.0 -1.0 1.0 0.01
#pragma parameter g_satb "Hue vs Sat Blue" 0.0 -1.0 1.0 0.01
#pragma parameter g_lift "Black Level" 0.0 -0.5 0.5 0.01
#pragma parameter blr "Black-Red Tint" 0.0 0.0 1.0 0.01
#pragma parameter blg "Black-Green Tint" 0.0 0.0 1.0 0.01
#pragma parameter blb "Black-Blue Tint" 0.0 0.0 1.0 0.01
#pragma parameter wlr "White-Red Tint" 1.0 0.0 2.0 0.01
#pragma parameter wlg "White-Green Tint" 1.0 0.0 2.0 0.01
#pragma parameter wlb "White-Blue Tint" 1.0 0.0 2.0 0.01
#pragma parameter rg "Red-Green Tint" 0.0 -1.0 1.0 0.005
#pragma parameter rb "Red-Blue Tint" 0.0 -1.0 1.0 0.005
#pragma parameter gr "Green-Red Tint" 0.0 -1.0 1.0 0.005
#pragma parameter gb "Green-Blue Tint" 0.0 -1.0 1.0 0.005
#pragma parameter br "Blue-Red Tint" 0.0 -1.0 1.0 0.005
#pragma parameter bg "Blue-Green Tint" 0.0 -1.0 1.0 0.005
#define M_PI 3.1415926535897932384626433832795/180.0
#define signal params.g_signal_type
#define crtgamut params.g_crtgamut
#define SPC params.g_space_out
#define hue_degrees params.g_hue_degrees
#define U_SHIFT params.g_U_SHIFT
#define V_SHIFT params.g_V_SHIFT
#define U_MUL params.g_U_MUL
#define V_MUL params.g_V_MUL
#define g_CRT_l -(100000.*log((72981.-500000./(3.*max(2.3,params.g_CRT_l)))/9058.))/945461.
#define lum_fix params.g_lum_fix
#define vignette global.g_vignette
#define vstr params.g_vstr
#define vpower params.g_vpower
#define g_sat params.g_sat
#define vibr params.g_vibr
#define beamr global.g_CRT_br
#define beamg global.g_CRT_bg
#define beamb global.g_CRT_bb
#define satr global.g_satr
#define satg global.g_satg
#define satb global.g_satb
#define lum params.g_lum
#define cntrst params.g_cntrst
#define mid params.g_mid
#define lift params.g_lift
#define blr params.blr
#define blg params.blg
#define blb params.blb
#define wlr params.wlr
#define wlg params.wlg
#define wlb params.wlb
#define rg params.rg
#define rb params.rb
#define gr params.gr
#define gb params.gb
#define br params.br
#define bg params.bg
#pragma stage vertex
layout(location = 0) in vec4 Position;
layout(location = 1) in vec2 TexCoord;
layout(location = 0) out vec2 vTexCoord;
void main()
{
gl_Position = global.MVP * Position;
vTexCoord = TexCoord;
}
#pragma stage fragment
layout(location = 0) in vec2 vTexCoord;
layout(location = 0) out vec4 FragColor;
layout(set = 0, binding = 2) uniform sampler2D Source;
///////////////////////// Color Space Transformations //////////////////////////
// 'D65' based
mat3 RGB_to_XYZ_mat(mat3 primaries) {
vec3 RW = vec3(0.950457397565471, 1., 1.089436035930324);
vec3 T = RW * inverse(primaries);
mat3 TB = mat3(
T.x, 0, 0,
0, T.y, 0,
0, 0, T.z);
return TB * primaries;
}
vec3 RGB_to_XYZ(vec3 RGB, mat3 primaries) {
return RGB * RGB_to_XYZ_mat(primaries);
}
vec3 XYZ_to_RGB(vec3 XYZ, mat3 primaries) {
return XYZ * inverse(RGB_to_XYZ_mat(primaries));
}
vec3 XYZtoYxy(vec3 XYZ) {
float XYZrgb = XYZ.r+XYZ.g+XYZ.b;
float Yxyg = (XYZrgb <= 0.0) ? 0.3805 : XYZ.r / XYZrgb;
float Yxyb = (XYZrgb <= 0.0) ? 0.3769 : XYZ.g / XYZrgb;
return vec3(XYZ.g, Yxyg, Yxyb);
}
vec3 YxytoXYZ(vec3 Yxy) {
float Xs = Yxy.r * (Yxy.g/Yxy.b);
float Xsz = (Yxy.r <= 0.0) ? 0.0 : 1.0;
vec3 XYZ = vec3(Xsz,Xsz,Xsz) * vec3(Xs, Yxy.r, (Xs/Yxy.g)-Xs-Yxy.r);
return XYZ;
}
///////////////////////// White Point Mapping /////////////////////////
//
//
// PAL: D65 NTSC-U: D65 NTSC-J: CCT NTSC-J
// PAL: 6503.512K NTSC-U: 6503.512K NTSC-J: ~8945.436K
// [x:0.31266142 y:0.3289589] [x:0.281 y:0.311]
// For NTSC-J there's not a common agreed value, measured consumer units span from 8229.87K to 8945.623K with accounts for 8800K as well.
// Recently it's been standardized to 9300K which is closer to what master monitors (and not consumer units) were (x=0.2838 y=0.2984) (~9177.98K)
// "RGB to XYZ -> Temperature -> XYZ to RGB" joint matrix
vec3 wp_adjust(vec3 RGB, float temperature, mat3 primaries, mat3 display) {
float temp3 = 1000. / temperature;
float temp6 = 1000000. / pow(temperature, 2.);
float temp9 = 1000000000. / pow(temperature, 3.);
vec3 wp = vec3(1.);
wp.x = (temperature < 5500.) ? 0.244058 + 0.0989971 * temp3 + 2.96545 * temp6 - 4.59673 * temp9 : \
(temperature < 8000.) ? 0.200033 + 0.9545630 * temp3 - 2.53169 * temp6 + 7.08578 * temp9 : \
0.237045 + 0.2437440 * temp3 + 1.94062 * temp6 - 2.11004 * temp9 ;
wp.y = -0.275275 + 2.87396 * wp.x - 3.02034 * pow(wp.x,2) + 0.0297408 * pow(wp.x,3);
wp.z = 1. - wp.x - wp.y;
vec3 RW = vec3(0.950457397565471, 1., 1.089436035930324); // D65 Reference White
const mat3 CAT16 = mat3(
0.401288,-0.250268, -0.002079,
0.650173, 1.204414, 0.048952,
-0.051461, 0.045854, 0.953127);
vec3 VKV = (vec3(wp.x/wp.y,1.,wp.z/wp.y) * CAT16) / (RW * CAT16);
mat3 VK = mat3(
VKV.x, 0.0, 0.0,
0.0, VKV.y, 0.0,
0.0, 0.0, VKV.z);
mat3 CAM = CAT16 * (VK * inverse(CAT16));
mat3 mata = RGB_to_XYZ_mat(primaries);
mat3 matb = RGB_to_XYZ_mat(display);
return RGB.rgb * ((mata * CAM) * inverse(matb));
}
////////////////////////////////////////////////////////////////////////////////
// CRT EOTF Function
//----------------------------------------------------------------------
float EOTF_1886a(float color, float bl, float brightness, float contrast) {
// Defaults:
// Black Level = 0.1
// Brightness = 0
// Contrast = 100
float wl = 100.0;
float b = pow(bl, 1/2.4);
float a = pow(wl, 1/2.4)-b;
b = brightness>0 ? (brightness/286.+b/a) : b/a;
a = contrast!=100 ? contrast/100. : 1;
float Vc = 0.35; // Offset
float Lw = wl/100. * a; // White level
float Lb = clamp(b * a,0.01,Vc); // Black level
float a1 = 2.6; // Shoulder gamma
float a2 = 3.0; // Knee gamma
float k = Lw /pow(1 + Lb, a1);
float sl = k * pow(Vc + Lb, a1-a2); // Slope for knee gamma
color = color >= Vc ? k * pow(color + Lb, a1 ) : sl * pow(color + Lb, a2 );
return color;
}
vec3 EOTF_1886a_f3( vec3 color, float BlackLevel, float brightness, float contrast) {
color.r = EOTF_1886a( color.r, BlackLevel, brightness, contrast);
color.g = EOTF_1886a( color.g, BlackLevel, brightness, contrast);
color.b = EOTF_1886a( color.b, BlackLevel, brightness, contrast);
return color.rgb;
}
// Monitor Curve Functions: https://github.com/ampas/aces-dev
//----------------------------------------------------------------------
float moncurve_f( float color, float gamma, float offs)
{
// Forward monitor curve
color = clamp(color, 0.0, 1.0);
float fs = (( gamma - 1.0) / offs) * pow( offs * gamma / ( ( gamma - 1.0) * ( 1.0 + offs)), gamma);
float xb = offs / ( gamma - 1.0);
color = ( color > xb) ? pow( ( color + offs) / ( 1.0 + offs), gamma) : color * fs;
return color;
}
vec3 moncurve_f_f3( vec3 color, float gamma, float offs)
{
color.r = moncurve_f( color.r, gamma, offs);
color.g = moncurve_f( color.g, gamma, offs);
color.b = moncurve_f( color.b, gamma, offs);
return color.rgb;
}
float moncurve_r( float color, float gamma, float offs)
{
// Reverse monitor curve
color = clamp(color, 0.0, 1.0);
float yb = pow( offs * gamma / ( ( gamma - 1.0) * ( 1.0 + offs)), gamma);
float rs = pow( ( gamma - 1.0) / offs, gamma - 1.0) * pow( ( 1.0 + offs) / gamma, gamma);
color = ( color > yb) ? ( 1.0 + offs) * pow( color, 1.0 / gamma) - offs : color * rs;
return color;
}
vec3 moncurve_r_f3( vec3 color, float gamma, float offs)
{
color.r = moncurve_r( color.r, gamma, offs);
color.g = moncurve_r( color.g, gamma, offs);
color.b = moncurve_r( color.b, gamma, offs);
return color.rgb;
}
//-------------------------- Luma Functions ----------------------------
// Performs better in gamma encoded space
float contrast_sigmoid(float color, float cont, float pivot){
cont = pow(cont + 1., 3.);
float knee = 1. / (1. + exp(cont * pivot));
float shldr = 1. / (1. + exp(cont * (pivot - 1.)));
color =(1. / (1. + exp(cont * (pivot - color))) - knee) / (shldr - knee);
return color;
}
// Performs better in gamma encoded space
float contrast_sigmoid_inv(float color, float cont, float pivot){
cont = pow(cont - 1., 3.);
float knee = 1. / (1. + exp (cont * pivot));
float shldr = 1. / (1. + exp (cont * (pivot - 1.)));
color = pivot - log(1. / (color * (shldr - knee) + knee) - 1.) / cont;
return color;
}
float rolled_gain(float color, float gain){
float gx = abs(gain) + 0.001;
float anch = (gain > 0.0) ? 0.5 / (gx / 2.0) : 0.5 / gx;
color = (gain > 0.0) ? color * ((color - anch) / (1 - anch)) : color * ((1 - anch) / (color - anch)) * (1 - gain);
return color;
}
vec3 rolled_gain_v3(vec3 color, float gain){
color.r = rolled_gain(color.r, gain);
color.g = rolled_gain(color.g, gain);
color.b = rolled_gain(color.b, gain);
return color.rgb;
}
float SatMask(float color_r, float color_g, float color_b)
{
float max_rgb = max(color_r, max(color_g, color_b));
float min_rgb = min(color_r, min(color_g, color_b));
float msk = clamp((max_rgb - min_rgb) / (max_rgb + min_rgb), 0.0, 1.0);
return msk;
}
//---------------------- Range Expansion/Compression -------------------
// 0-235 YUV PAL
// 0-235 YUV NTSC-J
// 16-235 YUV NTSC
// to Studio Swing/Broadcast Safe/SMPTE legal/Limited Range
vec3 PCtoTV(vec3 col, float luma_swing, float Umax, float Vmax, float max_swing)
{
col *= 255.;
vec2 UVmax = (max_swing == 1.0) ? vec2(Umax,Vmax) * 224. : vec2(Umax,Vmax) * 239.;
col.x = (luma_swing == 1.0) ? ((col.x * 219.) / 255.) + 16. : col.x;
col.yz = (((col.yz - 128.) * (UVmax * 2.)) / 255.) + UVmax;
return col.xyz / 255.;
}
// to Full Swing/Full Range
vec3 TVtoPC(vec3 col, float luma_swing, float Umax, float Vmax, float max_swing)
{
col *= 255.;
vec2 UVmax = (max_swing == 1.0) ? vec2(Umax,Vmax) * 224. : vec2(Umax,Vmax) * 239.;
col.x = (luma_swing == 1.0) ? ((col.x - 16.) / 219.) * 255. : col.x;
col.yz = (((col.yz - UVmax) / (UVmax * 2.)) * 255.) + 128.;
return col.xyz / 255.;
}
//*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/
// Matrices in OpenGL column-major
//----------------------- Y'UV color model -----------------------
// Bymax 0.885515
// Rymax 0.701088
// R'G'B' full range to Decorrelated Intermediate (Y,B-Y,R-Y)
// Rows should sum to 0, except first one which sums 1
const mat3 YByRy =
mat3(
0.298912, 0.586603, 0.114485,
-0.298912,-0.586603, 0.885515,
0.701088,-0.586603,-0.114485);
// Umax 0.435812284313725
// Vmax 0.615857694117647
// YUV is defined with headroom and footroom (TV range),
// we need to limit the excursion to 16-235.
// This is still R'G'B' full to YUV full though
vec3 r601_YUV(vec3 RGB) {
float sclU = ((0.5*(235-16)+16)/255.); // This yields Luma grey at around 0.49216 or 125.5 in 8-bit
float sclV = (240-16) /255. ; // This yields Chroma range at around 0.87843 or 224 in 8-bit
mat3 conv_mat = mat3(
vec3(YByRy[0]),
vec3(sclU) * vec3(YByRy[1]),
vec3(sclV) * vec3(YByRy[2]));
// -0.147111592156863 -0.288700692156863 0.435812284313725
// 0.615857694117647 -0.515290478431373 -0.100567215686275
return RGB.rgb * conv_mat;
}
vec3 YUV_r601(vec3 YUV) {
mat3 conv_mat = mat3(
1.0000000, -0.000000029378826483, 1.1383928060531616,
1.0000000, -0.396552562713623050, -0.5800843834877014,
1.0000000, 2.031872510910034000, 0.0000000000000000);
return YUV.xyz * conv_mat;
}
//------------------------- LMS --------------------------
// Hunt-Pointer-Estevez D65 cone response
// modification for IPT model
const mat3 LMS =
mat3(
0.4002, 0.7075, -0.0807,
-0.2280, 1.1500, 0.0612,
0.0000, 0.0000, 0.9184);
const mat3 IPT =
mat3(
0.4000, 0.4000, 0.2000,
4.4550, -4.8510, 0.3960,
0.8056, 0.3572, -1.1628);
//*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/
//----------------------- Phosphor Gamuts -----------------------
////// STANDARDS ///////
// SMPTE RP 145-1994 (SMPTE-C), 170M-1999
// SMPTE-C - Standard Phosphor (Rec.601 NTSC)
// ILLUMINANT: D65->[0.31266142,0.3289589]
const mat3 SMPTE170M_ph =
mat3(
0.630, 0.310, 0.155,
0.340, 0.595, 0.070,
0.030, 0.095, 0.775);
// ITU-R BT.470/601 (B/G)
// EBU Tech.3213 PAL - Standard Phosphor for Studio Monitors
// ILLUMINANT: D65->[0.31266142,0.3289589]
const mat3 SMPTE470BG_ph =
mat3(
0.640, 0.290, 0.150,
0.330, 0.600, 0.060,
0.030, 0.110, 0.790);
// NTSC-J P22
// Mix between averaging KV-20M20, KDS VS19, Dell D93, 4-TR-B09v1_0.pdf and Phosphor Handbook 'P22'
// ILLUMINANT: D93->[0.281000,0.311000] (CCT of 8945.436K)
// ILLUMINANT: D97->[0.285000,0.285000] (CCT of 9696K) for Nanao MS-2930s series
const mat3 P22_J_ph =
mat3(
0.625, 0.280, 0.152,
0.350, 0.605, 0.062,
0.025, 0.115, 0.786);
////// P22 ///////
// You can run any of these P22 primaries either through D65 or D93 indistinctly but typically these were D65 based.
// P22_80 is roughly the same as the old P22 gamut in Grade 2020. P22 1979-1994 meta measurement.
// ILLUMINANT: D65->[0.31266142,0.3289589]
const mat3 P22_80s_ph =
mat3(
0.6470, 0.2820, 0.1472,
0.3430, 0.6200, 0.0642,
0.0100, 0.0980, 0.7886);
// P22 improved with tinted phosphors (Use this for NTSC-U 16-bits, and above for 8-bits)
const mat3 P22_90s_ph =
mat3(
0.6661, 0.3134, 0.1472,
0.3329, 0.6310, 0.0642,
0.0010, 0.0556, 0.7886);
// CRT for Projection Tubes for NTSC-U late 90s, early 00s
const mat3 CRT_95s_ph =
mat3(
0.640, 0.341, 0.150,
0.335, 0.586, 0.070,
0.025, 0.073, 0.780);
//*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/
//----------------------- Display Primaries -----------------------
// sRGB (IEC 61966-2-1) and ITU-R BT.709-6 (originally CCIR Rec.709)
const mat3 sRGB_prims =
mat3(
0.640, 0.300, 0.150,
0.330, 0.600, 0.060,
0.030, 0.100, 0.790);
// Adobe RGB (1998)
const mat3 Adobe_prims =
mat3(
0.640, 0.210, 0.150,
0.330, 0.710, 0.060,
0.030, 0.080, 0.790);
// BT-2020/BT-2100 (from 630nm, 532nm and 467nm)
const mat3 rec2020_prims =
mat3(
0.707917792, 0.170237195, 0.131370635,
0.292027109, 0.796518542, 0.045875976,
0.000055099, 0.033244263, 0.822753389);
// SMPTE RP 432-2 (DCI-P3)
const mat3 DCIP3_prims =
mat3(
0.680, 0.265, 0.150,
0.320, 0.690, 0.060,
0.000, 0.045, 0.790);
//*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/
void main()
{
// Retro Sega Systems: Genesis, 32x, CD and Saturn 2D had color palettes designed in TV levels to save on transformations.
float lum_exp = (lum_fix == 1.0) ? (255./239.) : 1.;
vec3 src = texture(Source, vTexCoord.xy).rgb * lum_exp;
// Clipping Logic / Gamut Limiting
vec2 UVmax = vec2(0.435812284313725, 0.615857694117647);
// Assumes framebuffer in Rec.601 full range with baked gamma
vec3 col = clamp(r601_YUV(src), vec3(0.0, -UVmax.x, -UVmax.y) , \
vec3(1.0, UVmax.x, UVmax.y));
col = crtgamut < 2.0 ? PCtoTV(col, 1.0, UVmax.x, UVmax.y, 1.0) : col;
// YUV Analogue Color Controls (HUE + Color Shift + Color Burst)
float hue_radians = hue_degrees * M_PI;
float hue = atan(col.z, col.y) + hue_radians;
float chroma = sqrt(col.z * col.z + col.y * col.y);
col = vec3(col.x, chroma * cos(hue), chroma * sin(hue));
col.y = (mod((col.y + 1.0) + U_SHIFT, 2.0) - 1.0) * U_MUL;
col.z = (mod((col.z + 1.0) + V_SHIFT, 2.0) - 1.0) * V_MUL;
// Back to RGB
col = crtgamut < 2.0 ? TVtoPC(col, 1.0, UVmax.x, UVmax.y, 1.0) : col;
col = clamp(YUV_r601(col), 0., 1.);
// CRT EOTF. To Display Referred Linear: Undo developer baked CRT gamma (from 2.40 at default 0.1 CRT black level, to 2.61 at 0.0 CRT black level)
col = EOTF_1886a_f3(col, g_CRT_l, params.g_CRT_b, params.g_CRT_c);
//_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
// \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \
// HUE vs HUE
vec4 screen = vec4(max(col, 0.0), 1.0);
// r g b alpha ; alpha does nothing for our purposes
mat4 color = mat4(wlr, rg, rb, 0.0, //red tint
gr, wlg, gb, 0.0, //green tint
br, bg, wlb, 0.0, //blue tint
blr/20., blg/20., blb/20., 0.0); //black tint
screen *= transpose(color);
// CRT Phosphor Gamut (0.0 is noop)
mat3 m_in;
if (crtgamut == -3.0) { m_in = SMPTE170M_ph; } else
if (crtgamut == -2.0) { m_in = CRT_95s_ph; } else
if (crtgamut == -1.0) { m_in = P22_80s_ph; } else
if (crtgamut == 0.0) { m_in = sRGB_prims; } else
if (crtgamut == 1.0) { m_in = P22_90s_ph; } else
if (crtgamut == 2.0) { m_in = P22_J_ph; } else
if (crtgamut == 3.0) { m_in = SMPTE470BG_ph; }
m_in = (global.LUT1_toggle == 0.0) ? m_in : sRGB_prims;
// Display color space
mat3 m_ou;
if (SPC == 1.0) { m_ou = DCIP3_prims; } else
if (SPC == 2.0) { m_ou = rec2020_prims; } else
if (SPC == 3.0) { m_ou = Adobe_prims; } else
{ m_ou = sRGB_prims; }
// White Point Mapping
col = wp_adjust(screen.rgb, global.wp_temperature, m_in, m_ou);
// SAT + HUE vs SAT (in IPT space)
vec3 coeff = RGB_to_XYZ_mat(m_in)[1];
vec3 src_h = RGB_to_XYZ(screen.rgb, m_in) * LMS;
src_h.x = src_h.x >= 0.0 ? pow(src_h.x, 0.43) : -pow(-src_h.x, 0.43);
src_h.y = src_h.y >= 0.0 ? pow(src_h.y, 0.43) : -pow(-src_h.y, 0.43);
src_h.z = src_h.z >= 0.0 ? pow(src_h.z, 0.43) : -pow(-src_h.z, 0.43);
src_h.xyz *= IPT;
float hue_at = atan(src_h.z, src_h.y);
chroma = sqrt(src_h.z * src_h.z + src_h.y * src_h.y);
// red 320º green 220º blue 100º
float hue_radians_r = 320.0 * M_PI;
float hue_r = cos(hue_at + hue_radians_r);
float hue_radians_g = 220.0 * M_PI;
float hue_g = cos(hue_at + hue_radians_g);
float hue_radians_b = 100.0 * M_PI;
float hue_b = cos(hue_at + hue_radians_b);
float msk = dot(clamp(vec3(hue_r, hue_g, hue_b) * chroma * 2, 0., 1.), -vec3(satr, satg, satb));
src_h = mix(col, vec3(dot(coeff, col)), msk);
float sat_msk = (vibr < 0.0) ? 1.0 - abs(SatMask(src_h.x, src_h.y, src_h.z) - 1.0) * abs(vibr) : \
1.0 - (SatMask(src_h.x, src_h.y, src_h.z) * vibr) ;
float sat = g_sat + 1.0;
float msat = 1.0 - sat;
float msatx = msat * coeff.x;
float msaty = msat * coeff.y;
float msatz = msat * coeff.z;
mat3 adjust = mat3(msatx + sat, msatx , msatx ,
msaty , msaty + sat, msaty ,
msatz , msatz , msatz + sat);
src_h = mix(src_h, adjust * src_h, clamp(sat_msk, 0., 1.));
src_h = clamp(src_h*vec3(beamr,beamg,beamb),0.0,1.0);
// Sigmoidal Luma Contrast under 'Yxy' decorrelated model (in gamma space)
vec3 Yxy = XYZtoYxy(RGB_to_XYZ(src_h, m_ou));
float toGamma = clamp(moncurve_r(Yxy.r, 2.40, 0.055), 0., 1.);
toGamma = (Yxy.r > 0.5) ? contrast_sigmoid_inv(toGamma, 2.3, 0.5) : toGamma;
float sigmoid = (cntrst > 0.0) ? contrast_sigmoid(toGamma, cntrst, mid) : contrast_sigmoid_inv(toGamma, cntrst, mid);
vec3 contrast = vec3(moncurve_f(sigmoid, 2.40, 0.055), Yxy.g, Yxy.b);
vec3 XYZsrgb = XYZ_to_RGB(YxytoXYZ(contrast), m_ou);
contrast = (cntrst == 0.0) ? src_h : XYZsrgb;
// Lift + Gain -PP Digital Controls- (Could do in Yxy but performance reasons)
src_h = clamp(rolled_gain_v3(contrast, clamp(lum, -0.49, 0.99)), 0., 1.);
src_h += (lift / 20.0) * (1.0 - contrast);
// Vignetting & Black Level (in linear space, so after EOTF^-1 it's power shaped; 0.5 thres converts to ~0.75)
vec2 vpos = vTexCoord*(global.OriginalSize.xy/global.SourceSize.xy);
vpos *= 1.0 - vpos.xy;
float vig = vpos.x * vpos.y * vstr;
vig = min(pow(vig, vpower), 1.0);
vig = vig >= 0.5 ? smoothstep(0,1,vig) : vig;
src_h *= (vignette == 1.0) ? vig : 1.0;
// Dark to Dim adaptation OOTF; only for 709 and 2020
vec3 src_D = global.g_Dark_to_Dim > 0.0 ? pow(src_h,vec3(0.9811)) : src_h;
// EOTF^-1 - Inverted Electro-Optical Transfer Function
vec3 TRC = (SPC == 3.0) ? clamp(pow(src_h, vec3(1./(563./256.))), 0., 1.) : \
(SPC == 2.0) ? moncurve_r_f3(src_D, 2.20 + 0.022222, 0.0993) : \
(SPC == 1.0) ? clamp(pow(src_h, vec3(1./(2.20 + 0.40))), 0., 1.) : \
(SPC == 0.0) ? moncurve_r_f3(src_h, 2.20 + 0.20, 0.0550) : \
clamp(pow( src_D, vec3(1./(2.20 + 0.20))), 0., 1.) ;
FragColor = vec4(TRC, 1.0);
}